Unsafe Exposure Analysis of Mobile In-App
Advertisements

Michael Grace, Wu Zhou, and
Xuxian Jiang
Department of Computer Science,
North Carolina State University
Raleigh, NC, USA
{mcgrace, wu_zhou,
xuxian_jiang}@ncsu.edu

ABSTRACT

In recent years, there has been explosive growth in smartphone
sales, which is accompanied with the availability of a huge num-
ber of smartphone applications (or simply apps). End users or
consumers are attracted by the many interesting features offered
by these devices and the associated apps. The developers of these
apps benefit financially, either by selling their apps directly or by
embedding one of the many ad libraries available on smartphone
platforms. In this paper, we focus on potential privacy and security
risks posed by these embedded or in-app advertisement libraries
(henceforth “ad libraries,” for brevity). To this end, we study the
popular Android platform and collect 100,000 apps from the offi-
cial Android Market in March-May, 2011. Among these apps, we
identify 100 representative in-app ad libraries (embedded in 52.1%
of the apps) and further develop a system called AdRisk to sys-
tematically identify potential risks. In particular, we first decouple
the embedded ad libraries from their host apps and then apply our
system to statically examine the ad libraries for risks, ranging from
uploading sensitive information to remote (ad) servers to execut-
ing untrusted code from Internet sources. Our results show that
most existing ad libraries collect private information: some of this
data may be used for legitimate targeting purposes (i.e., the user’s
location) while other data is harder to justify, such as the user’s
call logs, phone number, browser bookmarks, or even the list of
apps installed on the phone. Moreover, some libraries make use
of an unsafe mechanism to directly fetch and run code from the
Internet, which immediately leads to serious security risks. Our in-
vestigation indicates the symbiotic relationship between embedded
ad libraries and host apps is one main reason behind these exposed
risks. These results clearly show the need for better regulating the
way ad libraries are integrated in Android apps.

Categories and Subject Descriptors K.6.5 [Management of
Computing and Information Systems]: Security and Protection -
Invasive Software

General Terms

Keywords

Security
Smartphone, Privacy, In-App Advertisement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’12, April 16-18, 2012, Tucson, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1265-3/12/04 ...$10.00.

Ahmad-Reza Sadeghi
Center for Advanced Security Research,
Technical University Darmstadt
Darmstadt, Germany

ahmad.sadeghi@trust.cased.de

1. INTRODUCTION

Over the past few years, smartphone sales have experienced ex-
plosive growth. According to Gartner, sales of these devices in-
creased 74% year-on-year in the second quarter of 2011 [6] and
late last year, smartphones already outsold the personal computers
for the first time in history [25]. Evidently, the market has em-
braced these mobile devices due to their convenience and power:
these sensor-rich devices are small enough to be carried like a tra-
ditional cellphone, yet offer their users a much wider range of func-
tions than simple SMS messages or basic phone calls. Moreover,
they are defined by the ability to download and run third-party apps
that provide additional useful features. In other words, instead of
being restricted to the functions provided by the phone manufactur-
ers, carriers, or limited affiliates, smartphone users can partake of
thousands of apps designed for purposes unforeseen by the parties
involved in making and distributing the devices. Furthermore, plat-
form vendors (e.g., Google and Apple) also provide centralized app
markets where users can simply tap through the process of brows-
ing, searching, purchasing, downloading, and installing these apps.

As part of the mobile eco-system, the app developers, largely
motivated by financial incentives, submit their apps to centralized
app markets for users to access. Notice that on the Android plat-
form, almost two-thirds of all apps are free to download [5]. To be
compensated for their work, many app developers incorporate an
advertisement library (also known as an ad library) in their apps.
At run-time, the ad library communicates with the ad network’s
servers to request ads for display and might additionally send an-
alytics information about the users of the app. (For simplicity, we
use the term ad libraries to represent both ad libraries and analytics
libraries.) The ad network then pays the developer on an ongo-
ing basis, based on metrics that measure how much exposure each
individual app gives to the network and its advertisers.

In this paper, we aim to study existing in-app ad libraries and
evaluate potential risks from them. Specifically, we focus on the
Android platform and determine what risks the popular ad libraries
on Android may pose to user’s privacy and security. To this end,
we collected 100, 000 apps from the official Android Market in a
three-month period, i.e., March-May, 2011. Among these apps,
we identify and extract 100 representative ad libraries that are used
in 52,067 (or 52.1%) of them. To facilitate our analysis, we fur-
ther developed a static analysis tool called AdRisk to analyze the
extracted ad libraries and report possible risks. In particular, our
current analysis mainly focuses on those “dangerous” permissions
(Section 2) defined in the standard Android framework, seeking to
identify their possible (mis)use by ad libraries.

<manifest ...
package—"com rovio.angrybirdsrio" >
<application
<activity android:name="com.rovio.ka3d.App">

Admob Publisher IDs/Settings
4

<intent-filter> <action android:name="android.intent.action.MAIN"> </action> ’

<category android:name="android.intent.category.LAUNCHER">

</intent-filter>
</activity>

<meta-data android:name="ADMOB_PUBLISHER_ID" android:value="al4d6f9cc06£f96b">

</category> ’

<meta-data android:name="ADMOB_INTERSTITIAL_PUBLISHER_ID" android:value="al4d6fa2b901034">

!_ smeta-daba andnoidipamg=tADMOR ALLQU JQCATION FQRARSL Sndepidivaluer Lrrug"s SAneta galal - - = = = = =
<activity android:name="com.admob.android.ads.AdMobActivity"> </activity>
<receiver android:name="com.admob.android.ads.analytics.InstallReceiver" >

<intent-filter >

</intent-filter>
</receiver>

</app11catlon>

<action android:name="com.android.vending.INSTALL_REFERRER"></action>

<uses-permission android:name="android.permission.INTERNET"> </uses-permission>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"> </uses-— perm1351onbdm°b Components

</manifest>

Figure 1: The (Abbreviated) AndroidManifest.xml File in the Popular Angry Birds Android App (com.rovio.angrybirdsrio)

Our analysis revealed a number of privacy and security issues in
the 100 representative ad libraries. In particular, most ad libraries
collect private information. While some of them may use these
information for legitimate purposes (i.e., the user’s location for tar-
geted advertising), we noticed a few ad libraries invasively collect
information, such as the user’s call logs, account information or
phone number. Such information can be used to deduce the true
identity of the user, enabling more comprehensive tracking of the
user’s habits — at the cost of all pretense of privacy. One particular
popular ad library (used in 4190 apps in out dataset) even allows a
variety of personal information to be directly accessible to the ad-
vertisers, creating unnecessary additional opportunities for misuse.
We also found out that some ad libraries will download additional
code at runtime from remote servers and execute it in the context
of the running app, opening up the opportunities for exploitation
and abuse and making it impossible to ensure its integrity. In fact,
we have confirmed one particular case that fetches and loads suspi-
cious payloads. After the finding, we reported those infected apps
(7 in our dataset) to Google and all of these apps have now been
removed from the official Android Market. These results call for
the need for additional mechanisms to regulate the behavior of ad
libraries on Android.

The rest of this paper is organized as follows: Section 2 is an
overview of the relevant portions of the Android framework. Sec-
tion 3 explains the system design to assess the threat posed by ad
libraries, while Section 4 contains the implementation and evalu-
ation results. Section 5 considers the implications and limitations
of our work, which is followed by a survey of related work in Sec-
tion 6. Lastly, we summarize our paper in Section 7.

2. BACKGROUND

To understand how an ad library is embedded into an Android
app, we will consider a popular app, i.e., Rovio’s Angry Birds, as
the example. Initially a paid iPhone app, Angry Birds moved to an
ad-supported model when Rovio ported it to Android. The game is
free to download, but ads are displayed periodically during play and
while loading new levels; these ads generate $1 million a month in
revenue for Rovio.

Since Rovio is not in the advertising business, the company turned
to third-party advertising networks to monetize Angry Birds on An-
droid. This is a common arrangement and natural choice for smart-
phone app developers. After registering some financial information
with an ad network, developers receive a developer identifier and
a SDK. The SDK’s documentation includes instructions on how to
use the included ad library. Ad libraries are designed to be embed-
ded in the app that uses them, so the instructions include the nec-
essary permissions required by the ad library; the developer must
make sure the ad-supported app requests these permissions by mak-

ing the necessary changes to its manifest file. Similarly, in order to
be paid for the ads served by the app, the developer must make sure
the ad library is furnished with their developer identifier.

