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ABSTRACT
Google’s Android platform includes a permission model that
protects access to sensitive capabilities, such as Internet ac-
cess, GPS use, and telephony. While permissions provide
an important level of security, for many applications they
allow broader access than actually required. In this paper,
we introduce a novel framework that addresses this issue
by adding finer-grained permissions to Android. Under-
lying our framework is a taxonomy of four major groups
of Android permissions, each of which admits some com-
mon strategies for deriving sub-permissions. We used these
strategies to investigate fine-grained versions of five of the
most common Android permissions, including access to the
Internet, user contacts, and system settings. We then de-
veloped a suite of tools that allow these fine-grained per-
missions to be inferred on existing apps; to be enforced by
developers on their own apps; and to be retrofitted by users
on existing apps. We evaluated our tools on a set of top apps
from Google Play, and found that fine-grained permissions
are applicable to a wide variety of apps and that they can
be retrofitted to increase security of existing apps without
affecting functionality.
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1. INTRODUCTION
Google’s Android is the most popular smartphone plat-

form, running on 52.5% of all smartphones [16], and with
more than 10 billion apps downloaded from the Market [18].
To help address security concerns, Android uses permissions
to protect access to sensitive resources, including the Inter-
net, GPS, and telephony.

While Android permissions provide an important level
of security, the available permissions are often much more
powerful than necessary. For example, the Amazon shop-
ping app must acquire full Internet permission, enabling the
app to send and receive data from any site on the Inter-
net, not just amazon.com. Other Android permissions are
similarly broad, granting arbitrary access to a particular
resource (e.g., the user’s contacts) or granting several un-
related privileges with a single permission (e.g., the ability
to modify system settings). The result is that many apps
violate the principle of least privilege [29], and the excessive
privileges held by apps may be used to violate user privacy
and security, e.g., by directly accessing sensitive resources or
exploiting privilege escalation vulnerabilities. This problem
is not merely theoretical; for example, a recently publicized
security hole on HTC Android phones made detailed system
logs available from a local socket. Access to local sockets is
granted by the Internet permission, so any app with Internet
permission could access the logs [2].

We believe that coarse-grained permissions impose costs
on Android users, app developers, and platform owners (e.g.,
Google). Individual users are harmed when a malicious app
uses an overly broad permission to perform an unexpected
and undesired activity. Developers are harmed when permis-
sions are insufficient to certify than an app will only interact
appropriately with phone resources. Finally, the platform
owner is harmed when users lose confidence or developers
lose sales.

In this paper, we propose to address this issue in a nat-
ural way: by splitting existing Android permissions into a
larger number of fine-grained permissions, as others have
suggested [3, 15]. Our goals are to help app developers
identify their own permission errors and improve their apps’
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robustness against security exploits, and to enable users to
gain stronger assurances about how apps use permissions.
Thus, rather than focus on particular Android security ex-
ploits, our work addresses the coarse-grained models that
potentially allow vulnerabilities to hide in plain sight.

While conceptually simple, supporting fine-grained per-
missions in practice presents several technical challenges,
which we address by developing several tools.

RefineDroid. First, the new permissions should natu-
rally and succinctly capture the most common uses of An-
droid permissions; otherwise the finer granularity risks over-
whelming both developers and users. We have developed
a taxonomy that classifies Android permissions into four
broad categories based on the kind of resource being pro-
tected (Section 2). We observe that the permissions in each
category share a few general strategies for producing prac-
tical fine-grained variants. For example, one category con-
tains permissions that control access to structured personal
information, such as contacts and calendar information, and
finer-grained permissions can leverage this structure to re-
strict accessibility (e.g., to a contact’s email address but not
phone numbers, or only to particular calendars).

To validate the practical utility of our taxonomy we have
built RefineDroid, a static analysis tool that infers fine-
grained permission usage in existing apps (Section 3). Cur-
rently RefineDroid infers fine-grained variants of five com-
mon Android permissions, including access to the Internet,
user contacts, and system settings. For example, the tool
infers permissions of the form InternetURL(d), which grants
access only to network domain d. We ran RefineDroid on 750
of the most popular apps from the Google Play app store.
We found that in most cases a small number of fine-grained
permissions from our taxonomy can replace the original An-
droid permissions to provide the desired access, significantly
reducing over-privilege and providing a clear security policy
for developers and users.

Mr. Hide. Second, fine-grained permissions should be
enforceable without modifying the Android platform or jail-
breaking of devices; otherwise the benefits of the approach
would be out of reach for most Android users. We have
developed Mr. Hide (the Hide interface to the droid envi-
ronment), a set of Android services that wraps several privi-
leged Android APIs and dynamically enforces a specified set
of fine-grained permissions from our taxonomy (Section 4).
Mr. Hide runs in its own processes, and all fine-grained per-
mission checking is done within these processes. Thus, An-
droid’s process separation ensures that client apps cannot
subvert Mr. Hide’s narrow API. We also provide a client-
side library called hidelib that handles all communication
with Mr. Hide and is a drop-in replacement for sensitive
Android APIs, making it as easy for developers to use fine-
grained permissions as the original Android ones.

Dr. Android. Finally, apps should be able to be retro-
fitted with fine-grained permissions without requiring source
code access or recompilation; otherwise the approach cannot
help secure the large number of existing apps. The ability
to retrofit apps also allows power users and enterprises to
customize the apps they use to conform to desired secu-
rity policies. We introduce Dr. Android (Dalvik Rewriter
for Android), a tool that removes Android permissions in
existing application package files (apks) and replaces them
with a specified set of fine-grained versions that are accessed
through Mr. Hide (Section 5). Dr. Android includes a small

input.apk

RefineDroid Dr. 
Android

output.apk

Needed fine-
grained 

permissions

Mr. Hide  
Library

Mr. Hide 
Service

Figure 1: Overview of fine-grained permissions framework

number of high-level transformations that together enable
expressive and well-formed security rewritings. Experiments
on 14 apps validate the correctness and practicality of the
approach (Section 6).

In summary, we have produced a rich toolchain—Refine-
Droid, Mr. Hide, and Dr. Android—that allows app devel-
opers and their users to understand, infer, and enforce fine-
grained permissions on stock Android devices and apps. Fig-
ure 1 overviews this toolchain and the relationships among
its components. Different clients can use our tools in dif-
ferent ways that fit their needs. For example, a developer
writing a new app can simply employ Mr. Hide and hidelib di-
rectly in lieu of the standard Android permissions and APIs
to reduce over-privilege and give more confidence to users.
A developer who wants to upgrade his existing app with
Mr. Hide permissions can do the same but additionally em-
ploy RefineDroid to first identify the required fine-grained
permissions. Finally, a sophisticated user can follow the
full process shown in the figure, and employ Dr. Android
to retrofit a downloaded app with Mr. Hide permissions in
order to enforce a desired security policy, employing Refine-
Droid to understand the requirements of the application.

