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ABSTRACT
While Apple has checked every app available on the App
Store, Google takes another approach that allows anyone to
publish apps on the Android Market. The openness of the
Android Market attracts both benign and malicious devel-
opers. The security of the Android platform relies mainly
on sandboxing applications and restricting their capabilities
such that no application, by default, can perform any oper-
ations that would adversely impact other applications, the
operating system, or the user. However, a recent research
reported that a genuine but vulnerable application may leak
its capabilities to other applications. When being leveraged,
other applications can gain extra capabilities which they are
not granted originally. We present DroidChecker, an An-
droid application analyzing tool which searches for the afore-
mentioned vulnerability in Android applications. Droid-
Checker uses interprocedural control flow graph searching
and static taint checking to detect exploitable data paths
in an Android application. We analyzed more than 1100
Android applications using DroidChecker and found 6 pre-
viously unknown vulnerable applications including the re-
nowned Adobe Photoshop Express application. We have
also developed a malicious application that exploits the pre-
viously unknown vulnerability found in the Adobe Photo-
shop Express application. We show that the malicious ap-
plication, which is not granted any permissions, can access
contacts on the phone with just a few lines of code.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Verification

General Terms
Algorithms, Security, Verification

Keywords
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1. INTRODUCTION
Smartphones have evolved rapidly over the last few years.

The number of smartphone users is also increasing tremen-
dously. According to figures for 2010 released by Gart-
ner [17], smartphones accounted for 297 million (19%) of the
1.6 billion mobile phones sold that year. That is 72.1% more
smartphone sales than in 2009. Another survey conducted
by thinkmobile with Google showed that 68% of the par-
ticipants expressed that they used an app during the week
before [40]. This shows that more and more people are using
smartphones these days and most of them are using appli-
cations on their smartphones.

A recent research from Nielsen shows that Android now
owns 29% market share of smartphone users in the US and
is pulling ahead of RIM Blackberry (27%) and Apple iOS
(27%) [30]. Moreover, the Android Market is the fastest
growing mobile application platform. According to a recent
report released by mobile security firm Lookout, the Android
Market is growing at three times the rate of Apple’s App
store [25]. However, unlike the Apple’s App store, there
is no screening process of the apps being published on the
Android Market. Occasionally, Google needs to take down
some malicious apps from the Android Market after they are
found containing malicious code.

Along with the increasing prevalence of smartphones, the
security threats to them are also growing. In August this
year, an uncovered trojan was found recording phone calls
and the recorded calls could be uploaded to a server main-
tained by the attacker [41]. In June, another trojan, called
GGTracker, was uncovered. It sends SMS messages to a
premium-rate number and may also steal information from
the device [26, 38]. According to a blog entry from look-
out [26], after the victims click on a malicious in-app ad-
vertisement, they are directed to a malicious website which
imitates the Android Market installation screen. The mali-
cious website then lures the victims to download and install
a malicious application. The victims are then subject to
unpredicted charges.

Android is basically a privilege-separated operating sys-
tem [2]. Every application runs with a distinct system iden-
tity in its own Davik virtual machine. This mechanism iso-
lates applications from each other and from the system. By
default, an application is not capable of performing any op-
erations that would adversely impact other applications, the
operating system, or the user. In order to obtain extra capa-
bilities, an application needs to declare the permissions that
it needs in its AndroidManifest.xml. At application installa-
tion time, the user decides whether to grant the permissions
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to the application or not. During the runtime of the ap-
plication, no further checks with the user are done. The
application either was granted a particular permission when
installed and can use that feature as desired or the permis-
sion was not granted and any attempt to use that feature
will fail without prompting the user. For instance, to be
able to access the Internet, an application needs to have the
INTERNET permission.

However, recent research has showed that an application
with less permissions (a non-privileged caller) is not restricted
to access components of a more privileged application (a
privileged callee) [7]. Such attack is called privilege escala-
tion attack or confused deputy attack. It allows a malicious
application to indirectly acquire more capabilities leaked
from a benign application which fails to guard the permis-
sions granted to it. To prevent this attack, applications must
enforce additional checks on permissions to ensure that the
callers have the required permissions before doing any dan-
gerous actions. Since most of the application developers are
not security experts, delegating the task of performing these
checks to them is an error prone approach.

The aim of this research is to develop an automatic anal-
ysis system for detecting capability leaks in Android ap-
plications and find out how prevalent they are in existing
applications. The resulting system is useful for developers
to make sure that their applications, while not malicious
on their own, do not leak capabilities to other applications.
Moreover, Android users can use our system to search for
capability leaks in an application before installing it. We
propose DroidChecker, an automatic capability leaks detec-
tion tool for Android applications.

DroidChecker first parses theAndroidManifest.xml file which
defines, among other things, the permissions an application
uses and the permissions other applications need in order
to access the components of that application. Every An-
droid application must include the AndroidManifest.xml in
its Android package (APK) file as required by the Android
system. After that, it identifies components that are poten-
tial sources of capability leaks. For each of such components,
it looks into its source code and uses interprocedural control
flow searching to follow the taint propagation. It then ob-
tains data paths that lead to capability leaks. It raises an
alarm whenever such paths are found.