Angry Birds’ manifest file (included as Figure 1) provides a rep-
resentative example of this arrangement. This particular version of
Angry Birds contains Google’s popular AdMob ad library, which
pulls some of its control data from the manifest of its host app. Such
data includes the crucial publisher identifiers, which are stored as

the “ADMOB_PUBLISHER_ID” and “ADMOB_INTERSTITIAL_PUBLISHER_ID”

meta-data values. Also in the manifest file, AdMob listens for pack-
age installation events by registering the com.admob.android.ads. -
analytics.InstallReceiver component, and defines its own Ac-
tivity (screen) with com.admob. android. ads.AdMobActivity to dis-
play full-screen ads.

In general, ad libraries can be classified into three ad-oriented
categories: mobile web libraries, rich media libraries, and ad me-
diators. Mobile web libraries are front-ends to web-based ad net-
works. Content is requested, delivered and displayed using stan-
dard web technologies, with very little interaction with the device’s
APIs. These libraries typically display only banner or text ads. In
our study, we found over half of existing in-app ad libraries are of
this type. Rich media libraries have a similar mission, but behave
more like powerful platforms. Specifically, they provide feature-
rich APIs for both app developers and advertisers. While they can
display the simpler ad types, they can also support more advanced
kinds such as active content (i.e., JavaScript), video, interstitial ads
and the like. Although there are fewer ad libraries as rich media
libraries than mobile web libraries, many of the most popular ones,
including AdMob, are actually rich media ones. The third category,
ad mediators, is different from the previous two by exposing a stan-
dard interface through which an app developer can interact with
other ad libraries of the other two types. Since ad libraries often re-
quest similar information from the app developer in very different
ways, these mediator libraries exist to make bundling multiple ad
libraries in an app easier.

Our experience indicates that all three kinds of ad libraries tend
to share some common characteristics. For example, they have
user-interface code (to present their ads) and network code (to re-
quest ads from the ad network’s servers). They are also designed
to be tightly bundled with host apps. In this way, it becomes more
difficult to disable the ad functionality or defraud the ad network.
To the same end, some ad libraries heavily obfuscate their internal
workings in an effort to discourage reverse engineering. AdMob
again provides a representative example. Inside the AdMob ad li-
brary, only the classes, methods and fields described in the AdMob
documentation have meaningful names; everything else has had its
name changed to a letter of the alphabet. Moreover, all debugging
information is stripped from all the classes in the package.

| Protection level [| Description |

normal || Low-risk permissions granted to any
package requesting them

High-risk permissions that require user
confirmation to grant

Only packages with the same author can
request the permission

Both packages with the same author and
packages installed in the system im-
age can request the permission

dangerous

signature

signatureOrSystem

Table 1: Permission Protection Levels in Android

At runtime, the embedded ad libraries execute together with the
host app inside the same runtime environment — a Dalvik [4] vir-
tual machine (VM), which is eventually instantiated as a user-level
process in Linux. Different apps run in different Dalvik VMs, iso-
lated from each other. The Dalvik VM is derived from Java but has
been significantly revised (with its own machine opcodes and se-
mantics) to meet the resource constraints of mobile phones. When
an app is installed in Android, it is assigned its own unique user
identifier (UID) — as Android relies on the Linux process bound-
ary and this app-specific UID assignment strategy to achieve iso-
lation or prevent a misbehaving or malicious app from disrupting
other apps or accessing other apps’ files. Unfortunately, this strat-
egy does not separate host apps from the in-app ad libraries they
contain, as those libraries inhabit the same Dalvik VM and execute
with the same UID. In our example, AdMob could readily send the
user’s Angry Birds scores to Google.

The situation is further complicated by the fact that Android apps
are structured differently than programs on most platforms, in that
they can contain multiple entry points. These entry points are in-
voked by the framework in response to inter-process communica-
tion (IPC) events; even “running” an app is treated in this way.
Technically, each app is composed of one or more different com-
ponents, each of which can be independently invoked. There are
four types of components: activities, services, broadcast receivers
and content providers. An activity represents part of the visible
user interface of an app. A service, much like a Unix daemon,
runs in the background for an indefinite period of time, servic-
ing requests. A broadcast receiver receives and reacts to broad-
cast announcements, while content providers make data available
to other apps. Each Android app is deployed in the form of a
compressed package (apk). These apk files contain a manifest file
(AndroidManifest.xml) that describes various standard properties
about the app, such as its name, the entry points (or interfaces) it ex-
poses to the rest of the system, and the permissions it needs to per-
form privileged actions. The Angry Birds manifest (Figure 1) de-
scribes two entry points defined by AdMob instead of Angry Birds:
an activity (com.admob.android.ads.AdMobActivity) and a broad-

cast receiver (com.admob.android.ads.analytics.InstallReceiver).

The activity is designed to be invoked by the code in the app,
but the broadcast receiver is interested in com.android.vending. -
INSTALL_REFERRER events sent out by the Android Market app. Ac-
cordingly, it’s possible to invoke the ad library’s code directly be-
fore any of the host app’s code is run.

To better protect personal information and manage system re-
sources, Android defines a permission-based security model [2].
In this model, the principals that have these permissions are apps,
not users or libraries. The Android framework contains a pre-
defined set of permissions and also allows developers to define ad-
ditional permissions as they see fit. Each permission has a protec-
tion level [1], which determines how “dangerous” the permission is

and what other apps may request it. Table 1 summarizes the defined
protection levels in Android. The signature and signatureOrSystem
permission protection levels are reserved to define capabilities that
are not meant to be used by apps written by other authors or by
apps that are part of the system image. Permissions are checked
either through annotating entry points defined in the manifest file
or programmatically by the Android framework. Since ad libraries
are not principals, they inherit the permissions of the apps they are
embedded in. As aresult, many ad libraries opportunistically check
for and use permissions. Some may allow the host app’s author to
control their behavior somewhat while most ad libraries simply use
what permissions granted to the host apps.

3. SYSTEM DESIGN

The goal of this work is to assess possible privacy and secu-
rity risks posed by the embedded in-app ad libraries and addition-
ally quantify these risks by measuring their prevalence on Android.
Note that the Android’s permissions-based security model provides
a convenient way to measure the risk inherent in Android APIs, as
their documentation typically mentions whether a permission check
is required to successfully make the call. However, as mentioned
previously, ad libraries are not annotated in any way by the An-
droid framework. Also, the context surrounding each potentially-
dangerous Android API call is very important in matters of privacy.
For instance, if the user’s phone number is retrieved but never sent
to the Internet, no privacy violation has occurred. In this work, we
opt to crawl and collect available apps from the official Android
Market. After that, we systematically identify representative ad li-
braries from these apps and then develop a system to thoroughly
identify possible risks. Figure 2 summarizes the methodology in
our study.

3.1 Sampling the Android Market

We crawled the Android Market for apps over three months (March
through May, 2011) and chose the first 100,000 downloaded apps
as the dataset for our study. With them, we built a database that
extracts the features needed to perform our later analysis, i.e., the
permissions requested by each app (as defined in its manifest file)
as well as the Java class tree hierarchy contained in the app’s code.

After that, among the 100,000 apps, we select apps that have the
android.permission.INTERNET permission, which is required for
communication with the ad network’s servers, and organize them
into a candidate set. From the candidate set, we randomly select
an app and disassemble it. The disassembled bytecode is examined
for new ad libraries. Especially, in the search process for new ad li-
braries, we maintain an ad set, which is initialized to be empty. For
each new ad library we identified, we add it to this set. Further, we
extract its unique class tree and use it as the pattern to detect the list
of host apps that contain this particular ad library. Specifically, we
remove those host apps from the candidate set. We repeat the selec-
tion process until 100 distinct ad libraries have been selected. By
searching the class trees stored by the database for each ad library’s
package name, we can then determine how many apps within our
sample of 100,000 contain the given ad library. Sorting and graph-
ing these figures of the top 20 ad libraries produces the graph in
Figure 3. (The list of 100 ad libraries is detailed in Tables 2 and 4
— Section 4.) In total, the 100 ad libraries in our study are present
in 52.1% of the collected 100,000 apps.

