
AQUA: Android QUery Analyzer
Chon Ju Kim

Computer Science and Engineering
Polytechnic Institute of NYU

6 Metrotech Center
Brooklyn, New York 11202

email: ckim01@students.poly.edu

Phyllis Frankl
Computer Science and Engineering

Polytechnic Institute of NYU
6 Metrotech Center

Brooklyn, New York 11202
email: pfrankl@poly.edu

Abstract—
Smartphone and tablet users typically store a variety of

sensitive information on their devices, including contact in-
formation, photos, SMS messages, and custom data used by
various applications. On Android devices, the data is stored in
SQLite databases which applications access by constructing and
executing queries, either directly or via Android content provider
API calls. Before installing an application that uses a content
provider, a user must grant permission for the application to read
and/or write the associated data. Many users grant permission
with little understanding of the risks. Even more savvy users
cannot make well-informed decisions, as they are only given very
coarse information about what data the application accesses.

To provide users with more detailed information about how
Android apps access and modify stored data, we have developed
AQUA, the Android QUery Analyzer. AQUA analyzes application
binary code, performing a lightweight static analysis to determine
possible values of string variables that are incorporated into
queries. AQUA reports on the content providers used and
the database tables/attributes accessed and/or updated, allowing
users to make more informed decisions about whether to grant
permissions. This paper describes AQUA’s design and evaluates
AQUA’s accuracy and performance by using it to analyze 105
popular apps downloaded from Google Play.

Keywords-Android; Database application; Static analysis;

I. INTRODUCTION

While Android platforms and applications for them are ex-
ploding in popularity, there is increasing awareness that these
applications can pose threats to security and privacy [1]. Many
applications access private data that is stored in databases
on the Android device, such as information about the users
contacts, photos, sms messages, etc. Application developers
must declare resources that the application uses in a manifest
file and an Android application cannot be installed unless the
user explicitly grants permission for the application to access
those resources. This appears to protect users from rogue
applications. Unfortunately, users have little information about
what the applications actually do with these permissions, so
it is difficult for a user to make an informed decision as to
whether to allow installation.

In order to address this problem, we have developed AQUA
(Android Query Analyzer), which applies static analysis to
Android application binaries in order to reverse engineer as-
pects of the application’s interaction with the user’s databases.
We have used AQUA to analyze 105 popular applications

from Google Play [2], demonstrating that it can provide
more detailed information about application behavior than is
available in the application’s manifest. In addition, AQUA
facilitates cross-application analysis, allowing identification of
advertisement libraries and of databases that are created by
one application and used by another (which could obscure
application access to user’s private information.)

To illustrate AQUA’s capability, consider the program ex-
cerpt shown in Figure 1. The manifest (line 3) declares that
the app reads the user’s contacts. The getData method (lines
7-23) displays one of two different result sets because two
different content provider names are built along two different
execution paths (lines 12-16). There is a string assignment
for the prefix for the content providers in line 10. In case
of taking the if branch, a built-in contact provider’s name,
content://com.android.contacts/contacts, is
assembled by the concat operation (line 13). If the other
branch is followed, the custom content provider name
‘content://com.example.data’ is assembled (line
15). Then one of these content providers is associated with
the query API to retrieve the display_name attribute
(of a database table associated with one of the content
providers) at line 19. Examining the string literals in the
program in isolation would yield fragmented information,
{‘content://com’,‘android.contacts/contac-
ts’,‘example.data’}, but wouldn’t show how they are
used to build the names of content providers used at the query
execution in line 19. To do this, we need to consider how string
variable values are modified.

AQUA uses a fairly lightweight flow-sensitive intra-
procedural analysis to estimate the possible values of string
variables that are used either directly or via content provider
methods to construct SQLite queries. Using dedexer [3] to
disassemble the dex binary code (the format in which Android
apps are downloaded), AQUA constructs a call graph and a
control flow graph slice representing relevant aspects of the
program. A (slightly modified) worklist algorithm is used to
associate with each node the set of possible values of string
variables at that node. Since the set of possible values for a
string variable is potentially infinite, a standard iterative algo-
rithm is not guaranteed to reach a fixed point and terminate.
We hypothesize that for most applications and for the variables
of interest here, the algorithm will reach a fixed point after a

2012 19th Working Conference on Reverse Engineering

1095-1350/91 $25.00 © 4891 IEEE

DOI 10.1109/WCRE.2012.49

395

Li LI

Li LI

1 <manifest package="com.example"
2 ...
3 <uses-permission android:name="

android.permission.READ_CONTACTS"
/>

4 ...
5 </manifest>
6
7 public class inquiry
8 {
9 public void getData(boolean param){

10 String tCP = "content://com.";
11 ...
12 if(param){
13 tCP = tCP.concat("android.contacts/

contacts");
14 }else{
15 tCP = tCP.concat("example.data");
16 }
17 mUri = Uri.parse(tCP);
18 String mAttr[] = {"display_name"};
19 Cursor cCursor = getContentResolver()

.query(mUri, mAttr, null, null,
null);

20 if (cCursor != null){
21 //Display results of cCursor
22 }
23 }

Code 1. Motivation example

reasonably small number of iterations. This was indeed the
case for over 95% of the applications analyzed.