We downloaded 1179 Android applications from the wild
and scanned them using DroidChecker. 6 applications were
found to have capability leaks with one of them being Adobe
Photoshop Express 1.3.1 (APE). We inspected the source
code of APE and found that when it is leveraged, an appli-
cation with no capability granted can read e-mail addresses
of the contacts on the phone by calling a component of it.
We illustrate such an attack with a simple application writ-
ten by us.

The primary contributions of this paper are:

• Algorithm. We propose a novel approach to au-
tomatically detect capability leaks in Android appli-
cations. To the best of our knowledge, we are the
first to use interprocedural control flow graph search-
ing coupled with taint checking to detect capability
leaks. This significantly increases the granularity and
hence the accuracy of the detection. Since any alarms
raised by the detection system will likely to be checked
manually, a more accurate detection system means less
human effort involved and more useable.

• Evaluation. We implement a prototype of the pro-
posed approach and use the tool to scan 1179 Android
applications from the wild. We demonstrate an attack
with a simple application which leverages the capabil-
ity leak identified by DroidChecker in Adobe Photo-
shop Express 1.3.1 to get e-mail addresses from the
contacts on the phone. This shows that our system
can successfully detect previously unknown capability
leak in real-world applications.

• A Scalable Implementation. We fully automate
every step of the checking tool to make it scalable.
It took less than an hour to finish checking all the
1179 Android applications in our testing set. More-
over, we do not achieve such scalability by limiting the
method invocations tracing to a certain depth when
doing interprocedural checking. Instead, we only avoid
running into infinite loop by not checking the same
method with argument(s) in the same tainted state
twice.

The rest of this paper is organized as follows: Section 2
provides some background information of Android; Section 3
describes the privilege escalation attack on Android; Section
4 provides the details of the design of our system; Section
5 reports the evaluation results; Section 6 illustrates an ex-
ample attack; Section 7 discusses the limitations and future
work. Section 8 surveys related work and compares it with
our work; Section 9 concludes the paper.

2. BACKGROUND OF ANDROID
Android is a free, open source mobile platform based on

the Linux kernel. Android applications are written in Java
and composed of four types of application components: ac-
tivities, services, content providers, and broadcast receivers.
Components can communicate to each other and to compo-
nents of other applications through an inter component com-
munication (ICC) mechanism called intent messaging. An
intent is a passive data structure holding an abstract descrip-
tion of an operation to be performed. To build performance-
critical portions of the application in native code, developers
can make use of the Android NDK companion tool which
provides headers and libraries when programming in C or
C++. However, inclusion of C or C++ libraries kicks away
the security guarantees provided by the Java programming
language. Several different vulnerabilities in native code of
the JDK (Java Development Kit) have been identified [39].
In the rest of this section, the various ICC mechanisms for
the four types of components will first be discussed. Fol-
lowing that, we will discuss about the four cornerstones of
Android security.

2.1 Inter Component Communication
Figure 1 shows the ICC for the four types of components.

There are different kinds of intent messages for each of them.
For activity components, it can be started by startActivity
method. The caller can attach some data into the intent
message passed to the target activity. However, once the
target activity is started, the caller is suspended and cannot
interact with it. The control is passed back to the caller
once the target activity has finished. In order to get data
from the callee, the caller can use the startActivityForResult
method instead. The difference between it and the startAc-
tivity method is that, the callee can pass an intent message
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(a) Activity components ICC (b) Service components ICC (c) Content providers ICC (d) Broadcast receiver ICC

Figure 1: The ICC for the four types of components

back to the caller when it has finished. That is the only way
the caller can get some data from the callee.

For service components, there are two ways to trigger their
executions. The first way is to start the service with the
startService method. But the service will run in background
and the caller has no way to interact with it. The second
way is to bind to the service and the caller can interact with
it with Remote Procedure Call (RPC). The caller can send
commands to the callee and retrieve data from it.

For content providers, it can be treated as a database and
an activity component can issue queries to it and get back
a result set. This is the only way to share data across ap-
plications. There are some content providers shipped with
Android which provide convenient access to common data
such as contact informations, calendar information, and me-
dia files.

Broadcast receivers receive intents sent by sendBroadcast.
Such intents can be sent by the system or by other applica-
tions.

2.2 Cornerstones of Android Security

2.2.1 Sandboxing
Android is a privilege-separated operating system. Each

application runs within its own distinct system identity and
its own Dalvik virtual machine (DVM). System files are
owned by either the “system” or the “root” user. As a result,
an application can only access files it owns or files of other
applications that are marked as readable / writable /exe-
cutable for others explicitly. This provides a sandbox for
each application which isolates it from other applications
and from the system. Applications signed with the same
signature can request for being assigned to the same user
ID by using the sharedUserId attribute in the AndroidMan-
ifest.xml ’s manifest tag of each package. Consequently, the
two packages are then treated as the same application and
can access the same set of files.

2.2.2 Application Signing
Each application must be signed with a certificate and the

corresponding private key is held by its developer. The cer-
tificate is used solely for distinguishing application authors.
It does not need to be signed by a certificate authority. Typ-
ically, it is a self-signed certificate. It is used by the Android
system to decide whether to grant or deny application access
to signature-level permissions and whether to grant or deny
an application’s request to be given the same Linux iden-
tity as another application. The certificate is included in its

APK file such that the signature made by the developer can
be validated at installation time.

