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Abstract

In the last decade, smartphones have gained
widespread usage. Since the advent of online appli-
cation stores, hundreds of thousands of applications
have become instantly available to millions of smart-
phone users. Within the Android ecosystem, appli-
cation security is governed by digital signatures and
a list of coarse-grained permissions. However, this
mechanism is not fine-grained enough to provide the
user with a sufficient means of control of the applica-
tions’ activities. Abuse of highly sensible private in-
formation such as phone numbers without users’ no-
tice is the result. We show that there is a high fre-
quency of privacy leaks even among widely popular
applications. Together with the fact that the major-
ity of the users are not proficient in computer security,
this presents a challenge to the engineers developing
security solutions for the platform. Our contribution
is twofold: first, we propose a service which is able to
assess Android Market applications via static analysis
and provide detailed, but readable reports to the user.
Second, we describe a means to mitigate security and
privacy threats by automated reverse-engineering and
refactoring binary application packages according to
the users’ security preferences.

1. Introduction

The smartphone market has been growing steadily
since the introduction of Apple iPhone in 2006, fol-
lowed by a slew of Android devices since the end of

2008. In May 2011, the number of smartphone own-
ers reached 76.8 million in the U.S., with Google’s
Android operating system running on 38.1% of those,
making it the dominating mobile platform [2]. Akin
to its competitors, applications for this platform are
distributed through a central web service titled “An-
droid Market”, deployed and maintained by Google.
Developers can submit executable binary packages to
it, which are then published to a world-wide user base.
No in-depth security analysis is performed by Google
prior to market release, which makes the platform at-
tractive for malicious and unwanted software writers.

Android is based on the Linux kernel, together with
a strongly adapted userland. Applications run and
maintain their data in isolated environments, and inter-
process communication is strictly governed by a per-
mission system. An application defines the list of ca-
pabilities it requires in a manifest file, which is pre-
sented to the user before installation. However, the
user is not able to selectively grant or deny permis-
sions to an application - instead, the only choice she
has is to allow or deny installation. This presents a
strong limitation of Android’s security infrastructure,
together with the fact that the permissions are very
coarse-grained and do not provide sufficient insight of
the actual, potentially malicious, activities performed
after installation. Our analysis shows that at least 167
out of the top 1865 apps on the Android Market ac-
cess private information such as the telephone num-
ber, accounting for around 9% of all applications. 114
applications of this set write private identifiers into a
stream immediately after retrieval. However, the user
is only informed of the fact that the application will



“read the phone’s state”. Since most end-users are
not experts, this information is typically not consid-
ered suspicious, contributing to a high install base of
such privacy-offending software.

In this work, we target the problem of detection and
mitigation of such unwanted activities within Android
applications. Our contribution is twofold - first, we
describe a static analysis service which allows users
to gain deep insight into applications’ internals while
remaining readable and, in the first place, comprehen-
sible for an end-user. Second, we show a novel miti-
gation strategy for this kind of activities. Since appli-
cations may still be useful to a user despite unwanted
side-effects, we propose a method of disabling mali-
cious features from an application while retaining its
core functionality. This is a novel approach which
works at application-binary-level, in contrast to pop-
ular system modification approaches prevalent in the
current literature.

In section 2, we provide an overview of current re-
search in the area of Android security and application
analysis, as well as threat elimination. In section 3, our
approach to detection and mitigation of malicious and
unwanted activities within Android applications is pre-
sented. Section 4 provides an overview of a proof-of-
concept prototype currently deployed by our research
group. In section 5, we conclude and discuss future
directions for follow-up research.

2. Related work

Estimating the impact of third-party software is
a hard task which also fostered malware spread on
smartphone platforms in the past. Several approaches
to malware assessment exist and can be categorised
in dynamic analysis and static analysis of binaries.
While the static approach analyses the binary itself for
malicious features, the dynamic rationale focuses on
its behaviour while being executed.