Among these 100 representative ad libraries, Google’s own Ad-
Mob, AdSense, and Analytics networks are listed in the top five.
We also note that several other networks — Flurry, MillenialMedia,
Mobclix, and AdWhirl — appear in a comparatively large number
of apps. Given the maturity of these ad networks behind these lead-

Crawling
——

& Sampling

Ad Libraries

Official Android Market

Android API Calls

|
I
‘ Info—Harvesting
|
|

Network Operations

|
|
|
|
|
CFG & | | . e .
Reachability Analysis | Risk Verification
|

Figure 2: Assessing Possible Risks in Smartphone In-App Advertisements

[o] 5000 10000 15000 20000 25000 30000

admob 27235‘
google.ads] 16323
flurry p— 5152
google.analytics jm—" 4551
millennialmedia f—" 4228
mobclix j— 4190
adwhirl j— 3015
qwapi e 1745
youmi 1699
mobfox jmmm 1524
zestadz 1514
cauly e 1249
inmobi 1229
wooboo 7- 1183
admarvel 7- 1101
smaato 7- 1077
mobclick | 1058
jp.co.nobot jmm 995
airpush W 945
mdotm jmm 883

The number of apps containing
each of the most popular 20 ad libraries

Figure 3: Popularity of the Top 20 Ad Libraries in Our Study

ing libraries, we expect that the libraries themselves offer standard
functionality and do not engage in activities frowned upon by the
industry as a whole. On the other hand, any potential privacy risks
posed by such commonly-deployed libraries would impact many
users. Among the remaining libraries, there allegorically appear
to be a large number of small ad networks that offer in-app ad li-
braries on Android. The large number of such libraries, coupled
with the relatively small proportion of apps they appear in, make
holding their behavior to account more difficult for watchdog or-
ganizations inside and outside the ad industry. Analyzing these
libraries is therefore important in order to gain perspective on the
range of behaviors ad networks will engage in.

3.2 Analyzing Ad Libraries

After identifying the 100 representative ad libraries, we next seek
to determine whether a given ad library contains any risks to secu-
rity or privacy. To do that, we start by considering the permission
protection levels [1] defined by the standard Android framework.
Note that various standard APIs exposed by the framework require
certain permissions to access, which have been annotated by a pro-
tection level. Any APIs that require a permission with an elevated
protection level (i.e., above “normal”) can be considered a risk to
security or privacy.

Unfortunately, the relationship between APIs and permissions
can be difficult to determine. The Android documentation does not
feature an exhaustive list of these relationships, and some permis-
sions are only conditionally checked. For example, Android defines
two related permissions that allow access to the user’s location data:
android.permission.ACCESS_COARSE_LOCATION and android.-
permission.ACCESS_FINE_LOCATION. Both permissions are checked
by the methods of the android.location.LocationManager class;

however, these methods determine which permission to check by

the arguments they are given. For example, calling LocationManager. -

getLastKnownLocation(“gps”) requires the android.permission.-
ACCESS_FINE_LOCATION permission; the same call with the argu-
ment of “wifi” would instead require the android.permission.-
ACCESS_COARSE_LOCATION permission.

To address these challenges, we apply and extend Felt et al. [16]
to derive a list of API calls that are of interest for our analysis. In
particular, we take a similar approach by analyzing the Android
documentation, source code and disassembled bytecode to conser-
vatively annotate the standard APIs with the permissions that they
require. However, unique to this study, our extensions also in-
clude a new set of Android API calls, which do not require any
permission (Section 4). In particular, most of them are related to
ClassLoader and reflection mechanisms. The ClassLoader part
is responsible for dynamically loading code at runtime. To elab-
orate, in Dalvik, class references are resolved at run-time. Usu-
ally, due to the presence of a verifier looking for undefined refer-
ences, it is safe to consider a Dalvik app as containing only well-
defined static code. When combined with reflection API, it be-
comes possible to refer to classes using data at run-time, thus invok-
ing the ClassLoader functionality after the verifier has run. Since
the ClassLoader is itself just a class, its methods can be overridden
to allow developers to pass raw bytecode to the Dalvik VM at run-
time. In this fashion, it is possible to download and run arbitrary
dynamic code, rendering any static analysis of an app incomplete.
Fortunately, the interfaces to the underlying Dalvik VM are well-
defined. We treat these interfaces as just another kind of APIs,
which not only implicitly marks dynamic code loading as a suspi-
cious behavior, but unifies our analysis framework. In total, our
current system considers 76 distinct permissions (34 dangerous, 26
signature, 11 signatureOrSystem, and 5 normal — Section 4).

3.3 Identifying Possible Risks

After identifying the set of APIs of interest, we then perform a
reachability analysis for each ad library. We are interested in two
dimensions of potentially dangerous behaviors, which means we
must deal with up to four potential reachability conditions. The
first dimension involves the precipitating event for the dangerous
behavior; that behavior could come from one of Android’s many
entry points, or could be in response to a received network packet.
Finding a path from either of those start points to an API could
signal a dangerous situation, but may not necessarily; this is where
the second dimension comes into play. Some API calls are danger-
ous in themselves (such as those that can cost money) while others
merely expose personal data that can then be leaked to an external
party. In the first case, finding a path from an initiating entry point
or network connection is sufficient, but in the second we must fur-
ther find a dataflow path from the dangerous call to an external sink
(e.g., network APIs).

Li LI

In mechanical terms, our method is as follows: each ad library
sample’s bytecode is first scanned for the dangerous API calls we
previously annotated. For each found API call, we trace backwards
through the library source looking for potential entry points and
any mitigating circumstances; for example, if such a dangerous API
call only occurs if a flag representing the user’s consent is set, we
note this behavior. Some API calls may not be reachable under any
circumstances and therefore may be safely ignored, but all others
are recorded if they match these conditions. For those calls that
leak information, we then additionally trace forwards through the
bytecode looking for a network sink. If one is found, the candidate
path from the API call to the network is also recorded’. In algorith-
mic terms, we produce a control-flow graph showing all the possi-
ble paths of execution through the library, then determine which of
those paths are indeed feasible.

In our prototype, we leverage the existing baksmali Dalvik dis-
assembler [3] to automate some of this process. As part of the
greater smali package, this allows us access to a convenient inter-
mediate representation and a limited set of intra-procedural static
analysis tools. Using it as the base, we add code to derive the
control-flow graph which we will traverse to find the set of feasible
paths through the app (and thus the ad library).

Due to a key difference between Android apps and traditional
Java programs, traversing the derived control-flow graph poses ad-
ditional challenges under Android. Specifically, Java programs,
like those written in many other languages, start execution at amain
method. Android apps have no such method, instead containing a
number of entry points based on the components they contain (cer-
tain methods in e.g., Service and Receiver objects). In addition to
these, the library itself usually exposes some methods to the host
app for initialization purposes. The entry points specified by the
framework are automatically identified on the basis of the class they
belong to, while the library’s initialization methods are fed into the
system through annotation. We then run the subsequent steps in our
analysis over each entry point in turn, finally merging the results.

Our experience indicates that due to the influence of native code
and the core classes in Android framework (e.g., the use of threads
— a common technique in Android for improved user responsive-
ness), we observe discontinuities in the generated call graph. To
resolve these discontinuities, we elect to load an additional set of
class files alongside the library. These files stand-in for core classes
and contain simple expressions designed to capture the semantics
of each API call. Additionally, these files include the dangerous
API calls the system is supposed to identify; each dangerous call
contains a sentinel instruction that alerts our analysis code to its
nature for the next stage of analysis.

Given this control-flow graph, our algorithm next attempts to
find reachable paths from an entry point to a dangerous API call.
To do this, we perform the traditional information-flow analysis,
where constraints are placed on the variables and checked against
by branch instructions. In the resulting feasible control-flow graph,
we verify whether each dangerous API call is in a feasible code
region. If a call is, execution is traced backwards and the neces-
sary constraints remembered to form an execution path, which is
then reported. The paths reported by our system are then verified.
The reentrant, multi-threaded nature of Android apps makes points-
to analysis difficult, which in turn frustrates efforts to accurately
identify only feasible paths through the library. Certain language

"Note that we do not ignore calls that do not meet this additional
criterion due to the complexities inherent in dataflow analysis. It
is possible to introduce dataflow discontinuities using threading,
caching, and other behaviors; we elect to involve some additional
manual effort in order to ensure the accuracy of our study.

features are not fully supported yet in our current prototype. For
example, the Java Reflection APIs (i.e., the java.lang.reflect.*
package) allow code to be invoked by name, and without perfect
dataflow analysis tools this causes an irreconcilable discontinuity
in the generated control-flow graph. To accommodate such situa-
tions, we take a conservative approach wherever possible, preserv-
ing accuracy but necessitating additional manual effort on some
occasions. In particular, we report the use of reflection APIs in an
ad library to highlight their presence for further investigation (Sec-
tion 4).