2.2.3 Permissions
Additional finer-grained security features are provided through

a “permission” mechanism that enforces restrictions on the
specific operations that a particular process can perform.
Also, applications can make use of per-URI permissions to
grant ad-hoc access to specific pieces of data. By default,
an application has no permission to perform any operations
that would adversely impact other applications, the operat-
ing system, or the user. To share resources and data with
other applications, an application must declare the permis-
sions it needs for additional capabilities not provided by the
basic sandbox. The permissions an application requires are
declared in the AndroidManifest.xml file which is compul-
sory for all applications. At installation time, the Android
system prompts the user for consent. It relies on the user to
judge whether he or she permits the application to use all the
permissions it requires or refuses to install the application.

2.2.4 Accessibility of Components
Application components can be specified as public or pri-

vate. A public component can be accessed by other appli-
cations. However, it can still perform permission checking
to restrict access to only applications that own certain per-
missions. On the other hand, a private component is only
accessible by components within the same application. Mak-
ing a component private simplifies the security specification.
The application developer does not need to assign permis-
sion label to it and care about how another application might
acquire that label.

3. PRIVILEGE ESCALATION ATTACK ON
ANDROID

In this section, we give the details of the privilege esca-
lation attack or confused deputy attack on Android. The
attack was first proposed by Lucas Davi et al. in [7]. They
stated the problem as follows:

An application with less permissions (a non-privileged caller)
is not restricted to access components of a more privileged
application (a privileged callee).

Figure 2 illustrates an example of privilege escalation at-
tack on Android. In the figure, there are three applications
running in their own DVMs. Application 1 owns no permis-
sions. Since components in application 2 is not guarded by
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Figure 2: Privilege Escalation Attack

any permissions, they are accessible by components of any
other applications. As a result, both components of applica-
tion 1 can access components 1 in application 2. Application
2 own permission P1, Therefore, both components of appli-
cation 2 can access component 1 of application 3 which is
protected by permission P1.

We can see that component 1 of application 1 is accessing
component 1 of application 2. However, since it does not
have permission P1, it is not allowed to access component 1
of application 3. On the other hand, application 2 owns per-
mission P1. Hence, component 1 of application 2 is allowed
to access component 1 of application 3. Therefore, although
component 1 of application 1 is not allowed to access com-
ponent 1 of application 3, component 1 of application 1 can
access it via component 1 of application 2. Therefore, the
privilege of application 2 is escalated to application 1 in this
case.

In order to prevent this attack, component 1 of application
2 should enforce that components accessing it must possess
permission P1. This can be done at code level using the
checkPermission API call or by guarding component 1 by
permission P2. However, most developers are not security
experts. They may not be aware of the possibility of leaking
capabilities through their applications and the consequences
of it. Even if they are aware of it, developers are not moti-
vated to take measures to prevent leaking capabilities as the
deputy itself is not harmed in the attack.

The consequences of a capability leak can be serious as
Android provides a set of functionality-rich API calls which
can get the current location, send text messages, make calls,
and reading information on NFC cards. Recently, android
applications can also be used to control devices using the
Android ADK framework. [19]. Applications granted with
permissions to perform such dangerous actions should be
carefully protected.

It is obvious that in order to launch such an attack, the
existent of application 2 (the deputy) is crucial as it serves
as the stepping stone for application 1 to acquire extra ca-
pability. More specifically, it leaks to other applications its
capability of accessing component 1 of application 3. Our
research goal is to identify such capability leaks in applica-
tions.

4. SYSTEM DESIGN

4.1 System overview
Figure 3 shows the overview of our system. The APK

file of the Android application to be analyzed is first con-
verted into a JAR file. This is done by dex2jar which is

a tool for converting Android’s .dex format to Java’s .class
format [20]. It takes the whole APK file as input and gives
a JAR file which contains the .class files as output. After
that, the manifest file (AndroidManifest.xml) is extracted
from the JAR file for further inspection. The manifest file
defines, among other things, the permissions an application
uses and the permissions other applications need in order to
access the components of that application. Since the mani-
fest file is in binary XML format, it is first converted back
to human-readable XML using another tool called AXML-
Printer2 [18]. By looking at the manifest file, we know the
answers to the following questions:

1. Is the application asking for additional capabilities by
requiring permissions?

2. What are the components that are publicly accessible
by other applications?

3. Are those publicly accessible components guarded by
permissions?

We then obtain a list of components that have the poten-
tial of leaking capabilities. These are the components that
have extra capabilities, are publicly accessible, and are not
guarded by any permissions. Finally, using interprocedural
control flow graph searching and static taint checking, we
look for data paths in the source files of these components
that will lead to capability leaks. The source files are ob-
tained by decompiling the class files in the JAR archive using
Java Decompiler which is the latest Java decompiler [10].

In the rest of this section, we will discuss in details the
two key modules, manifest file parsing and capability leak
detection.

4.2 Manifest File Parsing
Before going into technical details of the manifest file pars-

ing module, we discuss the structure of the manifest file and
briefly explain the various tags found in it. After that, the
high-level checking policy is introduced. Finally, we give the
low-level details of the manifest file parsing.