The remainder of this paper is structured as follows. Sec-
tion II gives background about Android applications. Sec-
tion III describes AQUA’s analysis techniques. An evaluation
of AQUA’s accuracy and performance and results of analyzing
the top 105 apps are discussed in Section IV. Conclusions and
directions for future work are presented in Section VI.

II. BACKGROUND

Android is a complete package of software for mobile
devices [4], [5]. It consists of four components in a hierar-
chy. At the bottom, there is a Linux kernel, which provides
core system services such as security, memory management,
process management, network connectivity, and driver models.
The next layer is a combination of two components, the
Dalvik virtual machine (DVM) for executing Dalvik Exe-
cutable format (.dex) files and a set of core libraries for system,
graphics, database, and web browsing. The third component
is an application framework providing a set of services and
systems fully supporting rich application development. Above
all the components, there is a set of basic applications such
as a phone application included in Android SDK.

A. dex code
Dalvik Virtual Machine is a register-based machine. A

frame consists of a specific number of registers, a pointer
to a .dex file, and data for execution. It employs a sand
box architecture in which an application has its own process
running on an instance of DVM. The advantage of the ar-
chitecture is that a failure of an application does not impact
other applications or the system. An Android application is
written in Java and translated into Dalvik executable (dex)
format. During translation to dex, separated and indexed
constant pools and methods are derived from original Java
classes. The pools store strings, types, fields, and methods. At
runtime, the constant pools can be referenced by instructions
as needed. Arguments to a method correspond to registers
in the method invocation frame. Some assignment and array
operation instructions perform for more than one type. For
example, a 32-bit move instruction works for both integer and
floats. Instructions are variable length.

B. Application components
There are four different types of application components

used to implement an Android application. Each component
has distinct purpose and conditions.

Activities
An activity controls a single window connecting to
a user interface.

Services
A service runs in the background to support long-
running operations. It does not provide a user inter-
face but can be started by another component.

Broadcast receivers
A broadcast receiver is a component that receives
and responds to messages from other applications.

Content provider
A content provider provides a way of accessing data
repositories on the phone for both retrieving and
manipulation. To use a content provider, it has to be
associated with a designated API. A basic content
provider class is bundled in the Android SDK and
provides services for built-in data repository such as
text messages, audio, video, images, contact infor-
mation, and so on. Application developers can also
define custom content providers; these often connect
to private data repositories such as a table in SQLite
database. This paper focuses on reverse engineering
dex code in order to discover how applications ac-
cess databases, either direct SQLite queries 1 or via
content providers.

C. The Manifest File
Each application must have a manifest, which includes es-

sential information describing the application’s components. It

1direct SQLite queries are often used to create private data repositories and
to manipulate data in the repositories. An app is not allowed to access SQLite
database of other apps via direct SQLite queries. Note that direct SQLite
queries are associated with APIs other than ones for content providers

396

includes needed permissions, the minimum API level required,
hardware and software features used, and referenced API
libraries. The manifest file, written in XML format, is bundled
along with the .dex files in the application’s .apk file. When
developers distribute applications, they post the .apk file on
Google Play or another repository. Consequently our analysis
can only take .apk files as input, not Java source.

D. Permissions
In the Android system, applications require permission to

perform sensitive operations. For example, an application
needs permission in order to invoke a content provider to
access data created by other applications or to access built in
content providers. An application that needs additional func-
tions not provided by default, must list the needed permissions
in the manifest file. When a user installs the application, the
Android system will ask for the user’s consent to grant the
permissions listed in the manifest. If the user denies consent,
the application is not installed. Applications can create custom
data repositories and make them available to other applications
by declaring them in the manifest.

III. STRING ANALYSIS

The goal of AQUA’s analysis is to determine how the
application being analyzed interacts with the user’s private data
stored on the Android device. To that end, AQUA estimates
the possible values of strings representing SQLite queries and
arguments to content provider methods that access databases.
We anticipate using AQUA to create an on-line repository
of information about Android apps, which users can consult
when deciding whether to install an app. The analysis needs
to be efficient enough to keep up with the large number of
applications that are offered to users, and must have relatively
few false positives (identifications of database interactions that
cannot actually happen) and very few, if any, false negatives
(missing interactions that can take place.)

AQUA builds on the open source dex disassembler Dedexer
[3], which parses the dex files of the application under
analysis. AQUA adds modules to build a control flow graph
(CFG), to optionally perform program slicing and to analyze
string variables using a form of data flow analysis. Fig. 1
summarizes AQUA’s architecture.

In order to estimate the possible values of string variables,
we use a slightly modified data flow analysis approach. AQUA
begins by constructing a control flow graph for each method.
To each control flow graph node, we associate a representation
of relevant aspects of the program’s state. In particular, we
wish to determine the possible values of registers (dex vari-
ables) that represent string variables whenever control reaches
a given node. We associate each node n with a map V ALSn

whose keys are registers and whose values are sets of strings.
If V ALSn[r] = {s1, . . . , sm}, then register r may have one
of the values si when control reaches node n.

