
Android : Static Analysis Using Similarity Distance

Anthony Desnos
ESIEA : Operational Cryptology and Virology Laboratory (CVO), Honeynet project

desnos@esiea.fr

Index Terms—Android, Static Analysis, Similarity, Diffing
Abstract—
As Android applications become increasingly ubiquitous, we

need algorithms and tools to protect applications from product
tampering and piracy, while facilitating valid product updates.
Since it is easy to derive Java source code from Android bytecode,
Android applications are particularly vulnerable to tampering.
This paper presents an algorithm, based on a customized sim-
ilarity distance, which returns a value between 0 and 1, which
can serve as a change indicator. Potential applications of the
algorithm include 1) to determine if obfuscators, applied by
developers, are protecting their code from piracy, 2) to determine
if an Android application is infected with malware, facilitating the
automatic extraction of the injected malware, and 3) to identify
valid code updates and releases as part of the code release cycle.

I. INTRODUCTION

According to [13], Android consumers in the U.S spend an

average of 56 minutes per day on their phones, with two-thirds

of this time spent with Android applications. Moreover, Andy

Rubin, Senior Vice President of Mobile at Google [27] stated

that they have over 500.000 Android devices activated every

day. So it is easy to understand [22] why this platform is an

increasingly interesting target for misuse.

Many tools have been released to interact with Android ap-

plications. Assemblers and dissasemblers, like smali/bakmali

[16] are useful to reverse engineer Android applications. Ad-

vanced tools such as apktool [7] are very useful to modify an

application and repackage it. Decompilers [26] [24] transform

Android bytecode to Java bytecode to enable use of classical

Java decompilers [19] [14] [23], although they have some

issues [4] during the decompilation.

In this paper, we introduce new algorithms for static analysis

of Android applications, in order to address some problems

that users and developers are encountering. All of the algo-

rithms are based on the similarity distance using real world

compressors [10]. The first problem that we discuss is how it

is possible to create a rip-off indicator to identify whether an

application is similar to another one or not, i.e., to determine

if someone pirated an application or parts of an application.

We can extend this problem to extract automatically malware

that has been injected into an application. In addition, if we

can find similarities between two applications, the algorithm

can be applied to evaluate the efficiency of an obfuscator on

the application. A secondary issue that we address, is how it

is possible to obtain and visualize the differences between two

valid versions of an application. We have used our algorithms

to identify small dissimilarities in methods and in basic blocks

(without using graphs) in order to use the longest common

subsequence algorithm [1] to extract exact differences.

In the first section, we define the similarity distance, and

describe how we have choose our compressors in order to have

the maximum performance with the best distance similarity.

Next, we describe our main algorithm to compare applications

in order to find similarities. We then extend this algorithm

to identify dissimilarities and perform difference analysis

between two applications. In the conclusion, we discuss future

work and some open problems to encourage further research

in this area.

II. SIMILARITY

The similarity distance based on real world compressors is

called the Normalized Compression Distance (NCD) [10]. The

NCD of two elements A and B is defined as dNCD(A,B).
We can compute

• C(A) and LA = L(C(A));
• C(B) and LB = L(C(B));
• C(A|B) and LA|B = L(C(A|B));

where A|B is the concatenation of A and B, C is the

compressor, and L is the length of a string. Then dNCD(A,B)
is defined by

dNCD(A,B) =
LA|B −min(LA, LB)

max(LA, LB)
. (1)

The NCD is based on the similarity [10] of elements. A

compressor C is normal if the following four axioms are

satisfied up to an additive O(log n), where n is the maximal

binary length of the elements involved in the inequalities:

1) Idempotency: C(xx) = C(x), and C(ε) = 0, where ε is

the empty string.

2) Monotonicity: C(xy) � C(x).

3) Symmetry: C(xy) = C(yx).

4) Distributivity: C(xy) + C(z) � C(xz) + C(yz).

The idea demonstrated in the following simple example. If

you take three elements

• X (”HELLO WORLD”) and the length of the compres-

sion Y = C(X) = 6,

• X’ (”HELLO WOORLD”) and the length of the com-

pression of Y’ = C(X’) = 7,

• X” (”HI !!!”) and the length of the compression of Y” =

C(X”) = 3.

the compression of C(XX’) will be similar to C(X) whereas

the compression of C(XX”) will not be similar to C(X).

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.114

5394

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.114

5394

In addition to these four inequalities being respected by a

given compressor, in a real context we must have timing con-

straints for execution of the algorithm. The compression rate

is not a determining factor for the choice of the compressor

if it complies with the following rules:

1) C respects the four inequalities,

2) C(x) is calculated within an acceptable amount of time.