4.2.1 The AndroidManifest.xml
Figure 4 shows an abstract of the general structure of the

manifest file. The uses-permission tag requests a permis-
sion that the application must be granted in order for it to
operate correctly. The permission tag declares a security
permission that can be used to limit access to specific com-
ponents or features. The android:permission attribute of the
application tag declares the permission that components of
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Figure 3: System Overview

<?xml version="1.0" encoding="utf-8"?>

<manifest>

<uses-permission />

<permission />

<application android:permission="...">

<activity android:permission="..." android:exported="...">

<intent-filter> ... </intent-filter>

</activity>

<service android:permission="..." android:exported="...">

<intent-filter> ... </intent-filter>

</service>

</application>

</manifest>

Figure 4: General structure of AndroidManifest.xml

Figure 5: The decision tree of XML parsing

other applications must have in order to interact with the
application. Moreover, each component can require extra
permission for accessing it. They are declared in the an-
droid:permission attribute of the tag that declares the com-
ponent. A component can also be made private by setting
the android:exported attribute to false. Such a component
is not accessible by components of other applications. If the
android:exported attribute is absent, the default value of it
depends on whether the component contains intent filters
(except for Content Providers, which have the default value
being true). If there is no intent filters, the default value is
false. Otherwise, the default value is true. An intent filter
specifies the types of implicit intents that an activity, ser-
vice, or broadcast receiver can respond to. However, explicit
intents can always target at a specific component no matter

how the intent filters of that component are set. Therefore,
intent filters cannot be relied on for security.

4.2.2 The Checking Policy
The checking system parses the AndroidManifest.xml to

find out if:

1. The application uses at least one permission and;

2. There exists an activity or service component that does
not require any permission and is publicly visible

If the above two are both satisfied, components satisfy-
ing the second requirement are components that have the
potential of capability leak.

We focus on activity and service components as they are
the components that can be directly leveraged to launch a
privilege escalation attack among the four types of compo-
nents. The activity component provides a user interface and
is what the user will see on the screen. On the other hand,
the service component performs long-running operation in
the background and does not provide a user interface. Both
kinds of components can be protected by permissions.

4.2.3 The Checking Process
The system starts with scanning the uses-permission tags

to see if there is any permission required by the application.
If no, the system terminates. Next, the system parses the
android:permission attribute of the application tag to find
out if the application is guarded by any permissions. If yes,
the system concludes that the application is safe. Otherwise,
it goes on to perform the following checking for each activity
or service component.

Figure 5 shows the decision tree for the checking. First,
the system checks if there is any permissions declared in
the android:permission attribute of the tag that declares
that component. If yes, the component is safe as it is pro-
tected by permission(s). If no, the system checks if the an-
droid:exported attribute is present. If yes and the value
of it is true, the component is potentially vulnerable for
capability leak and requires further checking. If the an-
droid:exported attribute is absent, the visibility of the com-
ponent hinges on the presence of intent filters. If there is
no intent filters, the component is not visible to other ap-
plications by default, and hence, it is safe. Otherwise, the
component is visible to other applications. In that case, it is
also potentially vulnerable for capability leak and requires
further checking.
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Figure 6: A Deputy Application

4.3 Capability Leak Detection
We build the capability leak detection module based on

existing techniques. We look for data paths that lead to
capability leaks by following taint propagation [21, 29, 37,
15, 24] in the interprocudural control flow graph [27, 8, 42,
23, 34] built from the source code of an application compo-
nent. The capability leak detection is performed for each
risky component reported by the manifest file parsing mod-
ule. We will first talk about the nature of the API calls of
Android. Then, we will discuss the two kinds of data paths
that can be found in a deputy. After that, we will introduce
the details of the mechanism we use to search for such data
paths.

4.3.1 API Calls of Android
We focus on API calls that are protected by permissions

at the dangerous level. They are the API calls that give an
application access to private user data or control over the
device that can negatively impact the user. Permissions at
the dangerous level are not granted to applications automat-
ically even if they request them.

We classify API calls into action calls and data calls. Ac-
tion calls are API calls that have side effects. Data calls
are API calls that will return data to the caller without side
effects. For example, the sendSMS is an action call that will
send an SMS when called but will not return any data. The
managedQuery is a data call that is used to retrieve records
in content providers.

4.3.2 The Two Kinds of Data Paths in a Deputy
Figure 6 shows the bird’s-eye view of an application that

is acting as a deputy for other applications. Arrow A rep-
resents an intent message from another application. Upon
receiving the intent message, the deputy invokes an API call
represented by arrow B. The API call can be an action call
or a data call as explained in previous section. In the case
of an action call, the job of the deputy is done. In the case
of an data call, the deputy will get the return value of the
API call as represented by arrow C. The return value will
then be passed back to the application who sent the intent.
This is represented by arrow D.

Figure 7a shows an example of a deputy invoking an action
call. The getExtras method retrieves data from the intent
message that triggers this component. At line 20 and line
21, this method is called and the return value is stored in
variable receiver and msg. At line 23, these two variables be-
come the arguments to the sendTextMessage method which
will send an SMS message to the telephone number stored
in receiver with the content stored in msg. Therefore, even
though the application that triggers this component does
not have the capability to send SMS, it acquires such capa-
bility through this component. It can send an SMS message
to whoever it wants with any contents. Therefore, the ca-
pability of this component is leaked.