As described below, we compute V ALSn using a slight
modification of a standard work-list data flow algorithm. If the
program has no operations on string variables occurring within

Fig. 1. AQUA Architecture Overview

loops then the algorithm will terminate with each register r
mapped to a superset of the possible values of r. However
some of the strings may be false positives corresponding to
unexecutable paths through the program. If there are string
operations within loops, the standard algorithm may not reach
a fixed point and thus will not terminate. To address this we
add some limits to force the algorithm to terminate. This can
potentially lead to false negatives, but our experiments indicate
that in the context of the variables of interest this is not usually
a problem.

We compute V ALSn iteratively, using a forward data flow
analysis style algorithm [6]. A particular data flow analysis
consists of several fundamental elements: a representation of
a relevant abstraction of the program’s possible states at each
node, a Transfer Function indicating how the node’s instruc-
tions modify that abstract state, and a Join operation indicating
how states resulting from different paths are combined. The
representation of the abstract state is refined iteratively as
follows: sets IN and OUT are associated with each node; the
values of IN are obtained by joining the OUT values of the
node’s predecessors (in the case of a forward algorithm) and
values of OUT are refined by applying the transfer function to
IN. A worklist is maintained by adding successors of any node
whose OUT set has changed. If the problem corresponds to a
partial order on a finite lattice, the algorithm will eventually
reach a fixed point, where the OUT sets don’t change further,
so the worklist becomes empty and the algorithm terminates,
with the final values of the OUT sets as results. In our case
OUTn is V ALSn.

Unfortunately, in our case the OUT sets represent possible
values of string variables, and a variable could have infinitely
many values. In this case, a fixed point will not be reached.
To deal with this, we parameterize the algorithm with a limit
L1 on the number of times a node can be added to the work
list. In addition, even when finite, the sets can potentially grow
quite large, exceeding available memory. To deal with this we
impose a limit L2 on the set size. Implications of these limits
are discussed below and are evaluated in Section IV.

The join operation: The IN and OUT sets of n are

397

Li LI

TABLE I
SELECTED DEX INSTRUCTIONS AND THE TRANSFER FUNCTION

Inst. Type Instruction Action Action for P in the transfer function
1 const-wide/16(r, s) Move s into r ,where s is sign-extended OUT(P) = IN(P),

const/4 (r, s) Move s into r ,where s is sign-extended OUT(P)[r] = s
const-string (r, s) Move s into r ,where s is string
aget (r, s, i) Get s[i] and put the value into r
aput (r, s, i) put r into s[i] OUT(P) = IN(P) ,

2 move (r, s) Move r into s ,where r is contents of a non-object OUT(P)[s] = r
move-object(r, s) Move r into s, where r is contents of a object

3 move-result(r) Move n into r ,where n is the non-object result of OUT(P) = IN(P),
the most recent instruction OUT(P)[r] = n

4 invoke-virtual(java.lang. Append r to s OUT(P) = IN(P),
StringBuilder.append, r, s) OUT(P)[s] = PSC(s,r)

5 invoke-virtual(java.lang. Concatenation r and s OUT(P) = IN(P),
String.concat, r, s) OUT(P)[s] = PSC(r,s)

6 new-instance(r, t) Construct an instance r of t type OUT(P) = IN(P),
OUT(P)[s] = r

Initialize WORKLIST with the start node of l;
while WORKLIST is not empty do

t = remove top node from WORKLIST;
VISIT(t) = VISIT(t) + 1;
if VISIT(t) ≤ L1 then

old_OUT = OUT(t) ;
IN(t) = φ ;
foreach predecessor p of t do

IN(t) = JOIN(IN(t), OUT(p));
end
OUT(t) = Transfer(IN(t));

end
if OUT(t) ̸= old_OUT then

foreach successor s of t do
Add s to WORKLIST ;

end
end

end
Algorithm 1: Data flow analysis

approximations of V ALSn, i.e., they are maps from registers
to sets of strings. The IN value of a node is based on the OUT
values of its predecessors, using a join operation that unions
the values of each register:

IN(n)[r] =
⋃

OUT (p)[r]

where the union is taken over all predecessors p of n. In other
words a string s is a possible value of r coming into node n if s
is a possible value of r coming out of any of n’s predecessors.

The transfer function: In general a transfer function com-
putes OUT of a node based on IN of the node and the semantic
actions performed by the instructions the node represents. The
transfer function is based on Dex instructions relevant to string
operations. Table I describes the transfer function in detail. The
current implementation takes account of the most frequently
used string operations.

By examining dex code of applications, we found that there
are two kinds of dex instructions that have to be considered.

First, there are instructions that directly manipulate string reg-
isters, e.g. by assignment. The transfer function for assignment
operators updates the map by replacing the possible value set
of the left-hand side by the possible values of the variable on
the right hand side.

Second, there are calls to relevant string library functions.
AQUA currently handles string concatenation operations.
The Java instruction z = x.concat(y) is translated to
dex instructions corresponding to invoke-virtual
java.lang.String.concat(x,y), followed
by move-result-object(z). Similarly, z =
x + y in Java is translated invoke-virtual
java.lang.StringBuilder.append(y,x) followed
by move-result-object(z) in Dex. In both cases, the
first invoke-virtual instructions generates new elements then
the second instructions assign the results of the operation to
the target registers.