We studied 5 implementations of different algorithms to

choose the one that respects the most inequalities:

• zlib [21], bz2 [3], LZMA [2], XZ [11], Snappy [17].

We chose to test all compressors with random text data sets

[12] (the test sets are text data, because we will not submit

binary data to our compressor) on the four inequalities. The

following tables show the resulting number of matches, the

total length of compression, and the execution time of each

compressor:

Idempotency

LZMA 0/9, 900, 1.45565796

XZ 0/9, 1824, 0.72005010

zlib 0/9, 894, 0.00037599

bz2 0/9, 1294, 0.00088286

Snappy 1/9, 1208, 0.00010705

Monotonicity

LZMA 72/72, 9645, 11.65594506

XZ 72/72, 17108, 5.70679307

zlib 72/72, 9177, 0.00256300

bz2 72/72, 11334, 0.00596595

Snappy 72/72, 13354, 0.00065804

Symmetry

LZMA 26/72, 12266, 11.68412399

XZ 54/72, 20008, 5.68789411

zlib 26/72, 11474, 0.00305796

bz2 72/72, 12972, 0.00746584

Snappy 14/72, 17476, 0.00071502

Distributivity

LZMA 504/504, 153377, 163.45748401

XZ 504/504, 259812, 79.99475789

zlib 504/504, 144557, 0.03746986

bz2 504/504, 170142, 0.09060693

Snappy 504/504, 215810, 0.00880289

After these tests (more in [12]) Snappy was selected because

speed of compression is far superior and this compressor

respects the inequalities.

A. Similarity Algorithm

We propose an algorithm to find efficiently and quickly

the similarities (and differences) of methods between two

applications (without debugging information). In our case, we

have tested and implemented it with bytecode (Java [25] or

Dalvik [18]) files but it is possible to extend this algorithm

to classical binaries. This algorithm is an improvement in the

field of executable comparison as it applies new techniques

with very efficient, precise, and timely results in many

domains.

This algorithm is composed of the following steps:

• Generate signatures for each method.

• Identify all methods which are identical.

• Identify all methods which are partially identical by using

NCD (with Snappy compressor).

So the global idea is to associate each method of the first

application with others of the second application (unless the

method match directly) by using NCD with an appropriate

compressor.

The algorithm produces and detects the following elements:

• identical methods,

• similar methods,

• new methods,

• deleted methods.

1) Initialization of methods: The algorithm (1) must ini-

tialize each method, so we can associate several attributes to

a method as shown in figure 1:

• the entropy, based on the raw binary data,

• a buffer which represents the sequence of instructions,

with useless information removed from it,

• a unique checksum (or hash) based on the previous buffer,

• a signature.

In order to create the checksum of a method, we must

remove and retain some information associated with an in-

struction. It is a very important to remove false positives easily.

Thus we need to remove information which is a direct result

of the compilation and information which can be changed by

a simple modification:

• registers, offset of a jump instruction.

And we need to retain:

• the original name of the instruction (group in a single

name the jump instructions), strings, integers and floats,

constants, etc.

53955395

Algorithm 1 Algorithm for filtering names and operands of

an Android instruction
Require: Instruction

buffer ← ””

// goto instructions

if Instruction.opvalue � 0x28 and Instruction.opvalue �
0x2a then

buffer ← ”goto”

else
buffer ← Instruction.opname

end if
// an integer is present in the instruction

if integer in Instruction.operands then
buffer ← buffer + getIntegers(Instruction)

end if
// a string is present in the instruction

if Instruction.opvalue == 0x1a then
buffer ← buffer + getString(Instruction)

end if
return buffer

Figure 1. Attributes associated with a method

So if we use a unique checksum for each method, it is

possible to quickly remove from the comparison, methods

which are exactly identical as show in figure 2.

Figure 2. Remove identical methods by using hash

2) Generating signatures of methods: We used a normal

grammar presented by Silvio Cesare [9] to generate different

types of signatures as needed including the following:

• Control Flow Graph,

• API (current application, Android, Java),

• Strings,

• Exceptions.

We considered this signature as an interesting input for the

distance similarity because this signature does not include in-

formation about instructions. The information in the signature

is more general, (e.g., the presence of a basic block, if a

specific package is called, etc). Of course it is possible to

modify the grammar in order to have a controlled output.