Figure 7b shows an example of a deputy invoking a data

20 String receiver = getIntent().getExtras()

.getString("receiver");

21 String msg = getIntent().getExtras().getString("message");

22 SmsManager sm = SmsManager.getDefault();

23 sm.sendTextMessage(receiver, null, msg, null, null);

(a) Deputy for an Action Call

30 Location loc =

getLastKnownLocation(LocationManager.GPS_PROVIDER);

31 String long = loc.getLongitude();

32 String alt = loc.getAltitude();

33 Intent resultIntent = new Intent(null);

34 resultIntent.putExtra("Longitude", long);

35 resultIntent.putExtra("Altitude", alt);

36 setResult(Activity.RESULT_OK, resultIntent);

37 finish();

(b) Deputy for a Data Call

Figure 7: Code Example of a Deputy

call. At line 30, the method call getLastKnownLocation re-
turns the last known location and the location is stored in
the variable loc. Eventually, the location is passed to the
intent object resultIntent which will be returned to the ap-
plication that started this component. As a result, even that
application does not have the capability to get the location
information, it can obtain such information from this com-
ponent. In other words, the capability of getting location
information is leaked from this component.

DroidChecker searches for two kinds of data paths corre-
sponding to these two kinds of API calls. The first kind of
data paths begin with getting the content of the intent from
the sender and end in using it as the input argument(s) to
an action call. This corresponds to arrow A followed by ar-
row B in figure 6. We do not consider dangerous action calls
with arguments not coming from the sender of the intent as
we consider such applications not working as deputies for
other applications. The second kind of data paths begin
with getting the return value from a data call and end in
passing back the return value to the sender of the intent.
This is represented by arrow C followed by arrow D in fig-
ure 6. Since application developers can perform dynamic
checking on the permissions owned by the sender of an in-
tent message, we consider such checking as a way to prevent
capability leak. As a result, a data path is considered safe
if such checking is found in the control flow along with the
data path.

4.3.3 Path Searching
Each method in the component is represented by a con-

trol flow graph (CFG). A node of a control flow graph repre-
sents a basic block of code and an edge represents a jump in
the control flow. Figure 8 shows two example CFGs which
correspond to two methods. We will explain the figure in
greater detail later. The system starts with default entry
points of the component. For activity components, they are
onCreate, onStart, onResume, onPause, onStop, and onDe-
stroy methods. For service components, they are onCreate,
onStartCommand, onBind, onUnbind, and onDestroy meth-
ods. There exist some other entry points such as event han-
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Figure 8: Example CFGs

dlers. Such entry points are also covered in the checking
after the default entry methods are checked. After locating
the entry methods, the system starts traversing their CFGs.

At anytime, there are two lists of tainted variables. The
first list contains variables that are derived from the content
of an incoming intent message. The second list contains
variables that are derived from the return value of a data
call. The system looks for API calls that get content from
an intent (e.g. getExtras). The return values of such API
calls are put into the first list. The system also looks for
API calls that are data calls. Their return values are put
into the second list. Whenever it comes across an assignment
statement or a variable declaration, it checks if any variables
on the right-hand side are in the two lists of tainted variables.
Any taints of the variables on the right-hand side will be
propagated to the variable on the left-hand side.

The are two kinds of sinks for the two kinds of tainted
variables. An action call is the sink for those on the first list
of tainted variables. The API calls used to attach data to an
intent (e.g. putExtra) are the sinks for those on the second
list of tainted variables. Whenever the system comes across
a sink, it checks the two lists of tainted variables to see if
the input argument(s) are tainted. If the nature of the taint
matches that of the sink, the system raises an alarm for the
risky data path found.

To avoid capability leak, application developers can check
if the sender of the intent possesses the required permission
before invoking an API call. This is done by invoking the
checkPermission method which checks whether a particular
package has been granted a particular permission. If such a
checking is found in the control flow, the traversal for graph
after the checking is skipped. For example, on Figure 8,
the two nodes at the bottom of the CFG of method A are
skipped as they are after a conditional check of the return
value of the call checkPermission.

Most of the time, a method will call another method and
the source and sink of a data path may reside in different
methods. Therefore, when coming across a method call, the
definition of the method is located and the checking moves
to that method. Take the path searching shown on Figure
8 as an example. The path searching involves two methods.
It starts at method A on the left. It first comes across a
conditional check on the value of variable a. It then checks
the branch where a is greater than or equal to 0. In that
branch, there is a invocation of method B. The checking then
goes to the CFG of method B. However, to avoid running
into infinite loop in the case of a recursive method call, we

maintain a list of checked methods and checking is skipped
if that method has already been checked. A method is iden-
tified by its name, the class path of the class in which it is
defined, the number of parameters, and the parameters that
are tainted. For example, a method has two parameters
and the first time when it is checked, the first parameter is
tainted but the second is not. Next time, when it is invoked
again but with the second parameter being tainted, it needs
to be checked again. Therefore, a method with n parameters
will be checked at most n times.

5. EVALUATION

5.1 Implementation and Environmental Setup
We implemented a prototype of DroidChecker. The en-

tire system consists of 1013 lines of Java code. Since Java
decompiler does not have a command-line interface, we au-
tomated the decompiling process by using Sikuli, a visual
technology to automate and test graphical user interfaces
using images [5]. We made use of ANTLR v3 to build a
parser that could generate an abstract syntax tree from Java
code [33]. The entire system runs under Ubuntu 11.04.