The transfer function checks invoke-virtual instructions to
see whether they are invocations of concat or append
and, if so, updates the possible values of the target string
register using a Pairwise String Concatenation (PSC) on the
sets of possible string values of the arguments. PSC(R,S) is
the set obtained by concatenating each element of R with each
element of S. For example, suppose R = { ri | 1 ≤ i ≤ n and
ri is string } and S = { si | 1 ≤ j ≤ m and sj is string } Then,

PSC (R,S) =
i,j=n,m⋃

i,j=1

risj

In examining the application code, we also noted that arrays
of strings were quite common. We model arrays of strings as
sets of strings, ignoring the indices. For example, consider the
dex instruction aget(r, s, i), which fetches element i of array
s and assigns its value to r. We represent the possible values of
all elements of s with a single set; the transfer function assigns
this set to be the possible values of r. Similarly, assigning a
string r to an array element s[i] adds the possible values of r
to the set representing possible values of any element of s.

Worklist Algorithm: Algorithm [1] summarizes the string
analysis algorithm. The inputs for the algorithm are CFGs, a

398

limit for loop iterations L1, and a limit L2 for set size. Each
node includes attributes IN, OUT, and VISIT. IN and OUT are
hash maps in which the keys are registers that can represent
strings at the given node and the values are sets of possible
string values for the register. Initially all OUT maps are empty.
If the transfer function modifies the OUT map of a node, the
node’s successors are added to the worklist, unless that node
has already been visited L1 times. In addition the transfer
function does not add elements to the value set of a register
if the size exceeds L2. When an invocation of interesting
query APIs such as getContentResolver().query()
is encountered, the possible value sets associated with the API
call are stored in a SQL database. The report generator uses
the database to generate reports in html.

Consider our algorithm on the CFG in Fig.
2. Since there is an assignment statement in P,
OUT(P)[tCP]={‘content://com.’}. OUT(P) then becomes
IN(Q) and IN(R). The result of concatenation on tCP at Q is
‘content://com.android.contacts/contacts’
so that the possible value of tCP in OUT(Q) is replaced by
{‘content://com.android.contacts/contacts’}.
Similarly, the possible value of tCP in OUT(R) is replaced
by {‘content://com.example.data’} Since Q
and R are the predecessors of S, IN(S) = JOIN(OUT(Q)
, OUT(R)). Thus, IN(S)[tCP] = OUT(S)[mUri] =
{‘content://com.android.contacts/contacts’,
‘content ://com.example.data’}. Note that
Uri.parse(tCP) is considered as an assignment
instruction. The possible values of mUri in IN(U) are
associated with the query API in U because T does not change
the possible values of mUri. Thus, there are two sets of data
available from the query, one the data repository linked to the
content provider ‘content://com.example.data’
and the other one from Contact. In addition, AQUA
infers that the second argument of the query method is
’display_name’, indicating that this attribute is fetched
from one of the content providers by the query.

false negatives: If the application being analyzed has string
operations within a loop, it is possible that V ALSn will be
infinite for some nodes and registers. For example, consider a
program that appends strings to a variable v within a loop.
Even if the loop only can iterate finitely many times, the
iterative algorithm will consider the infinitely many paths
through the loop and continue to derive new possible values for
v. In this case a standard iterative algorithm will not terminate.
We force termination, by keeping track of the number of times
each node t is added to the work list VISIT(t) If this counter
reaches L1 the node’s successors are not added to the worklist.

In addition, the pairwise concatenation of sets of strings can
result in exponential growth in set size, even when there are
no loops. This occurs in programs with a lot of conditional
jumps. To avoid running out of memory, a second limit is
used. If the set of values for a register grows beyond L2 the
new elements are not added to the set.

Both of these limits can lead to false negatives, i.e., to
possible values for a string variable that are not found by

Fig. 2. CFG of getData in the motivation code

AQUA. As shown in the Section IV this is not a problem for
most programs. Furthermore AQUA can indicate whether a
limit was reached, so that users will know whether the results
are completely trustworthy. More cautious users may opt not
to install an application for which AQUA reports a potentially
incomplete analysis.

Alternative approaches to string analysis that are guaranteed
to be safe exist, but there is the potential of more false
positives. Future research will explore this trade-off more fully.

program slicing: We expect that applications will modify
strings that are used to build SQLite queries (directly or via
content providers) within a loop will be rare. However, it is
not unusual for applications to modify other string variables
within a loop. In particular, applications often iterate through
an array or a result set returned by a query, concatenating
the contents onto a string that will eventually be output. Such
constructs can cause our algorithm to terminate early (hitting
L1). The problem can be alleviated by computing a program
slice [7] that only includes nodes that are potentially relevant
to the query execution points of interest.

In the current version of AQUA, we used a lightweight
program slicing technique based solely on control flow. A
depth first search is performed, marking nodes n for which
there is a path from n to a query execution call. Other nodes
are eliminated and the edges are adjusted accordingly. In the
example, nodes V,W and the edges to them are eliminated.
As discussed in Section IV, this somewhat improved AQUA’s
performance. Adding a more sophisticated slicing algorithm
may further improve the results.