2. FINE-GRAINED PERMISSIONS
The Android platform has a wide range of permissions,

which provide access to many different kinds of data and
functionality. Thus, there is no one-size-fits-all approach to
developing finer-grained permissions. On the other hand, we
would like to avoid needing a different strategy for creating
fine-grained variants of every single permission.

We have developed a taxonomy that partitions Android
permissions into broad categories based on the kind of re-
source being protected. We observe that a few, general
strategies for developing practical fine-grained variants can
be shared by all permissions in the same category. Figure 2
gives a complete mapping from all dangerous and normal
permissions on Android platform level 10 (versions 2.3.4–
2.3.7) into our taxonomy. Within each category, we picked
one or two exemplars and developed fine-grained implemen-
tations (named in italics in the figure) in Mr. Hide, support
for them in Dr. Android, and, where applicable, permission
inference for them in RefineDroid.

We next discuss each category in our taxonomy in more
detail, along with associated strategies for refinement.

Category 1: Access to Outside Resources. Our first cat-
egory contains 11 Android permissions that enable access to
external resources, including Internet access, sending and
receiving text messages, and reading and writing external
storage. These permissions are naturally parameterized by
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1. Outside Resources InternetURL(d) 2. Structured User Info. ContactCol(c)

INTERNET, RECEIVE (MMS | SMS | WAP PUSH), SEND SMS,
WRITE EXTERNAL STORAGE, BLUETOOTH, NFC,
CALL PHONE, USE SIP, PROCESS OUTGOING CALLS

(READ | WRITE) (CALENDAR | CONTACTS | SMS),
READ LOGS, (GET | MANAGE) ACCOUNTS,
AUTHENTICATE ACCOUNTS, USE CREDENTIALS,
SET ALARM, SUBSCRIBED FEEDS (READ | WRITE)

ReadPhoneState(p)
3. Sensors LocationBlock 4. System State/Settings

WriteSettings(s)

ACCESS (FINE | COARSE) LOCATION, CAMERA,
RECORD AUDIO, ACCESS LOCATION EXTRA COMMANDS

(READ | WRITE) HISTORY BOOKMARKS, WRITE SETTINGS,
(READ | MODIFY) PHONE STATE, GET TASKS, WAKE LOCK,
(ACCESS | CHANGE) (NETWORK | WIFI) STATE,
BATTERY STATS, BLUETOOTH ADMIN,
MODIFY AUDIO SETTINGS, CHANGE CONFIGURATION

Other permissions

(READ | WRITE) SYNC SETTINGS, READ SYNC STATS, RECEIVE BOOT COMPLETED,
GET PACKAGE SIZE, ACCESS MOCK LOCATION, SET TIME ZONE, REORDER TASKS,
KILL BACKGROUD PROCESSES, SET WALLPAPER( HINTS), WRITE APN SETTINGS,
DISABLE KEYGUARD, EXPAND STATUS BAR,BROADCAST STICKY, CLEAR APP CACHE,
SET DEBUG APP, SET ALWAYS FINISH, SET PROCESS LIMIT, SET ANIMATION SCALE,
SIGNAL PERSISTENT PROCESSES, MOUNT (UNMOUNT | FORMAT) FILESYSTEMS, VIBRATE,
FLASHLIGHT

Figure 2: Taxonomy of all dangerous and normal permissions on Android platform level 10

the particular external resource being accessed. For exam-
ple, Internet access involves specifying an Internet domain,
text messages are sent to a phone number in a certain area
code, and SD card access involves specifying a directory or
file name. Thus, there are two natural strategies for fine-
grained variants of this category: using a whitelist of al-
lowed resources (domains, area codes, directories, etc.), or a
blacklist of forbidden resources.

In our framework, we have chosen to focus on Internet ac-
cess, which is pervasive across applications and may be par-
ticularly dangerous. We developed a fine-grained, whitelist-
ing permission InternetURL(d), which allows network con-
nections only to domain d and its subdomains. Notice that
this permission does not remove the need to trust the target
domain d to some extent. However, it does help ensure that
app vulnerabilities cannot be exploited to contact malicious
web sites, and it limits Internet access for suspicious apps.

Category 2: Access to Structured User Information.
Our second category contains 14 Android permissions that
access structured user data, such as a user’s calendar, con-
tact list, and account information. For these permissions, we
can introduce fine-grained variants that leverage the struc-
ture to grant access to a subset of the information. For
example, calendar information could be restricted to entries
on a particular calendar (e.g., my public calendar), contact
information could be restricted to a particular set of fields
(e.g., name and phone number), and apps could be granted
access to a subset of available accounts.

We developed a fine-grained variant of Android’s READ
CONTACTS permission. Our new permission, called Con-
tactCol(c), allows access only to a particular field (or col-
umn) c of an accessed contact in the user’s address book.

Category 3: Access to Sensors. Our third category con-
tains 7 Android permissions that protect access to various
sensors on the phone, including the camera, GPS receiver,
and microphone. We can derive fine-grained variants of
these by reducing the fidelity of the signal received from
these resources. For example, we could truncate low-order
bits of the GPS location, suppress background noise on the
audio channel, or redact a portion of a camera image.

We developed a fine-grained permission LocationBlock that
blurs location information by truncating low-order bits to
provide approximately 150m resolution (about one city block).
This allows a user to gain utility from many apps without
disclosing her exact location.

Category 4: Access to System State and Settings. Our
fourth category contains 15 Android permissions that pro-
vide access to state and settings information on the phone.
Typically each such permission provides access to read or
update several unrelated pieces of information. For exam-
ple, Android’s READ PHONE STATE, among other things,
allows an application to determine if a phone call is occur-
ring and read the phone’s unique IMEI number. Similarly,
the WRITE SETTINGS permission allows an app to update
many distinct phone settings, including the default ringtone
and network preferences. Thus, for these permissions, we
can introduce fine-grained variants that separately grant ac-
cess to each state or setting of interest.