5.2 Experiment Results
We downloaded 1179 Android applications from Android

Freeware1, an Internet community aimed at collecting and
categorizing truly free software, to test our prototype sys-
tem. Running on a computer with Intel Core2Duo 2.66GHz
and 3GB of ram, DroidChecker took about an hour to finish
checking all the applications. 711 applications was found
potentially risky by the manifest file parsing module. These
applications then went through the capability leak detection
module. 23 applications were caught for having capability
leak problems. We manually checked these 23 applications
to find out the data paths that lead to capability leaks. Ta-
ble 1 summarizes the investigation results of them. For the
8 applications that have real capability leak problems, we
confirmed all the data paths found by DroidChecker in their
source code and identified capability leaks. However, we
found that 2 of them were actually designed that way and
their capability leaks are not harmful to the user. For the
15 false alarms, 4 of them are due to nonexistent paths that
DroidChecker mistakenly considered. This is caused by re-
verse engineering problem of the applications. 8 of the false
alarms are due to data passed between local application com-
ponents that DroidChecker mistakenly thought that they
were between components from different applications. For
the remaining 3 applications, the first one writes data from
another application to its logging file. The second one gets
data from the caller and prints that to the standard output.
This is not harmful but since the print method is sensitive,
it was caught by DroidChecker. The third one stores some
location data in an array and the whole array was tainted by
DroidChecker. Eventually, one of the elements in the array
is passed to another application. Although DroidChecker
was not sure if that element is storing sensitive data, it still
raised an alarm under such circumstances to make sure that
it did not miss it. This is a generally accepted weakness of
static taint checking techniques.

To show how our scheme improves the granularity of the
checking, we repeated the experiment but with the second

1http://www.freewarelovers.com/android
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Total no. of Apps True alarms False alarms

1179
Not intended Intended Non-existent path Leaked to local components Other reasons
6 2 4 8 3

Table 1: Experiment results

27 protected void onCreate(Bundle paramBundle)

28 {

39 Uri localUri = Contacts.ContactMethods.CONTENT_EMAIL_URI;

40 Cursor localCursor1 = localContentResolver.query(localUri,

arrayOfString1, null, null, "name ASC");

41 mCursor = localCursor1;

58 }

66 protected void onListItemClick(ListView paramListView,

View paramView, int paramInt, long paramLong)

67 {

68 boolean bool = mCursor.moveToPosition(paramInt);

75 String str = mCursor.getString(i);

76 Intent localIntent3 = localIntent2.putExtra("email", str);

77 setResult(-1, localIntent2);

78 finish();

80 }

Figure 9: Excerpt of source code of Adobe Photoshop Ex-
press

module disabled. This means it scanned the manifest file
only and did not perform the interprocedural control flow
graph searching and taint checking. We found that module
one alone reported 852 applications as vulnerable. In con-
trast, only 23 alarms were raised when coupled with module
2. This shows that module 2 eliminated 829 false alarms
which accounts for 97.3% of the total number of alarms
raised.

6. SAMPLE ATTACK
In this section, we demonstrate a sample attack using a

tiny Android application developed by us. The application
does not have any capability on its own. However, exploit-
ing the capability leak we found on Adobe Photoshop Ex-
press 1.3.1 (APE), it is able to retrieve e-mail addresses of
the contacts on the phone. In the rest of this section, we
first illustrate the capability leak using the source code we
obtained by reverse engineering APE. After that, we show
how we can leverage that to obtain extra capability.

6.1 Capability Leak on APE
Figure 9 shows an excerpt from the source code of a com-

ponent in APE. We extracted the minimum number of lines
of code to save space. When the component is started, the
onCreate function is first executed. At line 40, a query is
executed to get the e-mails from the contacts. The mCur-
sor reference variable now points to a Cursor object which
is positioned before the first entry of the result set. At this
point, the program shows the contact e-mails and waits for
the user to select an e-mail on the list shown. After a contact
e-mail is selected, the onListItemClick method is executed.
At line 68, the mCursor is moved to the entry in the result
set representing the contact selected. At line 75, the e-mail
is stored in variable str. At line 76, the e-mail is put into

11 public void onCreate(Bundle savedInstanceState) {

23 Intent intent = new Intent();

24 intent.setClassName("com.adobe.psmobile",

"com.adobe.psmobile.ContactEmailList");

25 intent.setAction("android.intent.action.PICK");

26 intent.addCategory("android.intent.category.DEFAULT");

27 intent.setDataAndType(null, "vnd.android.cursor.dir/email");

28 startActivityForResult(intent, 1);

29 }

31 protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

34 TextView t = (TextView)findViewById(R.id.textview);

35 t.setText("E-mail address obtained:\n" +

data.getExtras().getString("email"));

37 }

Figure 10: Excerpt of source code of our example attack
application

the intent object localIntent3 which is then returned to the
application starting this component. Since this component
is publicly accessible by other applications, by leveraging
it, any applications can acquire access to e-mail addresses
of the contacts even though they do not have that capabil-
ity. Next, we will illustrate such an exploit using a simple
Android application developed by us.

6.2 Exploiting the Capability Leak
Our attack application and APE are installed on an em-

ulator running Android 2.3.3 on top of Android SDK Tools
revision 11. First, the attack application is launched. After
that, it starts the component in APE that has the capabil-
ity leak. The user is then tricked to select a contact on the
contact list. Next, the control is passed back to the attack
application. The e-mail address selected is also passed back
to the attack application. It can then send it back to a server
owned by the attacker. Obtaining valid e-mail addresses is
key to successful spamming. We have also tried our attack
on a stock Nexus S Android phone running Android 2.3.4
and it worked.