4. PROTOTYPING AND EVALUATION

We base our static analysis tool on the open-source baksmali
Dalvik disassembler (version 1.2.6). Implementing the design laid
out in the previous section required 2809 new lines of code and four
hooks in the original baksmali project. As stated in the design sec-
tion, our system also required each API of interest to be annotated
so that it could be analyzed by the system. Accordingly, we anno-
tated APIs associated with 76 standard Android permissions. As
our static analysis approach is rather standard, in the following, we
mainly focus on the peculiarities of the Android platform and the
new extensions we added for risk analysis.

Specifically, besides reporting potentially-feasible paths, our pro-
totype has been extended to report on five other code patterns of
interest: the use of reflection, dynamic code loading, permission
probing, JavaScript linkages and reading the list of installed pack-
ages. As the presence of one or more of these patterns can color
our other findings for a given library, we opt to have our tool auto-
matically report them alongside its feasible-path output.

The first such pattern, the use of reflection, concerns the use of
the java.lang.reflect package. As mentioned earlier, this por-
tion of the Java specification allows programmatic invocation of
methods and access to fields, which complicates our static analy-
sis. Without it, the static analysis of Dalvik bytecode is reliable and
unambiguous. In theory, reflection essentially makes resolving an
app’s call graph into a dataflow problem. In practice, often reflec-
tion appears to involve constant strings, thus introducing no new
ambiguity. However, this is not always the case in our collected
ad samples. Therefore, our system makes what assumptions it can
while flagging the situation for further review.

In a similar vein, Android apps usually are amenable to static
analysis techniques because they are designed to be loaded as a
whole and statically verified by the framework itself. However, an-
other esoteric Java language feature was carried over into Dalvik:
the ClassLoader class. This class is used by the framework to find
code resources on demand. Usually, the static verification stage
causes practically the entire app to be loaded at once, as the verifier
attempts to resolve all the references in the bytecode. However, us-
ing reflection, it is possible to cause a class to be loaded that is not
directly referenced by any existing code. As the ClassLoader class
can be extended by developers, custom versions of this class can
be written to load code from non-standard resources. Each such
ClassLoader inherits from a parent version of the class, on up to
the baseline “system” instance of the class. Since Dalvik, unlike
Java, does not permit the “system” ClassLoader to be changed by
the developer, dynamic code loading is very explicit: the generic
reflection API cannot be used to implicitly reference a class for
the first time, so instead the custom ClassLoader must be explic-
itly queried. Our prototype flags this behavior and raises a serious
warning, as its presence negates all existing static analysis efforts
and signals suspicious dynamic code loading behavior.

A more common pattern our prototype elects to handle specially
is what we call “permission probing.” In this pattern, an ad li-

of Apps
40000

35000 +----

30000 -
25000 -
20000

15000 -
10000 -

5000 -

1418 687 748 245 474 153 109 97 91 361 2 3 1 0 1
-m -
.

0 -

T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 20
of Ad Libraries

Figure 4: Number of Ad Libraries Contained by Each App

brary contains some API which requires permission to successfully
call. Instead of mandating that the developer of the host app re-
quests this permission, the ad library can instead opportunistically
attempt to use the API, either by checking that it has the necessary
permission beforehand, or by handling the SecurityException that
is thrown by most APIs when they are called with insufficient per-
mission. These methods of checking permissions are well-defined
under Android, and so we can inspect the control-flow graph to
detect branches that detour around dangerous API calls.

Similarly, it seems to be common practice for “rich media” ad
libraries to offer JavaScript bindings to expose additional function-
ality to JavaScript ads. We elect to include this practice in our find-
ings for two reasons. Not only is this behavior indicative of “rich
media” libraries, it also raises interesting privacy concerns, which
we will cover in greater depth in Section 4.2.2.

Lastly, we temper our results by showing one instance of an inva-
sive API that, for whatever reason, requires no special permission
to access. Some ad libraries we studied collect the list of all apps
installed on the device. This information is every bit as personal as
the user’s browser history, in that it reveals some information about
their interests. We include this behavior to demonstrate the guile
advertisers have and the incompleteness of the permission-based
system.

In the rest of this section, we present our findings from the analy-
sis of 100 representative ad libraries. We first summarize our results
in Section 4.1 and then present categorized findings about danger-
ous behaviors in these ad libraries in Section 4.2. Finally, we eval-
uate the performance of our prototype in Section 4.3.

4.1 Opverall Results

Before tabulating our findings, we stress that our results are for
ad libraries rather than apps. Some apps in our sample of 100,000
will contain more than one ad library, while others contain none at
all. For the 100 representative ad libraries in our study, we found
that they are embedded in 52,067 different host apps in our dataset.
As one host app may contain more than one ad library, we show a
breakdown of how many libraries each of these apps contain. The
result is shown as Figure 4.

From the figure, it seems more than one third of apps (or more
precisely 34, 130) contain one ad library and a small fraction of
apps (around 3%) include at least five ad libraries for monetization.
One particular host app, i.e., com.Dimension4.USFlag, embedded
no fewer than 20 ad libraries! However, it is unclear whether the
inclusion of more ad libraries necessarily brings more profit to an
app’s developers.

Our system scans each representative ad library for the use of 76
dangerous APIs. The overall results for the top 50 ad libraries are
shown in Table 2, while the results for the remaining 50 are shown
in Table 4 (Appendix). In practice many of the Android’s danger-
ous APIs were not used by any ad library, so we choose to omit
them for brevity in our results. Specifically, the two tables contain

the 14 dangerous APIs we see used by at least one ad library. In the
tables, we also include data on six structural properties of interest,
such as the use of obfuscation, conditional API use via permission
probing, and dynamic code loading through the ClassLoader lan-
guage feature. Overall, our system reports 318 total API uses and
structural patterns. Upon further verification, 19 of them ask per-
mission from the user and our system properly recognizes 15 of
these cases, which happen to be all related to text message (SMS)
API calls.

Despite all of the reported APIs being marked as “dangerous,”
our results show that some APIs are commonly used by ad libraries.
These include the location APIs and a single “Read Phone Infor-
mation” API call, both of which are used by at least half of the ad
libraries we analyzed. The ad libraries use these APIs for target-
ing information: the location APIs can be used to serve ad content
relevant to the geographic area of the user, while the commonly-
used phone information call returns a unique identifier (the phone’s
IMEI number) that is useful for tracking what content has been
served to a particular user. These uses seem plausible, in the con-
text of an ad library; however, we did identify two ad libraries
(Mobclix and adserver) that expose this information directly to ad-
vertisers, which is harder to justify.

The remaining dangerous APIs either provide some feature, or
allow access to more intrusive data maintained by the device. The
feature-based APIs appear to be mostly harmless. For example,
a number of ad libraries allow ads to place phone calls, send text
messages or add an event to the calendar. In all of these cases, these
functions are performed only after the user triggers them (i.e., by
clicking on an ad) and confirms their intentions.

More insidious, however, are requests for information that is not
directly useful for ad targeting. Our analysis uncovered a few in-
stances where an ad library accessed information that is only useful
when correlated with other facts known about the user. This cor-
relative information is a direct threat to the user’s privacy, because
it can be used to uncover the user’s true identity. For example, it
is hard to make a case that the user’s call history has any bearing
on what ads they will be interested in, yet we discovered one ad li-
brary (sosceo) transmitting some of that information to the Internet
(to be detailed in Section 4.2.1). In a similar vein, a large number
of ad libraries used an API call to retrieve the user’s phone number,
and another ad library (Mobus) peculiarly reads through the user’s
SMS messages to determine which text-messaging service center
they use. Finally, we identified one particularly worrying use of
an otherwise innocent API, where some ad libraries (such as waps)
upload a list of all the installed apps on the phone.

Looking beyond privacy concerns, we identified five ad libraries
which make use of the ClassLoader feature to dynamically load
code at runtime. These ad libraries are effectively impossible to
statically analyze as a result; at a whim, their code can be changed.
A malicious or compromised ad network could command its ad
libraries to download a botnet payload or root exploit, for exam-
ple. Our later investigation indeed captures one suspicious payload,
which essentially turns the host app into a remotely-controllable bot
(Section 4.2.3).