In our framework, we propose the permissions ReadPhon-
eState(p) and WriteSettings(s), which specialize the Android
permissions of the same name as described above. In Mr.
Hide and Dr. Android, we implemented instantiations of
these permissions for the two most common uses in our app
test set: ReadPhoneState(UniqueID), which grants access
to the device IMEI number, and WriteSettings(Ringtone),
which allows apps to update the phone’s default ringtone.

Other permissions. Finally, there are several Android per-
missions that do not fit into the four categories above, either
because they already are sufficiently fine-grained or because
they would not benefit from finer granularity. For example,
RECEIVE BOOT COMPLETED has only one purpose that
does not seem useful to subdivide, and while KILL BACK-
GROUND PROCESSES could potentially be fragmented (e.g.,
by restricting the processes that could be killed), doing so
seems unlikely to add much practical security.

3. FINE-GRAINED PERMS. IN THE WILD
In the previous section we introduced several new fine-

grained permissions. In this section, we investigate how of-
ten such permissions can be applied to a suite of the most
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Cursor c = getContentResolver()

.query( uri , projections , selection , ...);

int index = c.getColumnIndex(

ContactsContract.PhoneLookup.NUMBER);

String id = c.getString (index );

TelephonyManager tm =

(TelephonyManager) getSystemService(

Context.TELEPHONY SERVICE);

String id = tm.getDeviceId();

tm. listen (new PhoneStateListener() {...},
PhoneStateListener.LISTEN CALL STATE);

Uri uri = Uri.parse (‘‘ my ringtone.mp3’’);

RingtoneManager.setActualDefaultRingtoneUri(

this , RingtoneManager.TYPE ALARM, uri);

String path = uri . toString ();

Settings .System.putString(

getContentResolver (),

Settings .System.RINGTONE, path);

(a) Contacts (b) Phone state (c) System settings

Figure 3: Typical idioms detected by RefineDroid

popular apps from Google Play, and how many fine-grained
permission are needed to replace each standard permission
in these apps.

3.1 Inferring Fine-grained Permissions
To answer these questions, we developed RefineDroid, a

static analysis tool that analyzes an app’s Dalvik bytecode
to infer which of our fine-grained permissions are used by
that app. In particular, RefineDroid infers which network
domains are accessed, i.e., InternetURL(d) permissions (cat-
egory 1); which contact columns are used, i.e., ContactCol(c)
permissions (category 2); which phone states are read, e.g.,
for ReadPhoneState(p) permissions (category 4); and which
system settings are written, e.g., for WriteSettings(s) per-
missions (also category 4). We believe RefineDroid is exten-
sible to other category 1, 2, and 4 permissions.

RefineDroid does not infer usage of LocationBlock, since it
and other category 3 permissions require an understanding
of the sensor fidelity necessary for proper functioning of an
app. For example, it would not be useful to employ Loca-
tionBlock in a navigation app, whereas it may be useful for
an app that locates the nearest 5 post offices. In Section 6,
we find that LocationBlock provides acceptable results for
several popular apps.

RefineDroid’s analysis contains three major components.
First, it includes a simple string analysis that determines
what strings matching a particular pattern occur in the
string pool in the bytecode, e.g., what URL-like strings are
mentioned. Second, RefineDroid includes a mapping from
Android API calls to their necessary privileges, taken from
the publicly available data of the Stowaway project [15].
Third, RefineDroid implements constant propagation for in-
tegers and strings [1] so that we can determine what strings
may be passed to key parameters of privileged methods, e.g.,
what name might be passed to Settings.System.putString().
Our constant propagation analysis is a standard dataflow
analysis, augmented to precisely track the effects of String-
Builder.append, String.concat and Uri.<init>, as many apps
use these methods to manipulate the strings we must track.

Technical Details. RefineDroid infers the four permission
groups mentioned above as follows. Note that below we de-
scribe code patterns for each permission at the source level,
but RefineDroid actually operates on Dalvik bytecode.
InternetURL(d). RefineDroid collects all URL-like strings

appearing in the apk’s string pool and assumes those corre-
spond to domains used by the app. Here by URL-like, we
simply mean that a standard URL parser accepts it as valid.
ContactCol(c). Figure 3(a) gives some sample code that

queries the contacts database. First the code derives a cur-
sor from one of several URIs for the contacts database. Then

specific columns are retrieved from the cursor by calling its
getString() method with an index number, which is typically
determined by a call to getColumnIndex(), as shown in the
figure. Thus, to find which contact columns are accessed,
RefineDroid uses constant propagation to find indices passed
to getColumnIndex().

ReadPhoneState(p). Figure 3(b) shows sample code that
accesses phone state information. The code begins by get-
ting a TelephonyManager instance tm. That instance is used
in two different ways to access phone state. First, the call
tm.getDeviceId() retrieves the phone’s IMEI number. Thus,
in this and similar cases, RefineDroid determines a permis-
sion is needed because a particular method is invoked. Sec-
ond, the call to tm.listen() registers a callback that will be
invoked when there are state changes specified by the second
argument to listen(). Thus, for this case, RefineDroid uses
constant propagation to find the values of the second argu-
ments to listen() and thereby determine needed permissions.

WriteSettings(s). Figure 3(c) gives sample code that writes
to system settings, again in two different ways. First, the
code uses a RingtoneManager method to change a ringtone.
For these cases, RefineDroid relies on method names to de-
termine permissions. Next, the code uses Settings.System.
putString() to change the ringtone. For this case, Refine-
Droid once again uses constant propagation to find the ar-
guments to putString() to determine permissions.

Limitations. RefineDroid deliberately performs a best-effort
static analysis, rather than attempting to be conservative.
For example, if RefineDroid cannot determine which contact
column index is passed to a particular getString(), then it ig-
nores that call, rather than conservatively assuming that all
indices are possible. As another example, RefineDroid does
not track invocations of the methods in some deprecated
APIs, and it does not track invocations that occur via re-
flection or in native code. Thus, RefineDroid may have false
negatives.

As is typical with static analysis, RefineDroid may also
have false positives, e.g., RefineDroid will report a statically
detected call to a privileged method even if it is dynamically
unreachable, and it will report a URL-like string even if it
is never used to access the network.

In Section 6, we report on the use of RefineDroid to infer
Internet domains and contact columns on a test suite of apps
from Google Play. On these apps we find that RefineDroid
produces useful results with a low rate of false negatives.
(Full details in Section 6.)

3.2 Study Results
We ran RefineDroid on the top 24 free apps in each Google

Play category as of April 11, 2012, yielding 750 apps in to-
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Figure 4: Results of running RefineDroid analysis over 750 popular apps.