Sample AQUA result: Fig. 3 shows the result of running
AQUA on an application from Google Play. The result gives

399

Fig. 3. Actual result on a tool app that uses Call Log and Contact 3
times and creates a private data repository

names of built-in data repositories, custom databases, attributes
associated with built-in or custom data repositories and the
number of times data was accessed. Note that the Manifest or
program description would not explain what kind of custom
databases are created and/or used, which attributes are used,
or which databases are accessed via direct SQLite queries.

IV. EVALUATION

To evaluate our approach in terms of performance and
accuracy, we ran AQUA on the top 105 free applications from
Google Play, observing values of variables used in accessing
built-in and custom data repositories. We used a Windows 7
machine with Intel i7, 2.67 Ghz CPU, and 8 GB memory for
the measurements.

A. Analysis Results
Recall that we are interested in determining the parameters

to content provider API calls and to SQLite API calls. The
method being called at a given invoke instruction is determined
(by dedexer) by referring to the method pool. For content
provider methods, the first parameter is a string representing
the URI of the content provider. If the set of values for this
parameter has k elements, then k different data repositories
could be accessed. We consider each of these to be a different
Query Call Site (QCS). For example, node U in Fig. 2 has
2 QCS’s. In addition to the URI, content provider methods
have parameters corresponding to the names of database tables
and attributes being accessed, the conditions under which a
row is returned, etc. (In the example, several arguments are
null, representing default values.) We define Query Site Values
(QSV) to be the possible combinations of parameter values at
a query call site. For example if there were three possible
values of the second argument and five possible values of
the third argument in addition to two URIs, there would be
2 × 3 × 5 = 30 query site values, representing 30 different
database queries that could be executed at that point.

Some of the parameters to a content provider method
have further syntactic requirements. For example the first

parameter must represent a URI. On examining AQUA’s
results, we noted that some strings are not syntactically
correct. These are false positives representing strings that
are constructed along infeasible paths (or, less likely, they
are strings that would lead to run-time failures.) We clas-
sified the sets of values of arguments to relevant methods
into four possible types. A set is Complete (CO) if all
elements in the set are syntactically correct. For example,
{‘com.android.contracts/contracts’,‘conte-
nt://mms’}. A set is Bad (B) if all elements in the set are
syntactically invalid. For example, {‘//content://’}. A
set is Incomplete (INC) if all elements in the set are invalid,
but can be used to produce an valid value such as {‘//’}.
A set is Mixed (MI) if it combines the three types mentioned
earlier.

Manual inspection of AQUA’s result on a set of sample
applications showed that it correctly identified all QCS from
sample applications that included 25 query API call sites. The
reason for using the sample application is that source code of
an application is not distributed in general. The first application
had 9 call sites and various execution paths including if, if-
else, nested if-else, and combination all of them. The other
two applications included 17 query call sites using built-in or
custom content providers. We ran AQUA on these applications
setting L1 = 200 and L2 = 20. The result showed that the
analyzer correctly explored 25 QCS. We observed set types in
the result on the sample applications. There were 75 possible
value sets associated with the injected QCS. 73 sets were in
CO (97%), two sets were MI, and one set was INC.

We also manually examined 605 possible value sets at query
API call sites in one of the subject applications from the
Google Play, setting L1 = 200 and L2 = 20. In terms of
number of elements in a set, 85% have one element, 8% have
2 elements, and 7% have more than 2 elements.In terms of
combination of set type and number of elements, 65% are in
CO type having one element, 20% are in INC type having one
element, 6% are in CO type having two elements, and 3% are
in CO type having more than two elements. Increasing L2 to
200 did not change the results. This shows that many queries
were associated with specific possible value sets that have one
or two element(s) in CO type and increasing L2 would not
affect type and number of elements in the result.

1) Analysis Results for Google Play apps: Table II sum-
marizes the 105 apps downloaded from Google Play, showing
the number of applications in each category, along with the
average number of QCS, QSV, and content providers found by
AQUA. AQUA discovered 679 content provider uses and 1,261
direct SQL query execution. Note that numbers of content
provider uses were explored by counting query API calls that
were associated with CO or MI type value sets for content
provider arguments. Further note that strings representing
content provider can be written in two ways. One is an
explicit content provider that start with ‘content://’.
For example, ‘content://contact’. The other one is
a helper class that contains an explicit content provider. For
example, ‘android.provider.Contacts.Phones’

400

TABLE II
NUMBER OF QCS, QSV, CONTENT PROVIDER EXTRACTED WITH L1 = 200

AND L2 = 20

Category # apps Avg. QCS Avg. C.P. Avg. QSV
Books 2 53 0 63
Communication 17 99 19 122
Entertainment 7 24 2 39
Finance 1 0 0 0
Game 28 15 1 19
Media & Video 2 18 3 20
Music & Audio 9 60 2 71
Personalization 3 221 20 291
Photography 4 31 5 41
Productivity 5 36 5 45
Shopping 2 9 1 9
Social 8 123 9 185
Sports 1 100 1 100
Tools 12 42 4 45
Travel & Local 2 57 16 73
Weather 2 57 5 60
Grand total 105 54 6 70

TABLE III
CONTENT PROVIDER USE IDENTIFIED WITH L1 = 200 AND L2 = 20

C.P. # use
Browser Bookmark 7
Calendar 1
Call Log 12
Contact 354
Image 10
MMS 14
Video 4
Program 244
Grand total 646

437 content provider uses were built-in (64%). Most of
built-in content providers were Contact (354/81%). We also
found that applications in Communication category used more
built-in (249/57%) content providers than others.