Figure 10 shows an excerpt of the source code of our ex-
ample attack application. When the application is launched,
the method onCreate is executed. From line 23 to line 28,
an explicit intent message is sent to start the component in
APE. After that component has finished, the callback func-
tion onActivityResult is executed. It then gets the e-mail
address from the data returned by APE and shows it on the
screen. Note that the attack application does not have any
capability originally. This shows that our application has
acquired extra capability by exploiting the capability leak
in APE.
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7. DISCUSSION

7.1 Limitations
Since DroidChecker performs the checking on decompiled

source code, it depends on the completeness of the decompi-
lation tool. Designing decompilers for Android applications
is an active research area. Dedexer is a disassembler tool
for DEX files and decompiles Android applications into an
”assembly-like format” [32]. The ded decompiler can decom-
pile Android applications into Java source code [12]. Their
work is orthogonal to ours and a better decompiler can help
us get a more accurate picture of the Android applications
being checked.

Since we use static taint analysis as the underlining tech-
nique, we also suffer from the inherent limitations of it. One
of them is that it is not able to take into account dynamic
features of the Java language like polymorphism. A refer-
ence variable may point to an object that inherits it. When
a method of that object is invoked, our anaylsis tool will
check the method in the superclass but not the one in the
subclass. This will harm the soundness and completeness of
the checking.

As the permission attribute of a component only allows
one permission to be set, an application may still be risky
even if it has set the permission attribute. However, we
cannot overcome this limitation as it stems from the design
of the Android system. Besides, we currently skip the path
searching for code blocks after a conditional check of the re-
turn value of a call to checkPermission. This is based on the
assumption that the presence of checkPermission means the
developer effectively checks that the caller application has
the required permissions for subsequent API calls. How-
ever, this may not be the case if the checkPermission is not
used properly. However, we cannot take into account how
it is used as that depends much on the dynamic behavior of
the application. It is a balance between false negative and
false positive. The assumption we made here is to make the
checking more sound. However, it is true that it also makes
the checking less complete. We make this as a parameter in
our prototype implementation to let the user decide whether
the assumption should be made or not.

7.2 Security Guidelines
To make sure that applications do not leak their capabil-

ities to other applications, developers should avoid making
the components of their applications accessible by compo-
nents in other applications. This can be done by either not
declaring any intent filters or setting the android:exported
attributes of components to false. In case a component has
to be made public, it should be protected by a permission
such that other applications have to be privileged in order to
access it. Besides, developers should be aware of the explicit
intent messages sent to their applications. They should not
rely on intent filters to protect a component since other ap-
plications can always send an explicit intent message to it.
Therefore, a publicly accessible component should not per-
form security sensitive operations upon receiving an explicit
intent message. Before invoking dangerous API calls upon
receiving an intent message, developers should check if the
sender possesses the required permissions using the check-
Permission() system call.

7.3 Future Work
Some future work remains. Capability leaks can happen

indirectly through content providers. A possible scenario is
that an application, which has the required permissions, re-
trieves private data and stores them in a content provider
of its own. Due to certain reasons, it grant the read per-
mission of that content provider to other applications using
the URI permissions mechanism. Leakages of this type will
not be revealed by our checking tool since it is not able to
determine whether a content provider contains private data
or not. As a preliminary idea, we can address this by taint-
ing a content provider whenever private data is written into
it. Another direction is to make the system run on stock
Android phones such that users can check an application for
vulnerabilities before installing it.

8. RELATED WORK
The privilege escalation attack on Android was first pro-

posed by Davi et al. [7] in which they demonstrated an ex-
ample of the attack. They showed that a genuine application
exploited at runtime or a malicious application can escalate
granted permissions. However, they did not suggest any de-
fense for the attack in the paper.

Some recent work tried to proposal security extensions for
Android to remedy the attack. XMandDroid [3] prohibits
IPC between applications which own certain combinations
of capabilities. For example, an application which can re-
trieve location information is not allowed to communicate
with an application which can access the internet. Permis-
sion re-delegation, which is the same as privilege escalation,
for web applications and Android applications was studied
by Felt et al. in [16]. They proposed IPC Inspector to defend
against permission re-delegation. IPC Inspector reduces the
permission set of an application after it receives messages
from another application which does not own certain per-
missions the receiver owns. Their mechanism is considered
restrictive as applications cannot deliberately receive mes-
sages from a less privileged application. Moreover, to avoid
multiple reductions of the permission set of an application
after communicating with several applications that do not
have one or more permissions in its permission set, they cre-
ate a new instance of an application whenever it encounters
in IPC with a new application. This significantly drains the
system resources and provides an attack surface for denial
of service attack. They also carried out a study to search
for vulnerabilities in current Android applications. How-
ever, they used call-graph analysis which is coarse-grained
and likely to produce false positives for those applications
which invoke dangerous calls not under the influence of the
intent sender. At about the same time, another group of re-
searchers proposed QUIRE to address the same problem [9].
QUIRE tracks the call chain of on device inter-component
communication. When an application receives a message
from a less privileged application, it extracts the informa-
tion about the call chain from the caller. It relies on the
application to pass information along the call chain. Pro-
vided that application developers are not security experts,
it is an error-prone approach to rely on them to carefully
pass the information to each receiver of the IPC calls in-
voked by the application. The advantage of this design is
that it allows the developer to choose whether to reduce the
set of privileges of the application to that of the sender or to
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exercise its full privilege set by acting explicitly on its own
behalf. This grant applications the freedom to communicate
with less privileged applications without being taken away
their own privileges. However, their mechanism requires ex-
isting applications to be re-compiled in order to enjoy the
security service provided. While these work serve the pur-
pose of introducing security measures into the Android sys-
tem to prevent the attack, our work aims to provide users
and developers with a tool to search for vulnerabilities in
applications and let them take actions before these security
measures are adopted.