Domain N
google.com 457
admob.com 324
gstatic.com 311
facebook.com 256
android.com 207

Domain N
flurry.com 176
gmail.com 152
google-analytics.com 148
twitter.com 138
mydas.mobi 113

Figure 5: The 10 most popular static domains. Each domain
occurs in N -many apps.

tal. (Some apps appear in multiple categories and are only
counted once.) We ran a particular RefineDroid analysis
only if the target app had the appropriate standard permis-
sion, e.g., we only inferred contact columns used on apps
that had the READ CONTACTS permission.

Our results show that in terms of the permissions Refine-
Droid analyzes, apps are often significantly over-privileged,
in the sense that they use far narrower capabilities than are
actually available from the full platform permissions. Our
results also show that in the majority of cases, an Android
permission can be replaced by just a handful of fine-grained
permissions, providing stronger guarantees and significantly
better documentation for developers and users.

Figure 4(a) summarizes the Internet domains found by
RefineDroid. The chart on the left shows how many static
domains are used in each app. Despite the unlimited possi-
bilities, apps access a median of only 8 domains. This result
illustrates the extent of over-privileging inherent in the In-
ternet permission. Moreover, it suggests that for many apps,
listing per-domain permissions is plausible. We expect that
in practice, we would pick a cutoff (perhaps 10); any apps
under the cutoff would list individual domain permissions,
and apps above the cutoff would request full Internet access.

Across all our apps, a total of 2,358 unique domains are
used. In the chart on the right, we sort domains in order
of popularity across our set of apps, and plot the number of

apps per domain. We can see that a handful of domains are
very commonly used across all apps, with a long tail of other
domains. Figure 5 lists the most popular domains found by
RefineDroid. These domains provide a variety of services
to apps, including advertising, analytics, and social network
access. It could be useful to tailor specific fined-grained
permissions for groups of popular domains, e.g., advertising;
we leave this for future work.

Figure 4(b) summarizes contact columns access, in the
same format as part (a). In the chart on the left, we see
that many apps access only a few columns, suggesting Con-
tactCol(c) permissions are practical. We investigated the
spike of apps using 15 columns and found that nine of these
apps are actually various versions of Verizon Navigator that
target different devices, and thus the spike is mostly an ar-
tifact of the data set. Note that RefineDroid finds no use
of contacts permissions in 2 apps; this number can include
both apps that do not use the declared permission and apps
that access contacts through a deprecated API.

Android provides 79 possible column names in the con-
tacts database. Of these, RefineDroid finds that only 73
are accessed by apps in the test set. From the right chart
in Figure 4(b), we see that a few columns are very pop-
ular, and then there is a long tail. The two most popular
columns are id and type, which store metadata. Other pop-
ular columns names include the generic data1 and data2,
which can contain different kinds of data depending on the
URI used to create the cursor, as well as display name and
title. RefineDroid resolves many of the dataN occurrences
to more specific column names by tracking the URI values
through constant propagation, but the URI is often dynam-
ically generated, for example when contacts are selected by
the user through the Android contact picker.

Figure 4(c) shows the results of RefineDroid for phone
state information. RefineDroid separately tracks 16 pieces
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Figure 6: Mr. Hide architecture

of phone state that can be accessed via the READ PHONE
STATE permission. We can see (left chart) that apps tend
to access a very small amount of this information. We can
also see (right chart) that just a few items of phone state
dominate in popularity. The most commonly accessed phone
state is the device’s unique ID, and this occurs in twice as
many apps as access to any other phone state information.
Other popular pieces of information are the phone number
and the current phone-call state.

Finally, Figure 4(d) indicates that (left chart) apps typi-
cally write to two or fewer settings. We also found that 44
apps are over-privileged, acquiring the WRITE SETTINGS
permission but never using it. The chart on the right shows
the relative popularity of system settings. The most pop-
ular one is for the ringtone, followed by settings for screen
brightness and airplane mode.

4. ENFORCING FINE-GRAINED PERMS.
One way to incorporate the fine-grained permissions we

introduced in Section 2 into Android would be to modify
the platform, as has been done in related prior work [4,
23, 32, 21]. However, this would require users to jailbreak
their phones, putting the approach out of reach for many
in practice. Moreover, it reduces flexibility, as adding new
permissions requires updating the phone OS.

Instead, we decided to take a different approach that uses
existing, app-level permission mechanisms. We developed
Mr. Hide, a set of Android services that enforces fine-grained
permissions by interposing a new API between underlying
resources and client apps. Mr. Hide leverages Android’s sup-
port for creating new permissions, which are then dynam-
ically enforced in the Mr. Hide API. Mr. Hide runs in its
own process, and Android’s process separation ensures that
client apps cannot subvert Mr. Hide’s narrow API.

4.1 Mr. Hide overview
Figure 6 overviews the Mr. Hide architecture, which con-

tains two main components: a set of services that interact
with a client app and hardware resources, and a client-side
library called hidelib that provides a clean interface to each
service. hidelib is a drop-in replacement for sensitive An-
droid APIs and makes usage of Mr. Hide transparent to
clients apps. Mr. Hide is implemented as a group of process-
isolated Android services each accessing only a single An-
droid permission; this architecture simplifies the implemen-
tation of each component and is intended to facilitate audit
for correctness and trustworthiness. Currently Mr. Hide is
designed to run on Android version 2.3.6.

Permissions. Mr. Hide uses Android’s permission frame-
work to define its own set of permissions, which apps then
request in the same way as system permissions. These Mr.
Hide permissions behave just like platform permissions—
they are displayed to the user at installation time, and no
additional permissions can be acquired at run time. When
responding to requests, a Mr. Hide service checks the calling
app’s permissions and throws standard security exceptions
as needed.

Apps may also include native code, although in our ex-
perience this is uncommon (except for rendering in games,
which is not security-sensitive). Mr. Hide provides no special
interfaces for native code, but note that native code must
still have permission to access sensitive resources. Thus if
we remove a platform permission and replace it with a Mr.
Hide permission, we can be certain the native code no longer
has the access granted by the platform permission.

Binding to Mr. Hide services. Clients interact with Mr.
Hide services using an asynchronous message-passing proto-
col to establish a binding that then enables synchronous re-
mote procedure calls. Most hidelib methods are implemented
on top of the synchronous interface to maintain compatibil-
ity with built-in Android APIs. hidelib provides code to es-
tablish necessary service bindings on app startup, to display
a splash screen while waiting for connections to be com-
pleted, and to subsequently pass control to the app’s distin-
guished “launcher” activity. Currently, hidelib does not sup-
port entry points other than the launcher activity, though
this could be added if needed.