The following is an example of the grammar signature for

a method:

P r o c e d u r e : : = S t a t e m e n t L i s t
S t a t e m e n t L i s t : : = S t a t e m e n t | S t a t e m e n t S t a t e m e n t L i s t
S t a t e m e n t : : = B a s i c B l o c k | R e t u r n | Goto | I f | F i e l d |

Package | S t r i n g | E x c e p t i o n
R e t u r n : : = ’R’
Goto : : = ’G’
I f : : = ’ I ’
B a s i c B l o c k : : = ’B’
F i e l d : : = ’F ’0 | ’F ’1
Package : : = ’P ’ PackageNew | ’P ’ P a c k a g e C a l l
PackageNew : : = ’C’
P a c k a g e C a l l : : = ’M’
PackageName : : = ε | Id
S t r i n g : : = ’S ’ Number | ’S ’ Id
E x c e p t i o n : : = Id
Number : : = \d+
Id : : = [a−zA−Z]\w+

Thus we can generate a particular signature for a method

based on selected features. We must create the best signature

to identify methods, in order to identify highly identical

methods. Moreover we have not used particular dependencies

like strings, names of classes/methods/fields, etc. We have used

only the following elements:

• Control Flow Graph,

• External API used (Android + Java),

• Exceptions.

For example, we can generate different signatures for one

method, with more or less detail:

Lorg / t 0 t 0 / a n d r o g u a r d / TC /TCD; e q u a l (I L java / l a n g /
S t r i n g ;) L java / l a n g / S t r i n g ;

−> : B[P1F0P0P1P1SP1P1SP1P1P1P1IS]B[S]B[RS]B[SG]
−> : B[P1F0P0P1P1S1P1P1S6P1P1P1P1IS4]B[S4]B[RS4]B

[S4G]
−> : B[F0SSIS]B[S]B[RS]B[SG]
−> : B[P1{Ljava / l a n g / I n t e g e r ; t o S t r i n g (I) L java /

l a n g / S t r i n g ;} F0P0{Ljava / l a n g / S t r i n g B u i l d e r
; } [. . .] P1{Ljava / l a n g / S t r i n g ; e q u a l s (L java / l a n g /
O b j e c t ;) Z} IS]B[S]B[RS]B[SG]

3) Identification of methods: If we need to ensure a better

match between methods, it is possible to add the following

elements to calculate the similarity distance by using a filtering

algorithm [5]:

• the entropy,

• the buffer which represents the sequence of instructions.

With the NCD (Algorithm 2, the signature function returns

the previous described signature, and the clean function re-

moves useless information of each instruction of the method),

we use the Snappy compressor to accelerate the comparison

between all methods, to detect exactly the same methods

(algorithm 3, figure 3), partially the same methods (algorithm

53965396

3), new methods (algorithm 4, figure 4) or deleted methods

(algorithm 5).

Algorithm 2 Algorithm of similarity to calculate the distance

between two methods
Require: a1, a2

n1 ← NCD(signature(a1), signature(a2))

n2 ← NCD(clean(a1), clean(a2))

return (n1 + n2) / 2

Algorithm 3 Algorithm for finding identical or similar meth-

ods between two applications

Require: apps1, apps2
exact ← {}
diff ← {}

for a1 ← apps1.methods() do
if a1.hash not in apps2.hash then

for a2 ← apps2.methods() do
if a2.hash not in apps1.hash then

Append(diff[a1], similarity(a1, a2))

end if
end for

else
Append(exact, a1)

end if
end for
for a1 ← diff.methods() do

a1.sort()

end for

Algorithm 4 Algorithm for identifying new methods

Require: apps1, apps2, diff
new ← []

for a2 ← apps2.methods() do
if a2.hash not in apps1.hash then

state ← true

for a1 ← diff.methods() do
if a1.checksort(a2) then

state ← false

break

end if
end for
if state == true then

Append(new, a2)

end if
end if

end for

Figure 3. Find exact/similar methods between two applications

Figure 4. Identify new methods between two applications

Algorithm 5 Algorithm for identifying deleted methods

Require: apps1, apps2, diff
delete ← []

for a1 ← diff.methods() do
if a1.getsort() == 0 then

Append(delete, a1)

end if
end for

53975397

The signature of each method helps to compare all methods

more quickly, but an algorithm based on clustering can filter

identical methods before our algorithm in order to accelerate

the comparison, and can be very interesting in the case of

comparing one element against N elements.

It is possible to detect all different or identical methods, but

we do not care about the entire application. This is a problem

as we need to take into account other information associated

with an Android application in order to extend the ratio of

similarity to a entire application.
We can add the following information from an application:

• strings, constants (integers, floats), various internal data

like ”fill array data”.