Dynamic analysis can be applied to a production
system - such as a user’s smartphone - as means of
detecting malicious and/or anomalous activity at run-
time. The analysis itself may be executed both off-
device to preserve battery power [8], or on device to
provide instant feedback, as demonstrated by Taint-
Droid introduced by Enck et al. [3]. This tool provides
real-time analysis for identifying potential misuse of

users’ private information by analyzing flow of sensi-
tive data in the system. However, these solutions al-
low potentially anomalous binaries to be executed on
users’ devices. This limitation can be addressed by
sandboxing and virtualization techniques [1], which
allow thorough analysis of the applications’ effects
in an isolated and controlled environment. However,
when executed automatically, e.g. with random input,
this technique may not be able to emulate the behavior
of a user well enough to provide realistic results.

Static analysis of executable binaries is a well estab-
lished technique [7]. Static analysis techniques have
been applied to Android executables as well. Schmidt
et al. propose a system which detects malicious na-
tive binaries by applying machine learning techniques
to function call histograms. Enck et al. [4] focus on
the more typical Java-based applications and provide
an off-line analysis of 1,100 most popular applications
from the Android Market together with a list of 27
security-related findings obtained by de-compilation
and static code analysis. We tie in with this research
and provide a comprehensive methodology for stream-
lined, automated binary assessment.

Malware mitigation strategies for Android proposed
in current literature commonly focus on modifications
to the operating system itself. Schmidt et al. [9] pro-
pose usage of native userland security methods known
from traditional Linux systems. Shabtai et al. [10] fo-
cus on the kernel and describe the benefits of using SE
Linux in Android to provide more robustness to the
platform. Ongtang et al. [6] aim at the upper levels of
Android application stack and describe modifications
to its high-level security system to allow dynamic per-
mission management. A more business-oriented ap-
proach is presented by Kuntze et al. [5], including us-
age of a trusted computing platform as a basis for an
enterprise-grade secure smartphone based on Android.
While creating a fork of Android for a specific purpose
remains feasible, the history of large and frequent up-
dates to Google’s official source mainline1 has shown
that maintaining an own development branch is a te-
dious and costly task.

1http://developer.android.com/sdk/



3. Static Analysis for Automated Binary As-
sessment and Malicious Activity Mitigation

In this work, we focus on two shortcomings of the
Android platform, or, more specifically, its third-party
software distribution. First, we provide a means of in-
depth static analysis of Android applications, bundled
with a human-readable reporting to support users in
assessment of application. This way, we try to make it
easier for the user to make the significant security de-
cision - to install or not to install an application. Sec-
ond, we provide a method to overcome the security and
privacy threats introduced by individual applications.
While the efforts mentioned in Section 2 focus on mit-
igation of the shortcomings of the platform, malicious
and unwanted functionality may remain in third-party
software. We address this problem by an unorthodox
approach - modifying the application binaries instead
of the system. Therefore, our approach does not re-
quire changes in the operating system and the underly-
ing security methodology, enabling to preserve the vast
amount of already existing third-party software with-
out compromising security. In our approach, the soft-
ware is analyzed for malicious and unwanted patterns
in its decompiled form, and then modified at source-
code level to match the user’s preference or policy.

3.1. Automated Binary Assessment

Our incentive is to provide extended static anal-
ysis of Android applications as a service to allow
users to inform themselves about the potential security
threats and privacy violations. Currently, all informa-
tion which a user receives about the application prior
to installation is comprised of two sources: a) free-
text application description and screenshots provided
by the developer and not checked by Google or any
other authority, and therefore not trustworthy, and b)
list of permissions required by the application to run,
which is obtained from the package’s metadata by the
operating system itself and can therefore be considered
trustworthy. However, the latter is very coarse-grained
and only provides the user with generic information of
what information or hardware functionality the appli-
cation is allowed to access on the device. Neither is
any information provided on what exactly the appli-
cation intends to perform with the obtained data, nor

Figure 1. Proposed workflow of the static
analysis service.

is the user informed of which - potentially private -
data is concerned. We address this issue by providing
deep static analysis of application as a service to the
user. Our proposed system is depicted in Figure 1 and
is comprised of the following steps:

1. The user requests a report on an application,
which is obtained from the Android Market or up-
loaded by the user.

2. The application is unpacked and decompiled.

3. A set of pluggable detectors perform data mining
and analysis operations

4. A report is generated from the detection results
and provided to the user in a human-readable,
comprehensible form.

The aforementioned detectors can be designed for
both simple analysis tasks such as detection and iden-
tification of third-party libraries included in the dis-
tribution, as well as more sophisticated source-code
analysis tasks which involve rich pattern matching.
This should allow the user to obtain information about
the internal workings of the application on a level
previously unreached by currently available solutions.
For example, such a report can contain a list of in-
cluded third-party advertising and analytical packages,
as well as privacy leaks detected in the source code
such as “reads IMEI and writes it to a stream” or secu-
rity warnings such as “uses non-standard networking
API” and “package includes a native executable”.



3.2. Automatic Mitigation

While in the analysis phase, we try to identify secu-
rity related information in the decompiled binary, the
obvious next step is mitigation of the detected poten-
tially malicious activities within the application. The
majority of privacy breaches we have detected among
the most popular free Android applications can be mit-
igated by applying a patch to the decompiled binary
without any impact on its core functionality.

In our vision, the user should be able to create a per-
sonal profile which contains her preferences regarding
which of the detected suspicious activities have to be
removed from the application. Then, given a set of
detectors D := {d1, . . . , dn} defined as di : A →
{T, F} for the set of all applications A and 1 ≤ i ≤ n,
we define full set of mitigation strategies as a function:

m strategy : D →M ∪ {deny},

where M is a set of code modifications {m1, . . . ,ml}.
Now, assuming a set of personal preferences is denoted
as a subset of D:

P ∈ P(D),

we define a mitigation function:

mitigate : A× P(D)→ P(M) ∪ {deny}

for a ∈ A and P ⊆ D as follows:

mitigate(a, P ) =

{
f(a, P ) if deny /∈ f(a, P )
deny otherwise,

where f : A× P(D) is a helper function defined as:

f(a, P ) =
⋃

d∈P, d(a)=T

m strategy(d)

This means that if the users policy requires certain
detected activities to be removed, but no mitigation
strategy is available for at least one of these (i.e.
deny), then the mitigation strategy for an application
results in denial of installation. Otherwise, the patches
are applied as intended, and a new, “sanitized” ver-
sion of the application is created and provided to the
user. As a small example, consider a set of detec-
tors D = {uses reflection, reads IMEI} and a miti-
gation strategy defined as strategy(uses reflection) =

deny and strategy(reads IMEI) = {patch1}. Con-
sider user Alice with a preference set is PAlice =
{reads IMEI}, user Bob with a preference set
PAlice = {uses reflection} and an application X with
uses reflection(X) = T and reads IMEI(X) = T .
Then, the mitigation function would return {patch1}
for Alice, and deny for Bob.

Modifying and redistributing application binaries
is not permitted by most non-open-source licences.
Since the Android Market does not provide a licencing
identification information for the application it hosts,
and its Terms of Service forbid redistribution of its
contents, we are left with the following two possible
deployment versions: a) the user obtains an applica-
tion by means other than the Android Market, such
as direct download from the developer’s site, and up-
loads it to a server, which provides analysis and per-
forms mitigation actions, or b) the user deploys a dae-
mon on her device which detects installation requests,
interrupts those and performs the actions required for
decompilation, static analysis and threat mitigation on-
device. The latter method requires modifications to the
operating system - namely, a daemon must be installed
and a hook has to be injected into the normal installa-
tion process. However, these changes are very subtle
if compared to what is proposed in [6, 3] and Whisper
Systems’ “Whisper Core” effort2.

4. Experimental Prototype Solution

To prove the feasibilty of the proposed solution, we
have implemented a working prototype for the analy-
sis service, as well as a proof-of-concept prototype for
automated mitigation.