Moreover, the other structural properties of ad libraries are worth
mentioning. Over half of the ad libraries we studied employed ob-
fuscation techniques, presumably to discourage reverse engineer-
ing. While not altering the function of the library, these transforma-
tions strip human-readable names from methods and classes while
optionally muddling the control flow by adding pointless redun-
dancy or by reordering instructions. As an example, we list in Fig-
ure 5 the classes contained in one particular ad library, i.e., AirAD.
Only a few such classes have names that carry any meaning; all the

& & fb&% &
L o N S {&@@@ o
) J I
Y’QQ S & & \&Q 0 @G% > & &C/ 0& \& <7 0*\6 & 5
RO, Ny NN F & o&$’ & » o ¥
Fe ST T ST I IS
CEFTITITE T FFTFT T T I I T F
admob/android/ads [27235 [V [/ | V | V/ 4 . .
google/ads | 16323 | v | - | V/ | - v
flurry | 5152 | v |/ | - | V/ v
google/../analytics | 4551 | -
millennialmedia | 4228 | v/ SV - - v |V
mobclix | 4190 | vV a4 v AR AR v IV
adwhirl | 3915 | / |- v . |- .
qwapi 1745 | v | - . v a4 .
youmi 1699 | v | V v oo 4
mobfox 1524 | v | - v v .
zestadz 1514 | - . .
cauly 1249 | - a4 v
inmobi 1229 | v | - v . .
wooboo 1183 | v | V v |/ 4
admarvel o1 | v | - v - - .
smaato 1077 | V/ v v v
mobclick 1058 | v v v
jp/co/nobot 995 | -
airpush M5 | v | v/ v |V 4
mdotm/android/ads 883 | - . . . |V .
vdopia 872 | - | V| - |V . . : .
wiyun 77T |/ |- 4
android/adhubs 651 | - . |V |- a4 .
madhouse 603 | v |V |V | - . |-
pontiflex 2| | - | V|V . :
innerActive 497 | V/ . . 4 v .
adserver/adview 492 | / |/ |/ v |- v
casee 479 | vV | - . . |/ |/ .
greystripe 40| - |V | - |V . . |-
omniture 433 | - A . . v
guohead 400 | vV IV :
daum/mobilead 399 | Vv | - . . |V . .
domob 34 | V|V v v 4
tapjoy 368 | - . . . v .
jp/Adlantis 341 | - -V v
adagogo 339 | -
adchina 327 | - . 4 a4 v
jumptap 278 | v/ . v v |/ |- .
medialets 274 | V| / v v |- . . v
nowistech 272 | - - . . v v .
waps 239 | v/ v |/ . v .
vpon/adon 189 | - v v v .
energysource 160 | v/ v . - - . . v
iconosys 131 | - . . |V v |/ v .
adwo/adsdk 131 | vV | V/ v . |/ v .
sktelecom/tad nRs|vi|vi|ivi v |/ a4 v
kr/uplusad 12 | -
smartadserver 102 | - AN . . |-
mt/airad | v |V | - . R4 a4
emome/hamiapps/sdk 85 | - . . R V2 A A . A U P R
Total [92207 [3T [4|15 173 (278 | T[22 31T [33[9[0[9[2]T]3]2
Table 2: The Overall Results from the Top 50 Representative Ad Libraries
rest are strings of “1” (lowercase L) and “I” characters. The ad li- network’s core functionality resides on its servers regardless, safe
braries that are noted as using obfuscation in Table 2 all used some from competitors’ eyes.
scheme to obfuscate their internal classes, and typically also obfus- In another common pattern, many ad libraries probe the per-
cate the names of fields, methods and the like in a similar fashion. missions available to them before attempting to use permission-
Other obfuscators are known to exist, but all serve the same pur- guarded APIs. Normally, if an Android app calls an API it does not
pose; for example, the default obfuscator names classes after alpha- have permission to access, a SecurityException is thrown. If this
betical characters, while another uses nonsense dictionary words exception is not caught, the app will crash. In order to prevent this
like “Watermelon” and “Railroad.” Applying these techniques to from happening, ad libraries either check their permissions up front
a reasonably large ad library hides the intent behind much of what or silently catch the thrown exception. It turns out more than half of
the library does, while not truly protecting the ad network’s trade studied ad libraries (marked in Tables 2 and 4) engage in this sort

secrets — as the library can still be unambiguously analyzed, and the of behavior. Some of them do log their failed attempts to access

AirAD$AdListener AirAD MultiAD T
I [T IO I
TIITIIT TN IOTOTOTOIT T
1TTHIITITIT IITITIIIT - I T
TITITTITIIT TN I I
i TN OO T
i ITIIITIIIT - T T
i I T

Figure 5: Classes in the Obfuscated com.mt.airad Package

these APIs, chastising the host app’s developer for not properly re-
questing the necessary permissions. However, most attempt to do
what they can with as many permissions as they can access, again
silently. A few libraries, such as AdMob, do permit the host app
developer to selectively deny the library permission to use a certain
APIL. This is unfortunately far from the norm, and only Mobclix
allows the user to disallow access to sensitive APIs — on a case-by-
case basis, and with some troubling ramifications, as elaborated in
Section 4.2.2.

Lastly, some ad libraries use the Java reflection language fea-
ture, which essentially allows programmatic access to methods and
fields by their name. Normally, when Dalvik bytecode is loaded,
there is a static verification step that ensures all referenced code
elements are valid. Reflection sidesteps this mechanism, which
allows for the use of dynamic code (discussed at more length in
Section 4.2.3), but can also be used to access any code that is not
guaranteed to resolve correctly on all devices. In this way, it is
possible for ad libraries to access “experimental” APIs or vendor-
specific APIs. Given the lower maturity of such APIs, their use by
ad libraries is suspect.

4.2 Categorized Findings

To provide greater detail about problematic behaviors we came
across in our analysis, we organize them into three categories.

4.2.1 Invasively Collecting Personal Information

The first category involves the questionable collection of per-
sonal information. Specifically, some ad libraries brazenly request
information not directly useful in fulfilling their purpose. Our re-
sults show that the larger ad networks typically do not engage in
such questionable activities, but smaller ad networks might. Unfor-
tunately, there is no way for the user of an app to know which ad
networks it contains.

A representative example of this behavior can be found in the
sosceo ad library, one of the least popular libraries studied. Like
most ad libraries, sosceo is instantiated by its hosting app making a
UI element designed to display an ad, in this case a com.sosceo.-
android.ads.AdView object. When this object is created, a fairly
lengthy set of obfuscated method calls occurs. These method calls
ultimately query the device’s contact information database for the
most recent phone call. This information is duly stored in a field
of a data object used by the AdView object; when the AdView ob-
ject requests an ad from the backing ad network, the information
is included as an URL query string under the “dp” key to the ad
server.

Other ad libraries engage in similarly strange behaviors; Mobus,
for example, reads the SMS (text-message) database looking for
administrative information about the user’s Short Message Service
Center (SMSC). This SMSC is the back-end service provider re-
sponsible for routing text messages to and from the user. For some
unknown purpose, Mobus transmits this information to its servers.

Similarly, Pontiflex takes an interest in what account credentials
the user has on the device. This information is not a direct secu-

rity risk as the ad library does not have access to the credentials
themselves, but it does query the list of accounts the user’s phone
manages. Somewhat suspiciously, the dangerous API calls in this
case are performed via the reflection API, which is a language fea-
ture that allows methods to be invoked by means of data strings. It
is possible that reflection is being used, in this case, to throw off
static analysis of the library.

4.2.2 Permissively Disclosing Data to Running Ads

The second category involves the direct exposure of personal in-
formation to running ads. One of the most popular ad libraries,
Mobclix, appears at first glance to function like most other ad li-
braries. To display an ad, Mobclix creates an android.webkit.-
WebView, which is essentially a miniature web browser. The ad is
then rendered by this web browser for display, allowing the adver-
tiser to design their ads using standard web technologies.

However, unlike its principal competitors, Mobclix attempts to
gain advantages by offering its advertisers access to certain smart-
phone features. Since these features do not have standard hooks
in HTML or JavaScript, the Mobclix ad library has a class (com. -
mobclix.android.sdk.MobclixJavascriptInterface) that binds cer-
tain Android APIs to JavaScript functions that are then exposed to
ads rendered within the WebView. Each API call is wrapped in a
method that simply and succinctly exposes it to JavaScript. By do-
ing so, Mobclix exposes a great variety of API calls and allows
running ads to most of the sensors and data on the phone. Note that
most of these accesses include appropriate user confirmation di-
alogs. For example, while an ad can call contactsAddContact(...)
to add a contact to the user’s address book, nothing will happen un-
less the user gives consent via a dialog box.