Parameterized permissions. Android does not directly sup-
port parameterized permissions such as InternetURL(d), but
we can encode these using a permission tree, which is a
family of permissions whose names share a common pre-
fix. For example, InternetURL(google.com) is represented
in Mr. Hide as an instance of class hidelib.permission.net.
google com, which is part of the hidelib.permission.net tree.
Note that the permissions provided by a service such as Mr.
Hide need to be defined by the time that the service’s clients
are installed. Mr. Hide contains a GUI for adding permis-
sions needed by new clients, as well as a predefined list of
useful InternetURL(d) permissions.

4.2 Permission implementations
Mr. Hide includes implementations of the five fine-grained

permissions introduced in Section 2; we discuss some of the
more interesting implementation details next.

InternetURL(d). Android apps access the Internet using li-
braries that wrap low-level native code that interfaces with
Linux via system calls and with cryptographic libraries used
for SSL sockets. hidelib virtualizes these low-level compo-
nents, implementing native calls declared in the classes In-
ternetAddress, OSNetworkSystem, and NativeCrypto and for-
warding them to a Mr. Hide service. Structures that can-
not be marshaled for RPC, such as file handles and SSL
contexts, are represented using unique proxy values, which
the Mr. Hide service maps to, e.g., Linux file handles. Mr.
Hide performs appropriate access control checks on the call-
ing app before establishing socket connections or performing
DNS lookups.

Most apps do not directly access low-level code, but in-
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stead rely on high-level, built-in libraries for network ac-
cess. hidelib includes work-alike libraries we built by re-
compiling the original sources after making suitable source-
level changes both automatically (e.g., renaming classes and
methods) and manually (e.g., calling our native code wrap-
pers). In total, hidelib replaces large parts of the function-
ality of java.net, org.apache, and javax.net. Because these
interfaces are large, we do not have complete coverage of
all methods, and this occasionally leads to observable dif-
ferences in app behavior. We also do not currently support
android.webkit. (Newer versions of Android include hooks
for controlling webkit’s use of sockets, so in future work we
plan to update our Android version and use these hooks to
support webkit.)

ContactCol(c). Contacts are implemented on Android as a
content provider database. Apps address content providers
using well known URIs that are defined as library constants.
For instance, ContactsContract.Contacts.CONTENT URI maps
to content://contacts, the database of all contacts.

Mr. Hide implements a new content provider that ex-
poses the same interface as the built-in contacts provider,
but is identified by a different URI. This content provider
filters query results to ensure the only returned fields are
those client apps have permission for. Finally, to maintain
compatibility with legacy code, hidelib provides work-alike
classes where, for instance, hidelib.ContactsContract.CON-
TENT URI maps to Mr. Hide’s URI for contacts.

LocationBlock. Apps typically access location data via a Lo-
cationManager object that allows clients to request asyn-
chronous callbacks with current location information. To
implement LocationBlock, hidelib provides a replacement Lo-
cationManager that passes callback registration requests to a
Mr. Hide service. Mr. Hide polls location information data
and uses remote procedure calls to invoke client callbacks.
Location coordinates returned by Mr. Hide are truncated
to provide approximately 150m resolution. Mr. Hide and
hidelib also support a few alternative ways to read location,
including via the TelephonyManager class and the method
LocationManager.getLastKnownLocation().

ReadPhoneState(p). Currently Mr. Hide implements a sin-
gle instantiation of the ReadPhoneState(p) permission, for
the case when the accessed state is the phone’s unique ID.
As described in Section 3.2, access to the unique ID is by
far the most popular usage for Android’s READ PHONE
STATE permission. The Mr. Hide implementation could
simply wrap a call to the Android method TelephonyMan-
ager.getDeviceId(). However, for added security Mr. Hide in-
stead returns a fixed value that is not the device’s actual id.
This could easily be generalized to a range of policies, such
as returning a random value each time, returning a per-app
randomized value, returning a per-app-author randomized
value, etc.

WriteSettings(s). Currently Mr. Hide implements a single
instantiation of the WriteSettings(s) permission, for the case
when the device’s ringtones are changed. As described in
Section 3.2, this is the most popular usage for Android’s
WRITE SETTINGS permission. Device ringtones can be set
in two ways on Android: via a RingtoneManager object and
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Figure 7: Dr. Android architecture

by calling the method Settings.System.putString; the former
is actually implemented on top of the latter. Thus, hidelib
provides replacement RingtoneManager and Settings.System
classes, each of which contacts a Mr. Hide service to change
a ringtone when requested. The Mr. Hide service is a thin
wrapper that checks for the necessary permission and for-
wards ringtone updates to Settings.System.putString(). It
would be straightforward to add the ability to write other
settings through this Mr. Hide wrapper.

5. FINE-GRAINED PERMS. FOR USERS
Mr. Hide makes it easy for developers to employ fine-

grained permissions in their apps, and hidelib allows them
to port existing app source code with minimal effort. In
this section, we introduce Dr. Android1, a tool that allows
users to update app binaries to use Mr. Hide in place of the
built-in Android API. Because Dr. Android retrofits apps
without needing source, it allows app users to more directly
control the security of the apps they run. For example,
an app user could replace the default Android permissions
in a downloaded app with fine-grained variants, obtaining
stronger security guarantees without being beholden to the
app developer. Users could also easily experiment with mul-
tiple fine-grained policies to explore the tradeoff between se-
curity and utility, and different users could make different
choices within this spectrum. For purposes of this paper, we
use Dr. Android in combination with RefineDroid, using the
latter to infer fine-grained permissions that we add with the
former (full details in Section 6).

Figure 7 illustrates Dr. Android’s architecture. In addi-
tion to bundling and unbundling app components, Dr. An-
droid performs three kinds of transformations. First, it mod-
ifies the app’s Dalvik bytecode (classes.dex) to use Mr. Hide
and injects hidelib code into the app. Second, Dr. Android
modifies the app’s manifest to remove Android permissions,
add hidelib permissions, and modify declared program en-
try points. Third, Dr. Android modifies resource files that
define user interface layouts so that hidelib classes with UI
elements are referenced as needed. The rest of this section
describes Dr. Android in more detail.