On the other hand, 244 content provider (43%) uses were
custom content providers declared in the applications. These
custom content providers most likely used private data reposi-
tories such as SQLite tables. In addition, applications in Com-
munication, Personalization, and Social used more custom
content providers (154/63%).

2) Third-party library and private data use: Surprisingly,
we found four game applications that used Contact. One of the
games was even capable of manipulating contact information
via the content provider. Further examination showed that
the query API calls for Contact were located in the class
com.mobclix.android. The class was most likely bun-
dled in the third party SDK for advertisement Mobclix [8]. We
suspect that the game application uses Contact information for
advertisements.

AQUA’s results can also be used for cross-application
analysis. We identified 14 third-party libraries capable of using
private data such as contact, that were used in more than one
application. There was an advertisement library that was ref-
erenced by 19 different applications. Also, Mobclix was used
in 8 different applications. There are several advertisement
libraries [9]–[11] available and we expect AQUA to be useful

for determining which of these (or others) are used by which
apps.

It would be possible for an application to obtain the user’s
sensitive information (e.g. Contact info) from a built-in contact
provider (with permission), then to store it in a private data
repository, without the user’s knowledge. Other applications
could then access this provided data repository via a custom
content provider, thereby obscuring the leak of sensitive in-
formation. AQUA’s results over a set of applications can be
examined to look for multiple applications that use the same
custom content provider.

B. Effects of limits

1) reaching a fixed point: Recall that our algorithm is not
guaranteed to reach a fixed point and therefore we add a limit
L1 on the number of iterations. We hypothesized that this
would not be a problem for the string variables of interest.
To check this we analyzed all the applications with L1 = 200
and L2 = 20 and noted the maximum number of times that
a node was added to the worklist for each application. (As
long as this is less than L1, the analysis terminates normally.)
On most applications the analysis algorithm terminated after a
small number of iterations. 96 applications (91%) terminated
in fewer than 10 iterations. There were three applications that
iterated more than 25 times and no application hit the limit
L1.

In many cases, program slicing helped to reduce the number
of loop iterations. To measure effectiveness of the program
slicing, we ran AQUA on the 105 subject applications with the
program slicing on and off, recording the number of iterations
performed on each application reached before termination. Fig.
4 shows the number of applications that terminated in at most
x iterations with slicing on and off. With program slicing on,
88 applications (71%) terminated within three iterations; while
71 applications (67%) terminated within three iterations with
program slicing off. For the applications that required more
than 9 iterations, the behavior (number of iterations before
termination) was the same with slicing on or off. Recall that
our current slicer only used control flow information. In future
work, we will explore the effect of more powerful slicing
techniques.

Next, we explored the effect of L2. With program slicing on,
there were five applications for which the number of iterations
(i.e., the maximum number of times a node went onto the
worklist) increased when L2 increased; 2 the remaining 100
applications terminated having the same numbers of iterations
regardless of L2. As shown in Fig. 5, for L2 = 50, each of
the five apps terminates after about 50 iterations and for L2
= 200, all of these five applications hit the limit(L1 = 200).
This happens because L2 can hide some differences in OUT
sets, thereby causing nodes not to be added to the worklist,
even though the actual set of values of some string variable has
changed. By inspecting their dex code, we found that there was
at least one string concatenation included in a loop in each of

2Without program slicing,six apps exhibit this phenomenon.

401

Fig. 4. Number of iterations (max = maximum number of times any node
goes onto the worklist before termination) with the program slicing on and off.
The X-axis represents number of iteration and the Y-axis represents number
of applications for which max ≤ x. There was also one application that
terminated after adding a node 41 times onto the worklist. AQUA was run
with L2 = 20.

Fig. 5. Five applications for which AQUA reaches L1 with large L2. The
X-axis represents L2 and the Y-axis represents max number of times any node
goes onto the worklist.

these programs. It is possible that AQUA misses important
information (i.e., has false negatives) on these anomalous
programs, but in these cases, AQUA can report that its results
are potentially incomplete. In future work, we will explore
more powerful techniques to use on such programs.

2) number of Query Call Site: By analyzing results of
AQUA, we found that the numbers of QCS extracted did
not change much with different L1. For L1 = 1, 5,692 QCS
were identified. We also increased L1 = 10, 50, 100, and
200 but 5,697, 5,699, 5,697, and 5,697 QCS were extracted
respectively. Moreover, in terms of number of applications that
gain more QCS with increased L1, 5 applications extracted
more QCS with L1 = 10 than L1 = 1; 2 applications extracted
more QCS with L1 = 50 than L1 = 10. After L1 = 50 numbers
of extracted QCS were the same. Note that we set L2 = 20 and

Fig. 6. Numbers of applications that gained more QCS with (L1+1) than L1
while L2 = 20, X-axis represents number of application and Y-axis represents
L1, For L1 = 1, #app is 99 because there are 6 apps having no QCS

obtained the total QCS by counting query call sites that have
different possible value sets at each call site. It is summarized
in Fig. 6

We investigated the average number of QCS used in ap-
plications in each category. There were 54 QCS per app on
the average. The highest QCS was 359 with a personalization
application while one finance application has no queries. In
terms of average number of QCS in category, applications
in Personalization use about 220 QCS. In terms of query
site value, AQUA identified 7,407 QSV (70 QSV/app). The
personal application has highest QSV 736 again. Table II
summarizes.