4.1. Binary Assessment via Static Analysis

Android applications are distributed in self-
contained packages called APKs which contain both
the executable bytecode as well as other binary and
XML-based resources required by the application to
run. Prior to the actual analysis, we perform a prepro-
cessing step using apktool3, an open-source decom-
pilation tool. It decodes binary resources to their initial

2http://www.whispersys.com/
3http://code.google.com/p/

android-apktool/



Figure 2. A sample report for an application
with obvious privacy violations.

XML form and decompiles Java bytecode to Smali4,
an assembler language targeted at Android’s Dalvik
VM. An example of the code produced by the decom-
piler is shown in Listing 1.

After decompilation, a set of detectors written in
Python perform static analysis mainly using regu-
lar expressions and statistic analysis of the obtained
source tree. The detectors run in a distributed man-
ner and report their results to a central CouchDB-
based5 non-relational database. CouchDB’s ability to
serve dynamic HTML rendered from detectors’ results
is then used to present comprehensible reports to the
user. A sample report for an seemingly harmless game
is presented in Figure 2. On the left, the application
description from the Market is shown along its title
and ID. Below, a list of identified privacy leaks is pre-
sented, followed by potential leaks, list of permissions
and list of device features required by the application.
On the right, the structure of the source code is pre-
sented as an interactive tree map, with segments cor-
responding to Java packages: wider segments show
packages with a greater count of opcodes. Below, you
can see a list of identified third-party packages, tagged
by their functionality, e.g. “Ads”, “Analytics”, a list
of Android APIs being in use is provided, as well as

4http://code.google.com/p/smali/
5http://couchdb.apache.org/
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Figure 3. Number of privacy violating applica-
tions among the top 1865 free market items.

the list of unrecognized third-party packages. It can
be seen that the application in this example contains a
slew of advertising and analytics libraries and reads the
IMEI, IMSI, the phone number and the SIM ID, while
writing the former three directly to a stream. Please
note that this application is a popular freeware game
with an installation base of well above 250.000 users.

We have used a custom Android Market retriever,
which was able to obtain 1865 top free applications
evenly distributed among the 22 categories available,
e.g. “Social”, “Weather” or “Productivity”. After per-
forming automated static analysis on this set of appli-
cations, we have found out that at least 167 of these
access private identifiers such as IMEI, IMSI, phone
number, etc. (see Figure 3). 114 of these applications
write the private information to a stream immediately
after reading it, which presents a major privacy con-
cern. Please note that the applications under investiga-
tion are highly popular free applications with a huge
user base of up to millions of users each. The percent-
age of privacy-offending spyware among all available
applications may be even higher than this.

4.2. Malicious activity mitigation

As already mentioned, some malicious activities
of the applications are not easy to detect and even
harder to overcome. However, the vast majority of the
unwnated functionality which we have found in our
bulk analysis experiment is related to access, storage
and transmission of private identifiers such as phone
number or IMSI. This sort of activity is easy to de-
fine as regular expressions: since internal system re-
sources like IMEI, IMSI etc. are accessed through
an Android system service the resulting bytecode for



1 .method private benignMethod()V
2 .locals 2
3 .prologue
4 .line 26
5 const-string v0, "Hello there!"
6 #v0=(Reference);
7 const/4 v1, 0x0
8 #v1=(Null);
9 invoke-static {p0, v0, v1}, Landroid/

widget/Toast;->makeText(Landroid/
content/Context;Ljava/lang/
CharSequence;I)Landroid/widget/
Toast;

10 move-result-object v0
11 invoke-virtual {v0}, Landroid/widget/

Toast;->show()V
12 .line 27
13 return-void
14 .end method

Listing 1. Smali code for displaying a Toast
message

such accesses always looks very similar. Because of
this fact, the decompiled Smali code for such calls
will also look the same for every application except
for register or parameter identifiers. The follow-
ing Java code to display a short on-screen notification
Toast.makeText(this, "Hello there!",
Toast.LENGTH SHORT).show(); would result
in the Smali code shown in Listing 1. Depending
on the surrounding code, the local registers vx an pa-
rameter registers px may differ, however, the rest of
the code stays the same for each instance of this API
call. Due to to this fact, it is possible to extract a pat-
tern for most API method calls, and implement a de-
tector and the corresponding mitigation strategy with
help of regular expressions. The aforementioned way
to retrieve system internals via Android’s system ser-
vices like the TelephonyManager makes it easy
to exactly identify and substitute those unwanted ac-
cesses. In order to obtain the device’s IMEI, the appli-
cation has to call the method getDeviceId() of a
TelephonyManager singleton. The corresponding
Java code may look as follows:

1 TelephonyManager tm = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);

2 mId = tm.getDeviceId();

First, a reference to the TelephonyManager sin-
gleton is obtained to be able to communicate with the

1 const-string v3, "phone"
2
3 #v3=(Reference);
4 invoke-virtual {p0, v3}, Levil/app/EvilApp

;->getSystemService(Ljava/lang/String;)
Ljava/lang/Object;

5
6 move-result-object v1
7
8 #v1=(Reference);
9 check-cast v1, Landroid/telephony/

TelephonyManager;
10
11 .line 32
12 .local v1, tm:Landroid/telephony/

TelephonyManager;
13 invoke-virtual {v1}, Landroid/telephony/

TelephonyManager;->getDeviceId()Ljava/
lang/String;

14
15 move-result-object v3
16
17 iput-object v3, p0, Levil/app/EvilApp;->mId:

Ljava/lang/String;

Listing 2. Malicious code obtaining the IMEI

service. Then the actual call getDeviceId() takes
place, revealing the IMEI. In this case, an obvious mit-
igation strategy would replace the IMEI with a UUID.
Prior to the implementation of this strategy, the op-
codes corresponding to the malicious pattern as well
as to its replacement have to be identified. In this ex-
ample, the crucial opcode is located on the line 13 of
Listing 2. Listing 3 shows an example replacement,
where TelephonyManager has been replaced by
an instance of the UUID generator. We have tested
this particular patch with a small number of applica-
tions, and none of the applications has shown any in-
dications of missing or broken functionality after the
patch has been applied. For more complex substitu-
tions it would be crucial to take care of the used reg-
isters. But as most accesses to internal resources are
realized through single Service methods, an auto-
mated substitution is easy to implement.

After the mitigation strategy has been executed, the
patched Smali code is compiled back to an APK using
the aformentioned apktool, and then signed with
jarsigner. Obviously, the certificate used for the
APK signature will differ from the original binary
from the Market. However, Android only checks sig-
natures during an upgrade, but not if the application
is not yet installed on the device. This makes deploy-



1 invoke-static {}, Ljava/util/UUID;->
randomUUID()Ljava/util/UUID;

2
3 move-result-object v1
4
5 invoke-virtual {v1}, Ljava/util/UUID;->

toString()Ljava/lang/String;
6
7 move-result-object v3
8
9 iput-object v3, p0, Levil/app/EvilApp;->mId:

Ljava/lang/String;

Listing 3. Patched code using UUID instead
of IMEI

ment of self-signed, patched applications an easy task
for the user.

5. Conclusion and Future Work

In this work, we have proposed a system which
combines deep static analysis of Android applica-
tions with comprehensible reporting functionality and
a means of security and privacy threat mitigation on
the application level. An end user can benefit from our
solution in a number of ways. First, the user gains an
insight in the security and privacy related internals of
any application with a level of detail unseen before.
Second, the user can decide if certain potentially mali-
cious functionality is unwanted, and it can be removed
from the application while retaining the core function-
ality intact. We have implemented a proof-of-concept
prototype and provided its implementation details to
the reader.

In future work, more effort can be put into pattern
mining and other malicious code detection techniques
to help us identify a greater number of security and
privacy threats as well as other malicious activities
within Android applications. Another open problem
is the identification of obfuscated malicious activities
which have shown to be not easy to detect with static
analysis. However, since Android applications run as
bytecode in the Dalvik VM, we have to investigate the
possibilities available to an attacker in terms of self-
modification and polymorphic code, as well as the cor-
responding mitigation strategies.
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