1Redexer, the general-purpose Dalvik transformation tool
Dr. Android is built on top of, can be downloaded at
http://www.cs.umd.edu/projects/PL/redexer/.

9

http://www.cs.umd.edu/projects/PL/redexer/


1 type perm = InternetUrl | LocationBlock | ...
2 let (perm map : perm → (string ∗ string) list) = ...
3 let (perm manager : perm → (string ∗ string) list) = ...
4

5 let rewrite (dx : dex) (ps : perm list) : unit =
6 merge hidelib dx;
7 replace classes dx (List.concat (List.map perm map ps))
8 replace managers dx ps perm managers;
9 if List.mem ContactCol ps then

10 replace contact strings dx;
11 insert service binding dx

Figure 8: Bytecode rewriter pseudocode

Reading, writing, and signing apps. Dr. Android relies
on apktool [17] to read and write apk files. Android apps
are digitally signed and modified binaries must be re-signed
to run on a phone. Dr. Android signs apps with fresh
cryptographic keys which inevitably differ from the original
keys. Fortunately, app signatures are mostly used to estab-
lish trust relationships between different apps produced by
a single vendor and signed by the same key.2 We can pre-
serve these relationships by consistently signing apps from
the same original authors with the same new key but have
not implemented this feature as it was not necessary for any
of our case studies.

Rewriting manifest and resource files. Rewriting the XML-
formatted manifest and resource files is straightforward. Ex-
isting permissions appear as <permission> elements in the
manifest, and Dr. Android removes specified Android per-
mission elements and replaces them with appropriate Mr.
Hide permissions. Mr. Hide also has to modify some resource
files that contain XML declarations used to instantiate Java
classes at runtime. These are commonly used to declare
user interface elements. As with manifest rewriting, Dr.
Android replaces XML elements referencing Android com-
ponents with Mr. Hide equivalents.

Rewriting bytecode. The core of Dr. Android is the byte-
code transformer, which contains approximately 10K lines of
OCaml code that parses a bytecode file into an in-memory
data structure, modifies that data structure, and unparses
it to produce an output bytecode file.

Dalvik bytecode files are structured as a series of indexed
“pools,” each of which contain a single kind of element:
strings, types, method signatures, method definitions, etc.
Elements in one pool can refer to elements in another. For
instance, instructions in the method definition pool refer to
type names stored in the string pool.

Figure 8 shows (a simplified version of) the core OCaml
rewrite function that applies Mr. Hide rewrites to bytecode
argument dx. Rewriting is guided by list ps of fine-grained
permissions desired for the rewritten app. There are sev-
eral key steps that apply to rewriting any app for any fine-
grained permission. First, Line 6 merges hidelib with dx.

2As far as we are aware, changing app signatures does not
affect ad revenue. The ad libraries we have looked at track
ads shown based on a developer-specific ID that is part of
the app’s source code and is passed directly to the ad library.
This ID is not modified by Dr. Android.

Task Orig (s) Transformed (s) Slowdown
Internet 16.241 20.252 25%
Contacts 0.634 0.953 50%
Location 15.004 19.407 29%
Ringtone 1.257 1.382 10%

Figure 9: Microbenchmark performance results

Here it is necessary to maintain the invariant that output
pools are both duplicate-free and sorted. Duplicates can
arise when (e.g.) both dx and hidelib refer to the string rep-
resenting type void. Next, Line 7 replaces references to
Android API classes (e.g. android...LocationManager) with
corresponding hidelib classes (e.g. hidelib...LocationManager).
Because individual Android APIs may provide access to
both privileged and unprivileged functionality, the scope
of rewriting can be adjusted to avoid creating unnecessary
IPC calls. Lastly, Line 11 inserts code to establish a syn-
chronous binding between the client app and Mr. Hide (see
Section 4.1). To this end Dr. Android creates an app entry
point in library class hidelib.App that connects to Mr. Hide
services. Dr. Android also modifies hidelib.App so that it
inherits from the client’s App class (if any), ensuring that
client code runs as needed. This is simpler and more robust
than modifying a client app’s instruction stream directly.

There are also some rewriting steps that are only used
for particular permissions. First, most apps connect to An-
droid’s contacts content provider using URI names declared
as constants in library classes. In these instances Line 7
performs class replacement to swap URIs and redirect con-
tacts access to Mr. Hide. Other apps construct URIs out of
hardcoded strings, and Line 10 rewrites such contact-related
strings in the string pool to redirect contacts queries to Mr.
Hide.

Second, manager classes, such as LocationManager, are
used to read system data and issue callbacks. Clients ob-
tain instances of manager classes by calling Context.getSys-
temService() and downcasting. Line 8 uses heuristics to de-
tect this pattern and substitute hidelib’s managers for the
platform’s. These heuristics are necessary for permissions
LocationBlock and ReadPhoneState(p).

6. EXPERIMENTS
We evaluated RefineDroid, Mr. Hide, and Dr. Android in

several ways. First, we performed informal testing on Mr.
Hide to ensure it implements its permissions correctly. For
example, we verified that only permitted domains can be
accessed with InternetURL( ·). Second, we used microbench-
marks to measure the overhead of using Dr. Android and
Mr. Hide compared to using direct system calls. Third, we
ran RefineDroid on a set of apps to evaluate its false positive
and negative rate. Finally, we ran Dr. Android on the same
set of apps and evaluated the correctness and usability of
apps transformed with Dr. Android to use Mr. Hide.

6.1 Microbenchmark performance
To measure the overhead of the interprocess communica-

tion entailed by Mr. Hide, we developed an app that can
measure the time required to retrieve data from a sequence
of 100 distinct web pages on the local network; make 100
queries to the contact manager; request 10 location updates;
and change ringtone paths 1,000 times.

Figure 9 shows the running times of these microbench-
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marks before and after applying Dr. Android and Mr. Hide,
and the slowdown ratio. These results are the average of 5
runs on a Google Nexus S phone. As could be expected, the
slowdowns are fairly significant, as the interprocess commu-
nication required by Mr. Hide is quite an expensive opera-
tion. Nevertheless, the cost of this overhead is incurred only
at relatively infrequent calls into system-level code, and it is
rarely an issue in practice, as discussed below.

6.2 RefineDroid, Dr. Android, and Mr. Hide
on real apps

To determine how well our tools work in practice, we se-
lected 14 case study Android apps from a variety of Google
Play categories, with a range of different functionality. We
deliberately picked apps that exercise the five fine-grained
permissions we implemented in a variety of ways, that were
amenable to high-coverage manual testing, and that fit within
the limitations of the Dr. Android and Mr. Hide implemen-
tation.