B. Detecting pirated applications aka rip-off indicator
A major problem in the Android market is the theft of

applications, because it is very easy to download an application

and to crack/re-package it with smali/basksmali/apk-tool to

push it in different markets. While it is possible to compare

an application with reverse engineering tool manually using a

tool such as baksmali [16], IDA [15] or Androguard [12], it

is very time consuming and inefficient. Automated approaches

are better to compare other applications with the original when

piracy is suspected.
With the previous algorithms, we have all the required

information to calculate an indicator (between 0.0 to 100.0)

to indicate whether the application has been stolen.
To do that (Algorithm 6), we apply a designation (between

0.0 (identical) to 1.0 (different)) to each attribute:

• 0.0 to a perfect identical method,

• value of the NCD for a partial identical method,

• value of the NCD for the general information of the

application (strings, constants, etc.).

Moreover we exchange the compressor (Snappy) at the end

of the algorithm with the XZ compressor in order to have a

more comprehensible value for the final user.

Algorithm 6 Algorithm to calculate the similarity between

two applications

Require: diff, exact
marks ← []

for a1 ← diff.methods() do
Append(marks, GetFirstSortValue(a1))

end for
for a1 ← exact.methods() do

Append(marks, 0.0)

end for
finalmark ← 0.0

for i ← marks.get() do
finalmark ← (finalmark + (1.0 - i))

end for
finalmark ← (finalmark / Len(marks)) * 100

We have tested the algorithm 6 in multiple cases. The cases

include two different applications (Listing 1), two identical

applications (Listing 2), two ”quite” identical applications

(Listing 3), and with a known stolen and repackaged appli-

cation (Listing 4).

Listing 1. Similarity of two different applications

desnos@des t i ny : ˜ / a n d r o g u a r d $. / andros im . py − i
examples / obfu / c l a s s e s t c . dex apks / c l a s s e s . dex

DIFF METHODS : 3
NEW METHODS : 199
MATCH METHODS : 0
DELETE METHODS : 4
[0 .99816107749938965 , 1 . 0 , 1 . 0 , 1 . 0]
0 .0459730625153

Listing 2. Similarity of identical applications

DIFF METHODS : 0
NEW METHODS : 0
MATCH METHODS : 14
DELETE METHODS : 0
[0 .08235294371843338 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]
99 .4509803752

Listing 3. Similarity of quite identical applications

DIFF METHODS : 1
NEW METHODS : 0
MATCH METHODS : 12
DELETE METHODS : 0
[0 .14427860081195831 , 0 .095238097012042999 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0]

98 .2891664441

Listing 4. Similarity of a stolen application

desnos@des t i ny : ˜ / a n d r o g u a r d $. / andros im . py − i apks /
HolyFuck ingBib lev11−market−m i l i t i a −. apk apks /
h o l y f u c k i n g b i b l e . apk

DIFF METHODS : 1
NEW METHODS : 81
MATCH METHODS : 72
DELETE METHODS : 0
[0 .8460613489151001 , 0 .091269843280315399 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

98 .7333362268

We can see that the final mark is very useful for a developer

to determine whether his application has been stolen or not,

partially or totally, because he can inspect each method which

matches with another.

C. Evaluation of Android obfuscators

Another problem with Java or Android applications is

the transformation of the source code in bytecode. This

transformation can be easily reversed by using a classical

decompiler like jad, jd-gui or dava, with varying degrees

of reliability. Moreover virtual machines do not allow

code modification on the fly (polymorphic) and it is a

real problem for classical packers. Nevertheless, Android

53985398

developers use obfuscators frequently such as proguard [20] or

dasho [29] to prevent the reverse engineering of their software.

This leads to an interesting problem. ”How is it possible

to evaluate an obfuscator?”. We can answer this question

by using similarity distance as described previously. If two

applications have a high number of equal functions (or almost

equal functions), we can say that there is a problem with the

obfuscation process.

The obfuscator can use several techniques to protect a

Java/Android application:

1) change names of classes, methods, fields,

2) modify the control flow,

3) code optimization,

4) change instructions with metamorphic technique.

The first option is not efficient with our similarity distance

because we do not use debugging information. The second

option can be a problem with a classical distance, but the

similarity distance is not sensible to this point due to the real

compressor. The third can be detected as removal instructions.

The final option is an issue and it is not covered by our

algorithm. (We have not yet seen any tool which uses this

technique.) Even if this technique will be used we will have

to do a normalisation of each method before applying our

algorithm.

We can protect an application with an obfuscator and we

can calculate the distance by using a blackbox technique (our

similarity algorithm). If this distance is close to 100 then the

obfuscator did a poor job by using the first three techniques

(or other equivalent techniques) as shown in listing 5.