C. Performance

On the average, AQUA processed an application in about
20 sec using about 1GB memory and its performance was
not affected by increasing L1. For L1 = 1, the analyzer took
about 22 sec/app and used about 1.1 GB/app. The longest
execution time was 115 sec. The largest memory use was
about 2.5 GB. For increasing L1 = 200, the average execution
time and memory use slightly increased to 23 sec/app and
1.5 GB/app. The longest execution time was 130 sec and the
largest memory use was about 3 GB.

V. RELATED WORK

There are several approaches that apply static analysis to
mobile applications. Chaudhuri proposes a formal model [12]
that traces flows between applications referring to permissions.
In follow-on work, Fuchs et al. propose SCanDroid [13],
which identifies permissions for content providers from an
application’s manifest, analyzes content provider uses, and
checks whether data flow through identified content providers
violates the extracted constraints. Both ScanDroid and AQUA
use data flow analysis on content providers. ScanDroid decom-
piles dex code into Java byte code of the applications and uses
Java analysis tools, while AQUA works more directly with the
dex code. While ScanDroid provides information about which
content providers are used, AQUA provides more detailed
information about how content providers are used, along with

402

information about direct SQLite query uses. Applying the
ScanDroid formal model would give AQUA a capability of
analyzing constraint violation.

Egele et al. propose PiOS [14], which constructs control-
flow graph for iOS application binaries to check whether
information leaks are present by using data flow analysis. They
found a number of applications on official App Store and third-
party repository that leak sensitive information.

Chin et al. propose ComDroid [15], which analyzes disas-
sembled DEX bytecode to look for vulnerabilities in message
passing via Intent between applications. It also employs CFG
construction and data flow analysis but does not explicitly
work on content provider use. Felt et al. propose Stowaway
[16], which provides a mapping of API calls to permissions
and identifies over-privileged applications. It reports content
providers that appear as single string literals, but does not
examine other content provider API arguments or deal with
string concatenation.

Enck et al. propose ded [9] that decompiles Android dex
code to get corresponding Java code. By using ded they pro-
vide insight into how Android applications behave. However,
they don’t provide much information about content provider
use.

There are several dynamic analysis tools for mobile appli-
cations. Enck et al. propose TaintDroid [17] that identifies
that applications send privacy sensitive information to network
servers using dynamic taint analysis. It found a number of
potential information misuse from example applications.

The underlying problem addressed by AQUA is that An-
droid users don’t have enough knowledge or control over
how apps use sensitive data. While AQUA addresses this
by providing more detailed information about app behavior,
informing users decisions about whether to install an app,
several recent works work dynamically to prevent apps from
accessing sensitive data. TISSA [18], proposed by Zhou et
al., and MockDroid [19], proposed by Beresford, supply fake
information when there is a request for sensitive data from
untrusted applications. AppGuard [20] modifies dex binaries
so that security policies are checked and exceptions are thrown
when they are violated. Dynamic approaches could be useful
for checking AQUA’s precision. On the other hand, AQUA’s
analysis could potentially help in targeting the dynamic appli-
cation of security policies.

There are many approaches for enhanced security policy.
Enck et al. propose Kirin [21], which prevents the installation
of applications that request specific combinations of permis-
sions that allow malicious actions. Ongtang et al. propose
Saint [22], which provides policies that allow application
developers to declare install-time and runtime constraints on
permission uses. Ongtang et al. also propose Porscha [10],
which enforces digital rights management policies for con-
tent. Porscha mainly applies to Email, SMS, and MMS that
associated with built-in content providers.

The prevalence of string operations in web applications and
database applications has led to a lot of recent research on
string analysis. Java String Analyzer [23] statically analyses

Java byte code to derive automata representing possible values
of string variables. This has been applied in several ways
to analyze SQL queries in Java/JDBC programs [24], [25].
Yu et al [26] apply data flow analysis using a compact
automaton representation of string variable values. In contrast
to AQUA, these techniques are safe in the sense that they
are guaranteed to derive a superset of the possible values of
each string variable (i.e., there are no false negatives). Yu
achieves this by using a data flow algorithm, but introduces
a widening operator to deal with loops. While avoidance of
false negatives is necessary in some contexts, it can lead to
overly conservative results which have many false positives.
In the context of AQUA, we believe allowing some false
negatives and warning users that they may be present is an
appropriate approach. In future work, we will explore whether
more compact representations of sets of strings significantly
enhance AQUA’s performance.

VI. LIMITATION AND CONCLUSIONS

AQUA uses a fairly lightweight static analysis to reverse
engineer Android applications’ dex code in order to explore
how the application interacts with built-in and custom data
repositories on the user’s phone or tablet. We evaluated
AQUA on 105 popular Android applications and found that it
produced useful and quite precise results. We anticipate using
AQUA to provide an on-line service in which applications
are analyzed and detailed information about their data use is
posted. This will allow potential users to make more informed
decisions about whether to install an app.