Rewriting apps to use hidelib. When a user wishes to run
Dr. Android on an app, he first uses RefineDroid to deter-
mine the set of permissions that are applicable for the app.
After ascertaining which fine grained permissions are ap-
plicable for an app, a user will run Dr. Android with the
appropriate arguments.

For example, when run on the Amazon app, RefineDroid
reports that it is possible to replace the location, Internet,
and phone state permissions with the finer grained fuzzed
location, restricted Internet access, and unique ID permis-
sions. To transform the app, we then invoke Dr. Android:

1 ./drAndroid −−cmd rewrite
2 com.amazon.mShop.android−23.apk
3 −−perms internet loc uniqid

Dr. Android produces an output file in the form of an
APK file, which can be then installed on the device and run
as normal.

Scope of rewriting. Figure 10 summarizes the the rewrites
performed with Dr. Android. Out of 35 occurrences of the
Android permissions that we study, 31 can be replaced by
fine-grained permissions with minimal degradation to user
experience. As an example of why such a replacement is
not always appropriate, consider the ASTRO file manager,
which requires INTERNET permission so that users can con-
nect to arbitrary hosts and upload or download files. This
particular behavior is not captured by any of our fine-grained
permissions, but is captured by the platform INTERNET
permission.

Correctness of rewriting. Our experiments show Dr. An-
droid is capable of processing commercially published apps
with acceptable performance, yielding correct Dalvik bina-
ries. Columns 2–4 in Figure 11 describe the size of apps be-
fore rewriting, including the apk size, the size of classes.dex
after the apk is unpacked, and the number of Dalvik byte-
code instructions. The next two columns report the number
of changes applied by Dr. Android and the running time of
Dr. Android. A single change comprises either modifying
an instruction to refer to a different class; replacement of
a manager class, or modification of a string in the string
table. Reported performance is based on one run on a 2.8

GHz Intel i7 860 with 16 GB RAM, running Ubuntu 11.04
64-bit. From these results, we see that Dr. Android is easily
fast enough for offline use.

The Android platform performs lightweight bytecode ver-
ification when apps are installed on a phone, and more thor-
ough verification during application runtime. These veri-
fication phases test various well-formedness constraints on
Dalvik files. All apps in Figure 11 install and run with-
out verification errors, giving confidence that Dr. Android’s
transformations are structurally correct.

Behavior of rewritten apps. Each Android Activity dis-
plays its own user interface screen to the user and so repre-
sents a distinct piece of functionality supported by the app.
We manually experimented with each app to understand
the behavior of each of its activities. We then conducted
the same test in a rewritten app to verify that the expected
buttons, menus, and other displays appear on an activity’s
UI and that clicking on these items produces the expected
behavior (e.g., displaying a different Activity, quitting the
application, etc.).

We manually ran the apps, and for each app we attempted
to visit all accessible activities and use every feature we could
reasonably access. Note that we did not explore such fea-
tures that would be costly to test (for example, completing
a purchase), but completed all steps leading to these actions
(for example, loading a set of items into a shopping cart).
During testing, we found that almost all activities of appli-
cations function normally, with no observable changes.

We did find small differences in certain activities that
use the Internet, due to limitations of Mr. Hide. Google
Sky Map and Shazam use a WebView widget, which we do
not support; these views show placeholder text after rewrit-
ing. This issue also affects a number of apps which use li-
braries to display ads, as ads are displayed within a WebView
container. We found that Angry Birds, Angry Birds Rio,
Brightest Flashlight, Ultimate Flashlight, and Gasbuddy
had this issue. Later updates to the Android OS platform in-
clude hooks for intercepting and handling WebView network
requests; we plan WebView support for updated platforms
as future work.

Transformed apps may experience a noticeable delay on
startup while the app connects to Mr. Hide services. Af-
ter the initial connection is established, application per-
formance, measured by informal observation, is similar for
transformed and untransformed applications. We speculate
that this is because the cost of using Mr. Hide is amortized
over the cost of other operations, and because the test apps
are designed to be interactive, spending a large share of time
waiting for user input.

RefineDroid precision and recall. We collected log data
during the experiments described above, and used it to com-
pare RefineDroid’s static analysis results with the runtime
behavior of apps under test.

The rightmost columns in Figure 11 summarize these re-
sults. Under heading Domains, column # reports the num-
ber of InternetURL(d) permissions found by RefineDroid for
each app, and columns FP and FN report the number of
false positives and negatives in RefineDroid’s output. Here
a false positive indicates that RefineDroid reports that an
app may use a fine-grained permission, but that permission
was not used during testing. A false negative is recorded
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INTERNET    # #        #  
READ CONTACTS    
ACCESS * LOCATION        
READ PHONE STATE    #      
WRITE SETTINGS  8

InternetURL( ·) 4 4 4 4 4 4 4 4 4 4 4
ContactCol( ·) 4 4 4
LocationBlock 4 4 4 4 4 4 4
ReadPhoneState(UniqueID) 4 4 4 4 4 4 4 4
WriteSettings(Ringtone) 4

Figure 10: Fine-grained permissions for 14 apps from Google Play. Notation indicates a built-in Android permission that can be replaced
by one or more fine-grained permissions, # indicates policies that cannot obviously be removed, and 8 indicates that a permission can
be removed because it does not appear to be used at all. 4 indicates fine-grained policies needed according to RefineDroid and which
we observed being used dynamically.

Apk Dex Domains Contacts
Name (KB) (KB) # Ins # Chg Tm (s) # FP FN # FP FN

Amazon 1,607 2,288 114,691 174 17.86 9 7 0
Angry Birds 993 15,018 79,311 760 11.44 12 9 0
Angry Birds Rio 2,081 22,716 173,441 968 21.92 12 10 1
ASTRO 1,428 2,348 149,911 695 18.30
Baby Monitor 163 781 12,378 1 3.81 5 1 1
Gas Buddy 781 1,269 67,514 222 11.81 6 5 0
Horoscope 844 3,731 92,441 829 12.73 17 16 0
Shazam 2,641 3,904 259,643 778 30.67 20 17 0
Google Sky Map 459 2,212 33,355 193 8.38 4 3 0
Task Killer 129 99 9,696 76 6.10 4 4 0
Brightest Flashlight 1,870 1,756 174,159 1,265 18.94 21 21 1 6 6 0
Ultimate Flashlight 485 1,287 46,878 464 8.26 10 9 0
Qrdroid 922 3,802 105,400 11 9.05 8 2 0
Radar Now! 379 569 26,706 121 7.66 5 3 0

Figure 11: RefineDroid, Dr. Android and Mr. Hide results on apps

when RefineDroid fails to discover a fine-grained permission
that an app needs to run. Columns grouped under heading
Contacts report this information for ContactCol(c).