Unfortunately, not all functions are safely wrapped in this way.
For instance, the gpsStart(...) function allows a JavaScript ad
to register a callback function. This function will be called imme-
diately, and again whenever the user’s moves more than a defined
distance from the last reported position. The user is never asked for
their consent, nor are they notified in any way that this feature of
their phone is being used by an ad. This particular example suffi-
ciently raises interesting privacy issues. It is reasonable to expect
that the Mobclix ad library itself should have access to location in-
formation; such information is commonly used to target ads to a
certain geographical area. However, this code is not actually us-
ing that information for Mobclix’s ad-targeting purposes. Instead,
the information is being given to a third party advertiser. Indeed,
given access to this functionality, the ad itself can be thought of as
dynamically-loaded code of unknown provenance (Section 4.2.3).

4.2.3 Unsafely Fetching and Loading Dynamic Code

The third category involves unsafe fetching and loading of dy-
namic code (possibly from the Internet), which poses an even greater
potential threat for two reasons. One is that this dynamically loaded
code cannot be reliably analyzed, effectively bypassing existing
static analysis efforts. The other is the fact that the downloaded
code can be easily changed at any time, seriously undermining the
capability of predicting or confining its behavior.

In the 100 representative ad libraries, five of them have this un-
safe practice. One particular one will be downloading suspicious
payloads, which allows the host app to be remotely controlled.
Specifically, the portion of this ad library that is embedded in the
host app is very small: a single service, com.plankton.device.-
android.service.AndroidMDKService. This service contacts a re-
mote server with the list of permissions granted to the host app
and the phone’s hardware identifier (IMEI); in return, the remote
server provides it with the URL to download a . jar file (see Fig-

POST /ProtocolGW/installation HTTP/1.1
Content-Length: 1242

Content-Type: application/x-www-form-urlencoded
Host: www.searchwebmobile.com

Connection: Keep-Alive

action=geté&applicationId=123456789&developerId=987654321&deviceld=354957034053382
¤tVersion=-lspermissions=android.permission.INTERNET%3Bandroid.permission.
ACCESS_WIFI_STATE%3Bcom.android.browser.permission.WRITE HISTORY BOOKMARKS$3B
com.android.browser.permission.READ_HISTORY BOOKMARKS%3Bcom.android.launcher
permission.INSTALL SHORTCUT%3Bcom.android.launcher.permission.UNINSTALL SHORTCUT%3B
com.android.launcher.permission.READ_SETTINGS%3Bcom.android.launcher.permission.
WRITE_SETTINGS%3Bcom.htc.launcher.permission.READ_SETTINGS%3Bcom.motorola.launcher.
permission.READ_SETTINGS%3Bcom.motorola.launcher.permission.WRITE SETTINGS%3Bcom
motorola.launcher.permission. INSTALL SHORTCUT%3Bcom.motorola.launcher.permission.
UNINSTALL SHORTCUT%3Bcom.motorola.dlauncher.permission.READ SETTINGS%3Bcom.motorola.
dlauncher.permission.WRITE SETTINGS%3Bcom.motorola.dlauncher.permission.INSTALL SHORTCUT
%3Bcom.motorola.dlauncher.permission.UNINSTALL SHORTCUT%3Bcom.lge.launcher.permission.
READ_SETTINGS%3Bcom. lge.launcher.permission.WRITE_SETTINGS%3Bcom.lge.launcher.permission.
INSTALL SHORTCUT%3Bcom.lge.launcher.permission.UNINSTALL SHORTCUT%3Bandroid.permission.
READ_CONTACTS%3Bandroid.permission.READ_PHONE_STATE%3Bandroid.permission.READ_LOGS%3B

HTTP/1.1 200 OK

Date: Sun, 05 Jun 2011 04:30:33 GMT
Server: Apache-Coyote/1.1
Content-Length: 76

Connection: keep-alive

url=http://www.searchwebmobile.com/ProtocolGW/; fileName=plankton_v0.0.4.jar;

Figure 6: Handshake Communication between Plankton and
its Command-and-Control Server

ure 6). This .jar file contains the vast majority of Plankton’s
code, which is then dynamically loaded using a dalvik.system.-
DexClassLoader object — Dalvik’s base implementation of the
ClassLoader Java language feature. The downloaded . jar will lis-
ten to remote commands and turn the host app into a bot. Based
on this discovery, we have reported the seven affected host apps to
Google, which promptly removed them from the official Android
Market on the same day.

This behavior is interesting because it highlights the dynamically-
linked nature of Dalvik. Android apps are distributed as bytecode,
which makes app analysis easier due to the clearly-defined seman-
tics of the format. Furthermore, upon loading a class for the first
time, a Java-style bytecode verifier makes certain that all references
within the class resolve. This verification step seems to preclude
adding arbitrary code at runtime. However, via the java.lang.-
reflect package, Java (and hence Dalvik) can load classes by name
at runtime. Coupling this language feature with the ability to con-
trol where Dalvik looks for definitions for such classes — that is, the
DexClassLoader class — allows apps to load arbitrary code not con-
tained in the app’s package file. In this case, the downloaded . jar
file has a predefined entry point, com.plankton.device.android.-
AndroidMDKProvider.init(...). DexClassLoader looks for it by

name and then invokes the control logic. Within the newly-downloaded

code, the bytecode verifier works as usual, since it now uses the
modified DexClassLoader to resolve references to unfamiliar classes.
Another four ad libraries make use of this feature, likely as a
version-control and content-delivery mechanism. Opening the full
expressive power of Dalvik —replete with all the permissions granted
by the app — to nebulously downloaded dynamic code has unfortu-
nate privacy implications. Again, given that the code retrieved from
the Internet will naturally change, it is impossible to verify that the
ad library is only engaging in the behaviors embodied in the library.

4.3 Performance Measurement

Next, we report the performance overhead of our prototype. In
our test, we picked up five ad libraries and run our system to an-
alyze each of them ten times. Each analysis run scans the given
ad library for all (80) APIs our prototype handles. In each run, we
record the processing time and report the average. Our test machine
is an AMD Athlon 64 X2 5200+ machine with 2GB of memory and
a Hitachi HDP72502 7200 rpm hard drive. We summarize the re-
sults in Table 3. The test-case libraries were selected to provide
a mix of ad library types and complexities. Each library took, on
average, ~ 15.66 seconds to process. Given our tool is designed

Library Processing Time
AdMob 16.17s
AdWhirl 17.25s
Appmedia 14.58s
Quattro 14.40s
UplusAd 15.91s

Table 3: Processing Time of Analyzed Ad Libraries

to be used in an offline, semi-automated capacity, we believe this
performance to be acceptable for our purposes.

S. DISCUSSION

Our study has so far uncovered a number of serious privacy and
security risks from existing in-app ad libraries on the popular An-
roid platform.? Given this, it is important to examine possible root
causes and explore future defenses.

First, due to the fact that ad libraries are incorporated into the
host apps that use them, they in essence form an symbiotic rela-
tionship. Based on such relationship, an ad library can effectively
leverage it and naturally inherit all permissions a user may grant
to the host app, thus undermining the app-based privacy and se-
curity safeguards. Accordingly, we believe that the exposed risks
are fundamentally rooted in the granularity problem in the essential
Android’s permissions model. Under this model, the smallest entity
that can be granted a permission is an app. Even though ad libraries
come from a different developer and have different intentions than
their hosting apps, they are afforded the same permissions. As we
have seen, advertisers themselves are sometimes allowed to execute
code within an app, adding yet another untrusted set of principals
to the list of parties covered by a single permissions policy. Though
an app’s requests for access to private information can stem from
the app’s code, the ad library’s code, or both, but the user or rather
the Android platform cannot determine at a glance which parties
will use the information.