Listing 5. Similarity of application protected by proguard and dasho

desnos@des t i ny : ˜ / a n d r o g u a r d $. / andros im . py − i
examples / obfu / c l a s s e s t c . dex examples / obfu /
c l a s s e s t c p r o g u a r d . dex

DIFF METHODS : 7
NEW METHODS : 4
MATCH METHODS : 0
DELETE METHODS : 0
[0 .47394958138465881 , 0 .040816325694322586 ,

0 .059999998658895493 , 0 .040816325694322586 ,
0 .059999998658895493 , 0 .13333334028720856 ,
0 .040816325694322586 , 0 .095238097012042999]

88 .1878750864
desnos@des t i ny : ˜ / a n d r o g u a r d $. / andros im . py − i

examples / obfu / c l a s s e s t c . dex examples / obfu /
c l a s s e s t c d a s h o . dex

DIFF METHODS : 2
NEW METHODS : 0
MATCH METHODS : 10
DELETE METHODS : 0
[0 .50084036588668823 , 0 .13114753365516663 ,

0 .1428571492433548 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

94 .0396534709

D. Malware

In our algorithm, we can extract automatically new methods

(methods that are not present in the first application but in

the second one). Typically, the case of an injected malware

(Listing 6) in the Android official or unofficial markets, a

classical application is taken from a market, and the malware

writer injects his ”evil” code in the application and propagates

the new application in different markets.

Listing 6. Similarity of application with injected malware

desnos@des t i ny : ˜ / a n d r o g u a r d $. / andros im . py − i apks /
com . swampy . sexpos 162 . apk apks / com . swampy . s e xp os
. apk−GEINIMI−INFECTED . apk

DIFF METHODS : 0
NEW METHODS : 51
MATCH METHODS : 218
DELETE METHODS : 0
[1 . 0 , 0 . 0 , [. . .]]
99 .5433789954
desnos@des t i ny : ˜ / a n d r o g u a r d $. / andros im . py − i apks /

TAT−LWP−Mod−Dandel ion−o r i g . apk apks / TAT−LWP−Mod−
Dande l ion . apk

DIFF METHODS : 0
NEW METHODS : 31
MATCH METHODS : 18
DELETE METHODS : 0
[0 .68480598926544189 , 0 . 0 , [. . .]]
96 .3957579512

It is possible to isolate the malware quickly if we know the

original application, which is an easy task because the malware

writer does not generally modify it, (i.e., all original code is

intact). Further, it is also possible to use this technique with

multiple (but different) samples, in order to extract identical

methods, because these methods will be the methods of the

malware.
Moreover we can isolate new injected methods, but it is

possible to extend our algorithm by using diffing techniques to

determine whether someone has modified an original method

to inject a hook or not.

III. DIFFERENCES BETWEEN APPLICATIONS

It is interesting to calculate the differences between two

versions of an application (for reverse engineering) to identify

modifications in order to find a security bugfix, or after the

injection of malware. The idea is to detect classical modifica-

tions in a method including:

• modification of codes in a basic block,

• addition of new basic blocks.

We can use the algorithm of similarity in the previous

section to find identical/similar methods in order to extract

modifications of instructions from basic blocks. We can add

the following steps:

• Identification of identical basic blocks by using NCD,

• Extraction of added/removed instructions by using the

longest common subsequence algorithm (LCS)[1].

Futhermore it is possible to change the signature of a

method to have a small one to accelerate operations by

removing exceptions and API because it is not an important

point in this algorithm.

A. Identification of basic blocks
We have used the same algorithm 2 to compare basic blocks

(algorithms 7, 8, 9, figures 5, 6), because it is just a different

level of granularity. So we use the NCD (also with Snappy

compressor) to compare basic blocks and checkums/hashes to

quickly eliminate identical basic blocks.

53995399

Algorithm 7 Algorithm of matching exactly or partially basic

blocks between two methods
Require: bb1, bb2

diffbb ← {}
for b1 ← bb1.basicblocks() do

if b1.hash not in bb2.hash then
for b2 ← bb2.basicblocks() do

if b2.hash not in bb1.hash then
Append(diffbb[b1], similarity(b1, b2))

end if
end for

end if
end for
for b1 ← diffbb.basicblocks() do

b1.sort()

end for

Algorithm 8 Algorithm of similarity between two basic blocks

Require: a1, a2
n1 ← NCD(checksum(a1), checksum(a2))

return n1

Figure 5. Find exactly/partially the same basic blocks between two methods

1) Identification of added or removed instructions: After

the identification of basic blocks we can use a classical algo-

rithm like the longest common subsequence problem (LCS)

[1] to extract new and old instructions (algorithm 10).

So we must modify our sequence of instructions into a string

to use the LCS algorithm. We can also used a filtered algorithm

on each single instruction to convert it to a value between 0

to 255.