RefineDroid has a relatively low rate of false negatives and
a higher rate of false positives. The low rate of false neg-
atives suggests that policies produced by RefineDroid may
serve as effective near-upper bounds on an app’s behavior.
This is particularly useful in the context of rewriting, as
false negatives can prevent a rewritten app from executing
successfully. We examined the false positives in detail, and
found that the majority are domains for third party ads or
advertising developers own apps. We found that these false
positives were generally reachable, but not within the con-
figuration of the test cases. For example, Amazon uses a
large set of domains which deal with access from different
countries based on the IP address the device is using.

We also looked at whether we could use better constant
propagation to eliminate false positives, rather than the sim-
ple analysis we use currently. We found that it would re-
quire developing a much more sophisticated constant propa-
gation system that included inter-procedural support, mod-
eling heap, handling format strings, and modeling Android’s
intent system. While we may investigate this in future work,
based on our study we believe it may not be worth the ef-

fort, since most of the “false positives” found by the simpler
analysis are in fact reachable.

7. RELATED WORK
Several other researchers have proposed mechanisms to

refine or reduce permissions in Android. Similar to Dr. An-
droid, Aurasium is a tool that can transform apps to, among
other things, intercept system calls to enforce security poli-
cies [28]. (We note that an earlier technical report on Dr.
Android and Mr. Hide was published before Aurasium [22].)
One limitation of Aurasium is that the run-time monitors it
inserts execute in the same process as the app, and hence
are potentially subject to circumvention. Dr. Android and
Mr. Hide prevent this by removing the original permissions
from the app and perform fine-grained permission checking
in the Mr. Hide service, which runs in a separate process.

MockDroid allows users to replace an app’s view of cer-
tain private data with fake information [4]. AppFence sim-
ilarly lets users provide mock data to apps requesting pri-
vate information, and can also ensure private data that is
released to apps does not leave the device [21]. TISSA gives
users detailed control over an app’s access to selected pri-
vate data (phone identity, location, contacts, and the call
log), letting the user decide whether the app can see the
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true data, empty data, anonymized data, or mock data [32].
Apex is similar, and also lets the user enforce simple con-
straints such as the number of times per day a resource may
be accessed [23]. CRePE suggests policies along with con-
text attributes so that users can decide when to grant apps
permissions [9]. AdDroid proposes using trusted OS code
and a new permission to mediate interactions between apps
and advertisers [26]. A limitation of all these approaches is
that they require modifying Android platform, and hence
to be used in practice must either be adopted by Google or
device providers, or must be run on rooted phones. In con-
trast, Dr. Android and Mr. Hide run on stock, unmodified
Android systems.

Researchers have also developed other ways to enhance
Android’s overall security framework. Kirin employs a set
of user-defined security rules to flag potential malware at
install time [13]. Saint enriches permissions on Android to
support a variety of installation constraints, e.g., a permis-
sion can include a whitelist of apps that may request it [25].
These approaches are complementary to our system, as they
take the platform permissions as is and do not refine them.

There have been several studies of apps in relation to the
Android permissions they acquire. Barrera et al. [3] observe
that only a small number of Android permissions are widely
acquired but that some of these, in particular Internet per-
missions, are overly broad (as we have also found). Vidas
et al. [30] and Felt et al. [15] each describe a static analysis
tool that identifies acquired permissions that are never used.
Our RefineDroid tool has similar functionality but analyzes
apps in terms of our fine-grained permissions rather than
the original platform permissions.

Finally, several tools have been developed to identify spe-
cific security vulnerabilities in Android apps. QUIRE [10],
IPC Inspection [14], and XManDroid [5] address the problem
of privilege escalation, in which an app is tricked into provid-
ing sensitive capabilities to another app. Woodpecker [20]
uses dataflow analysis to find capability leaks on Android
phones. TaintDroid tracks the flow of sensitive informa-
tion [11]. Ded [12], a Dalvik-to-Java decompiler, has been
used to discover previously undisclosed device identifier leaks.
ComDroid [8] finds vulnerabilities related to inter-application
communication. Crowdroid [7], DroidRanger [19], Droid-
Scope [31], and Paranoid Android [27] suggest several ways
to detect viruses and malware in the market. Porscha [24]
provides a policy-oriented digital rights management mecha-
nism. TrustDroid [6] proposes domain isolation on Android.
These tools all identify app vulnerabilities in the context of
the current set of Android permissions. Dr. Android and
Mr. Hide are complementary, replacing existing permissions
with finer-grained ones to reduce or eliminate such vulnera-
bilities.

8. CONCLUSIONS AND FUTURE WORK
We presented a new approach to understanding and im-

plementing fine-grained permissions on the Android operat-
ing system. We began by creating a taxonomy with four
categories that group standard Android permissions by the
behaviors they allow, and, for each category, proposing new
fine-grained variants. We then presented RefineDroid, Mr.
Hide, and Dr. Android, tools that infer and implement finer-
grained permissions on Android without requiring platform
modifications. Using RefineDroid, we conducted a survey
showing that fine-grained permissions are suitable for many

popular apps. We then applied Dr. Android to transform a
range of apps to use Mr. Hide. Our results suggest that fine-
grained permissions via Dr. Android and Mr. Hide provide
stronger privacy and security guarantees while retaining ap-
plication functionality and performance. In the future, we
plan to extend our approach with support for additional
permissions and to perform studies of the usability of finer-
grained permissions.

While we have explored using RefineDroid, Mr. Hide, and
Dr. Android on one set of tasks, we believe these tools have
many other uses. RefineDroid (likely enhanced with more
sophisticated static analysis) could be used to look for sus-
picious permission use, e.g., access to unexpected Internet
domains. Since Mr. Hide provides system call interposition,
we could use it to implement other kinds of security policies,
e.g., inserting mock data [4], changing policies at run-time,
or permitting exceptional access. Finally, Dr. Android pro-
vides quite general support for modifying Dalvik bytecode,
and we could use it to perform other kinds of dynamic pro-
gram analysis.
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