There are several ways that we could improve precision
of our analysis. As shown in result section, there were a
number of INC value sets. Some of them arise from inter-
procedural calls. There were numbers of variables that missed
their possible values. They were most likely variables whose
values were assigned outside of the method under analysis. We
expect that plugging in inter-procedural analysis of selected
methods may efficiently remove numbers of INC or MI value
sets and discover missing possible values.

One limitation of the current implementation is that some
relevant instructions may be overlooked by the transfer func-
tion, especially during selecting the main instruction from a
series of related instructions. This limitation could be easily
fixed by modeling the additional instructions.

There are still two structural limitations inherited from data
flow analysis, under and over estimation. Over estimation
(false positive) occurs when string values that could only be
constructed along infeasible paths are found. This is an inher-
ent problem with the approach. Because we are applying data
flow analysis to a problem that corresponds to an infinite lattice
under-estimation also occurs, though the evaluation shows that
this is rare. This happens when aborting loop iterations before
reaching substantial result sets or when limiting sizes of sets
of values.

Despite these limitations, AQUA’s analysis is quite precise
and we expect it to be a useful tool for protecting Android
users’ privacy.

403

In future work, we will explore using more compact rep-
resentations of the set of possible string values (such as
automata). This will eliminate the need for L2 and we expect
it will also allow larger values of L1 to be practical, if needed.
We also plan to explore whether using more sophisticated
slicing algorithms substantially improves AQUA’s precision
and performance. To automatically determine whether an app
maliciously uses private information of the user we will
explore threat models characterizing apps that access private
data and store it in other data repositories or transmit it to other
hosts or apps. We will offer the information AQUA produces to
real users to see how the information helps to make a decision
on the installation.

ACKNOWLEDGMENT

This work was partially supported by National Science
Foundation grant CCF-0541087.

REFERENCES

[1] N. Perlroth and N. Bilton, “Mobile apps take data
without permission,” NY Times, 2012. [Online]. Avail-
able: http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-
take-data-books-without-permission/

[2] “Google play,” https://play.google.com/store/apps.
[3] “Dedexer,” http://dedexer.sourceforge.net/.
[4] “Android developer’s guide,” http://developer.android.com/guide/index.html.
[5] “Android sdk,” http://developer.android.com/index.html.
[6] F. E. Allen and J. Cocke, “A program data flow analysis procedure,”

Commun. ACM, vol. 19, no. 3, pp. 137–, mar 1976.
[7] F. Tip, “A survey of program slicing techniques,” JOURNAL OF

PROGRAMMING LANGUAGES, vol. 3, pp. 121–189, 1995.
[8] “mobclix,” http://www.mobclix.com/.
[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android

application security,” in Proceedings of the 20th USENIX conference on
Security, ser. SEC’11. Berkeley, CA, USA: USENIX Association, 2011,
pp. 21–21.

[10] M. Ongtang, K. Butler, and P. McDaniel, “Porscha: policy oriented
secure content handling in android,” in Proceedings of the 26th Annual
Computer Security Applications Conference, ser. ACSAC ’10. New
York, NY, USA: ACM, 2010, pp. 221–230.

[11] W. Enck, “Defending users against smartphone apps: Techniques and
future directions,” in ICISS, 2011, pp. 49–70.

[12] A. Chaudhuri, “Language-based security on android,” in Proceedings of
the ACM SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security, ser. PLAS ’09. New York, NY, USA: ACM,
2009, pp. 1–7.

[13] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications.”

[14] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2011, San Diego, California, USA,
6th February - 9th February 2011. The Internet Society, 2011.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 239–252.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS ’11. New York,
NY, USA: ACM, 2011, pp. 627–638.

[17] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6.

[18] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on android),” in Proceedings of the
4th international conference on Trust and trustworthy computing, ser.
TRUST’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 93–107.

[19] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings of
the 12th Workshop on Mobile Computing Systems and Applications, ser.
HotMobile ’11. New York, NY, USA: ACM, 2011, pp. 49–54.

[20] M. Backes and S. Gerling, “Appguard - real-time policy enforcement
for third-party applications,” Tech. Rep., 2012.

[21] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security, ser. CCS ’09. New York,
NY, USA: ACM, 2009, pp. 235–245.

[22] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in android,” Computer Security Appli-
cations Conference, Annual, vol. 0, pp. 340–349, 2009.

[23] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in In Proc. 10th International Static Analysis
Symposium, SAS 03, volume 2694 of LNCS. Springer-Verlag, 2003, pp.
1–18.

[24] C. Gould, Z. Su, and P. T. Devanbu, “Static checking of dynamically
generated queries in database applications,” in Proceedings of Interna-
tional Conference on Software Engineering, 2004, pp. 645–654.

[25] W. G. J. Halfond and A. Orso, “Command-form coverage for testing
database applications,” in ASE ’06: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 69–80.

[26] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra, “Symbolic string verifi-
cation: An automata-based approach,” in in Proc. of SPIN, 2008, pp.
306–324.

404