Second, the current situation could also be a product of one cen-
tral tension: the same solutions that would allow ad libraries to
be sandboxed could also be used to disable them, or alternatively,
defraud them. Even if Google had provided a separate Advertiser
template in the Android framework (i.e., alongside the Services,
Receivers, ContentProviders and Activities that exist today), there
would be no incentive for ad networks to use it. It is safer to tightly
couple ad libraries with their host apps, to keep them from being
easily circumvented. Possibly for the same reason, some ad net-
works take the approach of the worrisome dynamic code loading
behavior we observed. In particular, since ad libraries are not their
own entity in the framework, they can only be updated alongside
their host app. The ad network cannot control the release schedule
of all the apps its ad library is bundled with. As a result, any code
updates need to be pushed out along side channels. The dynamic
code loading apparently becomes the choice at the cost of raising
privacy and security concerns to mobile users.

Third, we may also consider ways to design ad libraries that
satisfy the needs of advertisers, ad networks and users alike [21,
22, 32]. As in traditional web-based ad libraries, these systems
display targeted advertising and report the network impressions,
click-throughs, etc. to bill the advertiser. However, they aim to do
these things irrefutably yet anonymously. The ultimate aim is to
only provide the ad network with the metrics needed for billing,
while allowing the user to retain complete and direct ownership of

*While we only studied one particular platform, due to the similar
nature of integrating in-app ads into smartphone apps, we expect
similar privacy and security risks will also exist on other platforms.

personally-identifiable information. Unfortunately, each approach
proposed so far has required either additional overhead (extra data
transfers, extra storage on the device, etc.), an organizational shift
(third-party ad “dealers,” the direct involvement of wireless providers,
etc.), or both. As some ad libraries may not brand the ads that they
serve, the user is usually ignorant of the ad networks used by an
app. Therefore, these disadvantages may not be offset by competi-
tive advantages for ad networks that operate in a privacy-preserving
manner.

From another perspective, our current study is limited to those ad
libraries that are simply “piggybacked* into host apps. Particularly,
current ad libraries are typically self-contained (as a standalone
package) so that they can be readily included by app developers.
However, it is possible to have more advanced mechanisms (e.g.,
collusion [26], re-delegation [18, 20], or indirect channels [31])
that could avoid using dangerous Android APIs being modeled by
AdRisk while still accessing various personal information on the
phone. Note that there are some ongoing research projects that aim
to detect or mitigate these attacks [9, 10, 11, 18]. How to extend
AdRisk to seamlessly integrate these systems remains an interest-
ing task for future work.

6. RELATED WORK

Smartphone privacy and security has recently attracted consid-
erable attention. Researchers have employed various techniques to
understand or assess these risks. For example, PiOS [12] used pro-
gram slicing to detect privacy leaks in iOS apps. SCanDroid [19]
analyzed Android apps’ source code, along with the manifest file
included with each app, to produce a data-flow policy specifica-
tion that describes an app’s use of information. Woodpecker [20]
uses interprocedural data-flow analysis to detect possible confused-
deputy attacks [23] on Android firmware. However, none of them is
designed to understand or assess the information leaks and security
risks from the embedded ad libraries. In contrast, AdRisk focuses
on the risks from these ad libraries in the context of privacy (e.g.,
information harvesting) and security (e.g., untrusted code down-
loading and execution). In the case of SCanDroid, its reliance on
the Java source code for an app renders it unable to analyze most ad
libraries, which typically are only distributed in a compiled form.

TaintDroid [13] takes a different tack to expose and identify pri-
vacy leaks in apps as a whole. By using lightweight dynamic taint
analysis built into modified Android middleware, the system alerts
the user to the presence and nature of the leak. Note it is only con-
cerned about the whole apps, not explicitly the ad libraries they
contain. Also, as a dynamic technique, it may be able to precisely
pinpoint possible leaks, but it is generally incomplete in not ex-
ploring all possible execution paths. Most recently, Enck et al. [14]
wrote the ded Dalvik decompiler to study around one thousand pop-
ular Android apps, and reported a number of findings about them.
In this work, we studied one hundred thousand apps, which allowed
us to systematically identify and assess a wider variety of ad li-
braries. For example, none of the libraries that feature dynamic
code loading (Section 4.2.3) were included or reported earlier. We
believe that such dynamic code loading is dangerous, especially in
light of recent Felt et al.’s findings [17], which are related to iden-
tifying “overprivilege” in Android apps. (An overprivilege occurs
when an app requests more permissions than it uses.) In particular,
among 940 Android apps being studied, more than one third were
found to be overprivileged. Given the permission-probing behav-
ior in existing ad libraries, it is possible that even more apps are
requesting unnecessary permissions, which are then opportunisti-
cally being used by their embedded ad libraries. Dynamic code
loading paints a yet more grim picture, as we found one ad library

uploaded the permissions its host app was granted before down-
loading the code.

On the defensive side, several related solutions have been pro-
posed and many of them revolve around the permission system.
For instance, Kirin [15] checks the manifest of apps that are being
installed against a permission-assignment policy, blocking any that
request certain potentially unsafe combinations. Saint [28] takes
this approach a step further, by allowing app developers to con-
strain permission assignment at install-time and permission use at
run-time. Other systems try to add further expressivity to the per-
mission system, such as Apex [27], which modifies the framework
to allow permissions to be selectively granted and revoked at run-
time. MockDroid [7] rewrites privacy-sensitive API calls to simu-
late their failure. TISSA [33] similarly protects user information,
but instead does so by modifying the Android framework to sup-
port user-defined information disclosure policies; sensitive APIs
can return false information under such a scheme instead of sim-
ply failing. AppFence [24] further refines this approach by adding
taint-tracking, allowing yet more nuanced policies. However, these
systems typically treat the apps as a while, without further differ-
entiating the embedded ad libraries from hosting apps.

More generally, researchers have explored ways to deliver tar-
geted ad content without disclosing any private information to the
advertiser or ad network. For example, Adnostic [32] addresses
the online ads and allows for behavioral web advertising without
giving behavioral information to the ad network (by using a ded-
icated Firefox browser extension to prevent unnecessary informa-
tion disclosure). MobiAd [22] takes a similar approach by using a
broadcast mode available to wireless providers to stream a large
amount of tagged ad content that is then filtered by mobile de-
vices. Privad [21] offloads ad selection to the client, but aims to
do so in a way that is less disruptive to the existing industry model
for ad networks; in particular, much emphasis (including a follow-
on work [30]) is placed on preserving the auction mechanism by
which advertisers compete for ad slots on the networks. These sys-
tems incorporate cryptographic billing to ensure that click-throughs
are properly billed to the advertiser without compromising the con-
sumer’s privacy, and without encouraging click fraud. Lastly, there
are some efforts that specifically aim to address the privacy con-
cerns inherent with location information. PrivStats [29] offers a
mechanism so that aggregate location information can be irrefutably
collected in a privacy-preserving way. Bindschaedler ez al. [8] at-
tempts to prevent tracking individual devices’ movements by chang-
ing their identifiers in crowded regions. While these systems are
making progress in mitigating the privacy risks, it is unclear yet
whether they can be applied in our context to handle the in-app ad
security risks (Section 4.2.3).

7. CONCLUSIONS

In this paper, we systematically examine the security and privacy
issues raised by in-app ad libraries. We analyze 100 ad libraries
selected from a sample of 100,000 apps collected from the offi-
cial Android Market, and find that even among some of the most
widely-deployed ad libraries, there exist threats to security and pri-
vacy. Such threats range from collecting unnecessarily intrusive
user information to allowing third-party code of unknown prove-
nance to execute within the hosting app. Since Android’s permis-
sions model cannot distinguish between actions performed by an ad
library and those performed by its hosting app, the current Android
system provides little indication of the existence of these threats
within any given app, which necessitates a change in the way exist-
ing ad libraries can be integrated into host apps.

(1]

(2]

(3]
(4]
(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Android Permission Protection Levels. http://
developer.android.com/reference/android/
R.styleable.html#
AndroidManifestPermission_
protectionLevel.

Android Security and Permissions. http://developer.
android.com/guide/topics/security/
security.html.

Baksmali: A Disassembler for Android’s Dex Format.
http://code.google.com/p/smali/.

Dalvik. http://sites.google.com/site/i0/
dalvik-vm-internals/.

Distmo Report: April, 2011 and May, 2011. http://www.
distimo.com/publications.

Gartner Says Sales of Mobile Devices in Second Quarter of
2011 Grew 16.5 Percent Year-on-Year. http://www.
gartner.com/it/page.jsp?id=1764714.

A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading Privacy for Application Functionality
on Smartphones. In Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications, HotMobile *11,
May 2011.