For instance, the following basic blocks:

Algorithm 9 Algorithm of matching exactly or partially basic

blocks between two methods
Require: bb1, bb2

newbb ← []

for b2 ← bb2.basicblocks() do
if b2.hash not in bb2.hash then

state ← true

for b1 ← diffbb.basicblocks() do
if b1.checksort(b2) then

state ← false

break

end if
end for
if state == true then

Append(newbb, b2)

end if
end if

end for

Figure 6. Find new basic blocks between two methods

Algorithm 10 Algorithm to extract added/removed instruc-

tions from a basic block
Require: b1, b2, toString

addins ← []

delins ← []

X ← toString(b1)

Y ← toString(b2)

addins, delins ← LCS(X, Y)

ADD 3
ADD 1
SUB 2
IGET
ADD 3
GOTO

54005400

ADD 3
ADD 3
SUB 2
IGET
MUL 4
GOTO

are transformed in the following strings :

”\ x00\x01\x02\x03\x00\x04 ”
”\ x00\x00\x02\x03\x05\x04 ”

By using the LCS algorithm, we can get the instructions

that we must add or remove, as shown in figure 7, in the first

string (our first basic block) in order to find the differences

between two basic blocks. If we get the previous strings, it is

possible to apply the LCS algorithm:

In : a = ”\ x00\x01\x02\x03\x00\x04 ”
In : b = ”\ x00\x00\x02\x03\x05\x04 ”
In : z = LCS(a , b)

In : z
[[0 , 0 , 0 , 0 , 0 , 0 , 0] ,

[0 , 1 , 1 , 1 , 1 , 1 , 1] ,
[0 , 1 , 1 , 1 , 1 , 1 , 1] ,
[0 , 1 , 1 , 2 , 2 , 2 , 2] ,
[0 , 1 , 1 , 2 , 3 , 3 , 3] ,
[0 , 1 , 2 , 2 , 3 , 3 , 3] ,
[0 , 1 , 2 , 2 , 3 , 3 , 4]]

We have a matrix with the different LCS, where the longest

LCS has a length of four:

”\ x00\x02\x03\x04 ”

This matrix is applied to the elements to add or to remove:

In : l a = [] l r = []
In : g e t D i f f (z , a , b , l e n (a) , l e n (b) , l a , l r)

00
− 01
+ 00

02
03

− 00
+ 05

04

In [1 1] : l a
Out [1 1] : [(1 , ’\x00 ’) , (4 , ’\x05 ’)]

In [1 2] : l r
Out [1 2] : [(1 , ’\x01 ’) , (4 , ’\x00 ’)]

In this example, we must do the following actions in the

first basic block to get the second one :

• add : ADD 3 (position 1), MUL 4 (position 4)

• remove : ADD 1 (position 1), ADD 3 (position 4)

B. Visualization

The visualization is an important element during the anal-

ysis of differences between two applications, because it is

with this tool that the information is recovered. Current tools

display differences with two CFGs (see figure 8), but it is

possible to merge [8] two CFGs to have only one as shown

in figure 9.

Figure 7. Find added/removed instructions from a basic block

Figure 8. Visualization of differences by using two CFGs

Figure 9. Visualization of differences by using one CFG

We can improve the visualization by using a simple graph-

ical chart:

• green for added instructions,

• red for deleted instructions.

Jump instructions are a major problem when we use only one

CFG to display differences, for example : ”IF X, Y [B-0x90,

54015401

B-0x60]” which is a jump to 0x90 or 0x60 offsets (after the

evaluation of the instruction) can be changed to : ”IF X, Z [

B-0x80, B-0x50]” with a jump to old or new basic blocks.

If the block 0x50 is the same as 0x60 but the block 0x80 is

new, we need to change the display with correct differences :

• IF X, Y [B-0x90, B-0x60]

• IF X, Z [B-0x80, B-0x60]

We need to resolve identical or new basic blocks at different

offsets (our algorithm is not dependent of the position of the

basic block). We obtain the algorithm 11 which is the new

CFG (with original, new and different basic blocks) as shown

in figure 10.

Algorithm 11 Algorithm of matching exactly or partially basic

blocks between two methods
Require: origbb, diffbb, newbb

finalcfg ← []

for b1 ← origbb.basicblocks() do
if b1.name not in diffbb then

b1.tag ← ORIG

Append(finalcfg, b1)

else
b1.tag ← DIFF

Append(finalcfg, diffbb[b1.name])

end if
end for
for b1 ← newbb.basicblocks() do

b1.tag ← NEW

Append(finalcfg, b1)

end for
finalcfg.sort()

Figure 10. Differences and visualization between 2 basic blocks

C. Practical tests

a) Skype: The 15th April 2011, AndroidPolice [6]

released a new security vulnerability in Skype (version

1.0.0.831) for Android. This vulnerability exposes the users’

name, phone number, and chat logs to all installed applica-

tions. The security bug is very simple, it is an incorrect usage

of permissions to open files [6].