There are some work in the literature that use static or
dynamic approach to check Android applications for vul-
nerabilities or malicious behaviors. Chan et al. proposed
a static analysis tool of Android applications to determine
whether an application can be leveraged to launch privilege
escalation attacks [4]. However, their tool looks into the
manifest file only. Hence, their tool is more coarse-grained
and produces more false positives. Enck et al. proposed a
static analysis tool to evaluate the security of Android ap-
plications [12]. Their tool makes use of control flow analysis,
data flow analysis, structural analysis, and semantic analysis
to dangerous functionality and vulnerabilities. Their analy-
sis focuses on a single Android application rather than the
interaction between an Android application and other ap-
plications. Their work is orthogonal to ours. ComDroid [6]
focuses on sniffing, modification, stealing, replacing, and
forgery of messages passing between applications. It per-
forms flow-sensitive, intraprocedural static analysis on dis-
assembled assembly-like source code to search for vulnera-
bilities. Their approach can also be applied to search for
capability leaks in applications but would be more coarse-
grained and produce more false positives as it looks into the
manifest file only. TaintDroid [11] makes use of dynamic
taint tracking to keep track of the flow of privacy sensitive
data through third-party applications. It monitors in real-
time how applications access and manipulate users’ personal
data. It helps detect when sensitive data leaves the system
via untrusted applications. Evaluation of it showed that it
incurs significant performance overhead. ScanDroid [1] uses
modular data flow analysis to look for data flows in Android
applications and make security-relevant decisions automati-
cally based on such flows.

There were some work on security extensions to Android
security architecture. Saint [31] is a modification of Android
to enable application providers to express the application se-
curity polices that regulate the interactions among them. It
allows an application to control which applications can be
granted the permissions it declares. Moreover, when an ap-
plication needs to access an component of another applica-
tion, both parties can assert controls of the communication
between them through defining run-time interaction policies.
In particular, the caller application selects which applica-
tion’s interfaces it uses and the callee application controls
how its interface is used by other applications. Saint policy
provides certain protection against privilege escalation at-
tacks as the application can control which applications can
access it. However, Saint assumes that access to compo-
nents is implicitly allowed if no Saint policy exists. This
put the burden of enforcing security to application devel-
opers which is error prone as most of them are not secu-
rity experts. Kirin [13] is an application certification service
to mitigate malware at installation time. It uses existing

security requirements engineering techniques as a reference
to identify dangerous application configurations in Android.
The rules are a set of combinations of permissions that an
application must not be granted at the same time. For ex-
ample, an application being granted permissions to record
audio and access location information may be an voice and
location eavesdropping malware. Similar to our approach,
their certification process relies on the manifest file in the
APK of the application. However, their approach cannot
identify applications that can be leveraged to launch privi-
lege escalation attack. Instead, their work is orthogonal to
our work and is targeting at a different kind of attack vector.

There are some other work on security of the Android
system. Schmidt et al. [35] walked through the smartphone
malware evolution. They provided possible techniques for
creating Android malware(s). Their approach involves us-
age of undocumented Android functions enabling them to
execute native Linux application even on retail Android de-
vices. They also showed that it is possible to bypass the
Android permission system by using native Linux applica-
tions. Enck et al. [14] gives a description of the security
model of the Android system. Jakobsson et al. [22] pro-
posed a software-based attestation approach to detect any
malware that executes or is activated by interrupts. Based
on memory-printingof client devices, it makes it impossible
for malware to hide inRAM without being detected. Nau-
man et. al. [28] improved the installation process of Android
applications to allow user to selectively grant permissions
to applications and impose constraints on the usage of re-
sources. Shabtai et al. [36] makes use of Security-Enhanced
Linux (SELinux) to help reduce potential damage on the
Android system from a successful attack.

9. CONCLUSION
Android is an open system with some state-of-the-art se-

curity measures. Although the idea of privilege-separating
the applications can avoid them adversely impacting other
applications or the system, it does not prevent applications
from leaking capabilities. In this research, we proposed a
methodology for detecting capability leaks in Android ap-
plications. We utilized interprocedural control flow graph
searching and static taint checking technique to identify data
paths that will lead to capability leaks. A prototype system
was implemented and tested with more than 1000 applica-
tions. 6 of applications were found to have capability leaks.
We developed a tiny Android application to demonstrate a
sample attack. Using one of these 6 applications, our appli-
cation successfully obtained the extra capability of retriev-
ing e-mail addresses from the contacts on the phone. This
showes that our proposed method is effective in identifying
the potential risk. As a side product, some security guide-
lines were provided for Android application developers to
avoid capability leaks in their applications.
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