L. Bindschaedler, M. Jadliwala, I. Bilogrevic, 1. Aad,

P. Ginzboorg, V. Niemi, and J.-P. Hubaux. Track Me If You
Can: On the Effectiveness of Context-based Identifier
Changes in Deployed Mobile Networks. In Proceedings of
the 19th Annual Network and Distributed System Security
Symposium, NDSS *12, February 2012.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi,
and B. Shastry. Towards Taming Privilege-Escalation
Attacks on Android. In Proceedings of the 19th Annual
Network and Distributed System Security Symposium, NDSS
’12, February 2012.

S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi,
and B. Shastry. Practical and Lightweight Domain Isolation
on Android. In Proceedings of the 1st Workshop on Security
and Privacy in Smartphones and Mobile Devices,
CCS-SPSM’11, 2011.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
QUIRE: Lightweight Provenance for Smart Phone Operating
Systems. In Proceedings of the 20th USENIX Security
Symposium, August 2011.

M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proceedings
of the 18th Annual Network and Distributed System Security
Symposium, NDSS °11, February 2011.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI "10, pages 1-6, February 2010.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
Study of Android Application Security. In Proceedings of
the 20th USENIX Security Symposium, August 2011.

W. Enck, M. Ongtang, and P. McDaniel. On Lightweight
Mobile Phone Application Certification. In Proceedings of
the 16th ACM Conference on Computer and
Communications Security, CCS *09, pages 235-245, October
2009.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demysti.ed. In Proceedings of the 18th
ACM Conference on Computer and Communications
Security, CCS *11, October 2011.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In Proceedings of the
18th ACM Conference on Computer and Communications
Security (CCS ’11), October 2011.

A. P. Felt, H. Wang, A. Moschuk, S. Hanna, and E. Chin.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

Permission Re-Delegation: Attacks and Defenses. In
Proceedings of the Z0th USENIX Security Symposium,

August 2011.

A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid:
Automated Security Certification of Android Applications.
http://www.cs.umd.edu/~avik/papers/
scandroidascaa.pdf.

M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
Detection of Capability Leaks in Stock Android
Smartphones. In Proceedings of the 19th Annual Network
and Distributed System Security Symposium, NDSS 12,
February 2012.

S. Guha, B. Cheng, and P. Francis. Privad: Practical Privacy
in Online Advertising. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and
Implementation, NSDI " 11, March 2011.

H. Haddadi, P. Hui, and I. Brown. MobiAd: Private and
Scalable Mobile Advertising. In Proceedings of the Sth ACM
International Workshop on Mobility in the Evolving Internet
Architecture, MobiArch *10, pages 33-38, September 2010.
N. Hardy. The Confused Deputy, or Why Capabilities Might
Have Been Invented. In ACM Operating Systems Review,
volume 22, pages 36-38, 1988.

P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
“These Aren’t the Droids You're Looking For”: Retrofitting
Android to Protect Data from Imperious Applications. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS ’11), October 2011.

IDC. Android Rises, Symbian 3 and Windows Phone 7
Launch as Worldwide Smartphone Shipments Increase
87.2% Year Over Year. http://www.idc.com/about/
viewpressrelease. jsp?
containerId=prUS22689111.

C. Marforio, F. Aurélien, and S. Capkun. Application
collusion attack on the permission-based security model and
its implications for modern smartphone systems. Technical
Report 724, ETH Zurich, April 2011.

M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with
User-Defined Runtime Constraints. In Proceedings of the 5th
ACM Symposium on Information, Computer and
Communications Security, pages 328-332, April 2010.

M. Ongtang, S. E. McLaughlin, W. Enck, and P. D.
McDaniel. Semantically Rich Application-Centric Security
in Android. In Proceedings of the 25th Annual Computer
Security Applications Conference, ACSAC *09, pages
340-349, December 2009.

R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li.
Privacy and Accountability for Location-Based Aggregate
Statistics. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS ’11), October
2011.

A. Reznichenko, S. Guha, and P. Francis. Auctions in
Do-Not-Track Compliant Internet Advertising. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS ’11), October 2011.

R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and
X. Wang. Soundcomber: A Stealthy and Context-Aware
Sound Trojan for Smartphones. In Proceedings of the 18th
Annual Network and Distributed System Security
Symposium, NDSS " 11, pages 17-33, February 2011.

V. Toubiana, H. Nissenbaum, A. Narayanan, S. Barocas, and
D. Boneh. Adnostic: Privacy Preserving Targeted
Advertising. In Proceedings of the 17th Annual Network and
Distributed System Security Symposium, NDSS ’10,
February 2010.

Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming
Information-Stealing Smartphone Applications (on Android).
In Proceedings of the 4th International Conference on Trust
and Trustworthy Computing, TRUST °11, June 2011.

http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://code.google.com/p/smali/
http://sites.google.com/site/io/dalvik-vm-internals/
http://sites.google.com/site/io/dalvik-vm-internals/
http://www.distimo.com/publications
http://www.distimo.com/publications
http://www.gartner.com/it/page.jsp?id=1764714
http://www.gartner.com/it/page.jsp?id=1764714
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111

APPENDIX

fo% Q%% (b{" .\\o&\ .
% -o& > %aéb N &\\) & o‘é& &00 S
\\0 & Q &\Q\' QBQ ‘b~ C/‘b & Sb QQ @QQ’ \é D ‘b \
&\ & & &S P & & & F Lo & & ¥
Q g‘ OGNS & ¥ & O o o & N C/
b“ %@b & Q&@& v°°§“§’ gz gz % ngg»%m%
& & 0%@ 0%@ &S «z*’ S v % ‘l- <z- & <¢- < %°° c? &
mopub/mobileads 87T 1T vV 4 4 . . :
adfonic 77 | /
vdroid |V | V| - . -V v
transpera |V | - 4
mobgold 65 | - .
mobus 64 . . AR aE
hutuchong 63| v | - |V . v v
mads 56 | - - . . v . .
everbadge 55| - . |V . 4
zetacube/libzc 54| -
livepoint/smartad/sdk 2| | - oo . . .
1/adlib_android 45| v | v/ o/ . v v
eng/trickersticks 45 | - - . . ||V v v
ccmedia 36| v | - v . v
S0SCeo 3| - |V I/ v I/ v v
kr/netsco/Mojiva 29 | -
admogo 28 | vV v v I/
nexage/android 25 | v/ |- v |
rhythmnewmedia 23| v/ | - S|V v .
mediba/ad/sdk 2| v | - . . v
madvertise 2|V |V v :
qriously 20| vV | - v .
zumobi/adslib 18| - . . . v
netmite 5] - 4 . .
imapp/ads 5| - (V| - .
cn/yicha/android/ads 4| v | - v
oneriot 13(- |V v :
aduru 11
admoda 1| v . .
jp/co/imobile 0|v |V . v
moblico 8| v | - |/ v SIS v |/
jp/ne/linkshare/android/tgad 8 . - . . .
ignitevision 8| v | V/ v S v . .
fractalist 8 - . - . |V . .
plankton 7\ |V |/ . oo . v
cellitads 7 . . . v . .
cn/appmedia/ad 6 v O A 4 oo v
glam/AndroidSDK 5 . v v . . .
adtutu 5 v . I/
ru/adfox 4 - |V
netad 41V | V| - . o
freewheel 41V | - |V . . v v
adinside/androidsdk 4 . . | .
taobao/ads 3 v . . .
amaze/ad 2 . | v
admozi 20 - |- . .
wqmobile/sdk 1| v v I/ I
ubermind/ad 1] - . . v . .
innoace/imad 1| v v IV v 4
AdyxSdk 1] - . A U R V2 I U I R B . A Y P A I I
Total [1239 [24 [14 [9 [5 T2 7]0]1]0[4TT1T[25][9[T1T[7]0]2]T1TT7]3

Table 4: The Overall Results from the Remaining 50 Ad Libraries

	1 Introduction
	2 Background
	3 System Design
	3.1 Sampling the Android Market
	3.2 Analyzing Ad Libraries
	3.3 Identifying Possible Risks

	4 Prototyping and Evaluation
	4.1 Overall Results
	4.2 Categorized Findings
	4.2.1 Invasively Collecting Personal Information
	4.2.2 Permissively Disclosing Data to Running Ads
	4.2.3 Unsafely Fetching and Loading Dynamic Code

	4.3 Performance Measurement

	5 Discussion
	6 Related Work
	7 Conclusions
	8 References