So, it is possible for another application to access to all

information of your skype account, like account balance, full

name, date of birth, city/state/country, home phone, office

phone, cell phone, email addresses, your webpage, your bio,

instant messages. A few days after this vulnerability, Skype

[28] release a new version (1.0.0.983) which fixed this security

bug. It is a good example to test our algorithm in a real case

like Skype because this application is not small and it is an

interesting case of reverse engineering. We can identify how

many functions are :

• exactly identical : 8038,

• partialy identical : 165,

• new : 14,

• delete : 7.

We analyzed the 165 methods, by searching methods related

to file permissions, by using the Java API or directly with

chmod program. Inside the 165 methods, most of them are

related to simple constant modification but we can identify

a method really close to another one (with the same name)

which manipulate files :

Lcom / skype / i p c / SkypeKi tRunner ; run ()V wi th Lcom /
skype / i p c / SkypeKi tRunner ; run ()V 0.269383959472

This method has four modified basic blocks, but only three

basic blocks merit further investigation.

An integer value (it is the operating mode) of the method

openFileOutput has been changed from 3 to 0 (listing 7) :

p u b l i c a b s t r a c t F i l e O u t p u t S t r e a m o p e n F i l e O u t p u t (
S t r i n g name , i n t mode)

where 3 and 0 are respectively :

• MODE WORLD READABLE (allow all other appli-

cations to have read access to the created file) and

MODE WORLD WRITEABLE (allow all other appli-

cations to have write access to the created file),

• MODE PRIVATE (the default mode, where the created

file can only be accessed by the calling application (or

all applications sharing the same user ID)).

Listing 7. SkyperKitRunner class, run method: change mode of openFile-
Output
DIFF run−BB@0x316 :
[. . .]
2 2 0 (3 2 4) c o n s t−s t r i n g v7 , [s t r i ng@ 2998 ’ c s f ’]
2 2 1 (3 2 8) + c o n s t / 4 v8 , [#+ 0] , {0}
2 2 2 (3 2 8) − c o n s t / 4 v8 , [#+ 3] , {3}
2 2 3 (3 2 8) invoke−v i r t u a l v5 , v7 , v8 , [meth@ 120

L a n d r o i d / c o n t e n t / C o n t e x t ; (L java / l a n g / S t r i n g ; I)
L java / i o / F i l e O u t p u t S t r e a m ; o p e n F i l e O u t p u t]

[. . .]

54025402

In another basic block, the first argument of chmod has been

changed (listing 8) from 777 to 750 :

• RWX, RWX, RWX

• RWX, R-X, —

Listing 8. SkyperKitRunner class, run method: change argument of chmod

DIFF run−BB@0x348 :
2 2 9 (3 4 6) invoke−s t a t i c [meth@ 5805 Ljava / l a n g /

Runtime ; () L java / l a n g / Runtime ; ge tRun t ime]
230(34 c) move−r e s u l t−o b j e c t v2
231(34 e) new−i n s t a n c e v4 , [type@ 899 Ljava / l a n g /

S t r i n g B u i l d e r ;]
2 3 2 (3 5 2) invoke−d i r e c t v4 , [meth@ 5848 Ljava / l a n g /

S t r i n g B u i l d e r ; () V < i n i t >]
2 3 3 (3 5 8) c o n s t−s t r i n g v5 , [s t r i ng@ 2921 ’ chmod 750

’]
2 3 4 (3 5 8) c o n s t−s t r i n g v5 , [s t r i ng@ 2904 ’ chmod 777

’]
2 3 5 (3 5 8) invoke−v i r t u a l v4 , v5 , [meth@ 5855 Ljava /

l a n g / S t r i n g B u i l d e r ; (L java / l a n g / S t r i n g ;) L java /
l a n g / S t r i n g B u i l d e r ; append]

236(35 e) move−r e s u l t−o b j e c t v4
2 3 7 (3 6 0) invoke−v i r t u a l v3 , [meth@ 5719 Ljava / i o /

F i l e ; () L java / l a n g / S t r i n g ; g e t C a n o n i c a l P a t h]

And in the last modified basic block, there is a new call

(listing 9) to a new method which fixes all files in the context

directory of the application :

Lcom / skype / i p c / SkypeKi tRunner ; ([L java / i o / F i l e ;) V
f i x P e r m i s s i o n s]

which fixes all permissions (patch permissions from the

previous version) to :

• RWX — — for a directory,

• RW- — – for a file.

Listing 9. SkyperKitRunner class, run method : call new method on files

417(5 c8) + move−o b j e c t / from16 v0 , v19
418(5 c8) invoke−v i r t u a l v4 , v3 , v2 , v5 , [meth@

5804 Ljava / l a n g / Runtime ; (L java / l a n g / S t r i n g ; [
L java / l a n g / S t r i n g ; L java / i o / F i l e ;) L java / l a n g /
P r o c e s s ; exec]

419(5 ce) + move−o b j e c t v1 , v4
420(5 ce) move−r e s u l t−o b j e c t v2
421(5 d0) + invoke−d i r e c t v0 , v1 , [meth@ 1923 Lcom

/ skype / i p c / SkypeKi tRunner ; ([L java / i o / F i l e ;) V
f i x P e r m i s s i o n s]

IV. CONCLUSION AND FUTURE WORK

In the first part of the paper we presented several algorithms

to compare applications to identify their similarities or differ-

ences. To do that we applied an original selected compressor

(Snappy) obtain a real usable tool to improve the time of

comparison with good results. With this similarity distance,

we created a tool to determine whether a version of application

has potentially been pirated. Next we applied this technique

to design a tool to measure the efficiency of an obfuscator,

and we demonstrated that there is a lack of proven tools in

this domain. In the final part we described a new algorithm

to find and visualize dissimilarities between versions of an

application. The tools and the framework are open source and

can be downloaded on the website [12].

While this paper demonstrate progress in this area, we

need to continue investigating this domain to compare one

application against multiple applications by using clustering.

An additional area which merits additional research relates to

the possible use of similarity distance to create a database of

applications [12] to check whether an identified application

is present in a large set of applications. While preliminary

findings are promising, there remains much work to be done

in this important area.

REFERENCES

[1] http://en.wikipedia.org/wiki/longest common subsequence problem.
[2] http://www.7-zip.org/.
[3] http://www.bzip.org/.
[4] G. Gueguen A. Desnos. Android malwares : is it a dream ? EICAR,

2011.
[5] R. Erra A. Desnos, B. Caillat. Binthavro: towards a useful and fast tool

for goodware and malware analysis. EICAR, 2010.
[6] AndroidPolice. http://www.androidpolice.com/2011/04/14/exclusive-

vulnerability-in-skype-for-android-is-exposing-your-name-phone-
number-chat-logs-and-a-lot-more/.

[7] Brutall. http://code.google.com/p/android-apktool/.
[8] Aureliano Calvo. Showing differences between disassembled functions.

In Hack.lu, 2010.
[9] Silvio Cesare. Classification of malware using structured control flow.

In AusPDC, 2010.
[10] R. Cilibrasi and P.M.B. Vitanyi. Clustering by compression. IEEE

Transactions on Information Theory, 51(4):1523–1545, April 2005.
[11] Lasse Collin. http://tukaani.org/xz/.
[12] Anthony Desnos. http://code.google.com/p/androguard/.
[13] Telecom Research & Insights Nielsen Don Kellogg, Director.

http://blog.nielsen.com/nielsenwire/?p=28628.
[14] Emmanuel Dupuy. http://java.decompiler.free.fr/?q=jdgui.
[15] C. Eagle. The IDA PRO Book. No Starch Press, 2008.
[16] Jesus Freke. http://code.google.com/p/smali/.
[17] Google. http://code.google.com/p/snappy/.
[18] Google. http://www.android.com/.
[19] Pavel Kouznetsov. http://www.varaneckas.com/jad.
[20] Eric Lafortune. http://proguard.sourceforge.net/.
[21] Jean loup Gailly and Mark Adler. http://www.zlib.net/.
[22] McAfee. http://www.mcafee.com/us/resources/reports/rp-quarterly-

threat-q2-2011.pdf.
[23] Nomair A. Naeem and Laurie Hendren. Programmer-friendly decom-

piled java. Technical Report SABLE-TR-2006-2, Sable Research Group,
McGill University, March 2006.

[24] Damien Octeau, William Enck, and Patrick McDaniel. The ded De-
compiler. Technical Report NAS-TR-0140-2010, Network and Security
Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA, September
2010.

[25] Oracle. http://www.java.com/.
[26] Panxiaobo. http://code.google.com/p/dex2jar/.
[27] Andy Rubin. https://twitter.com/#!/arubin/status/85660213478309888.
[28] Skype. http://blogs.skype.com/security/2011/04/privacy vulnerability in skype 1.html.
[29] PreEmptive Solutions. http://www.preemptive.com/products/dasho.

54035403

