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Abstract—Smartphone applications can steal users’ private
data and send it out behind their back. The worldwide
Android smartphone market is growing, which raises security
and privacy concerns. However, current Android’s permission-
based approach is not enough to ensure the security of private
information.

In this paper, we present SCANDAL, a sound and automatic
static analyzer for detecting privacy leaks in Android appli-
cations. We analyzed 90 popular applications using SCANDAL
from Android Market and detected privacy leaks in 11 ap-
plications. We also analyzed 8 known malicious applications
from third-party markets and detected privacy leaks in all 8
applications.
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I. INTRODUCTION

A. Problem

Smartphone applications can steal users’ private data and
send it out behind their back [6], [7]. Smartphones store
various personal data, such as phone identifiers, location
information, and contacts. Third-party applications, which
can be downloaded freely at markets, frequently access the
data. Most of the applications do so to explore the fun and
utility of smartphone technology. However, such accesses
also raise concerns and issues of privacy risk.

Android’s permission-based approach is not enough to
ensure the security of private information. [3], [9]. Android
requires application developers to declare the permissions
so their applications can access users’ private information.
However, the permissions does not let you know the actual
trace of private data. It is uncertain if an application only
accesses private data locally, or sends the data out. Also,
developers tend to request more permissions than what they
need [10]. As a result, users also tend to care less about the
permissions when they install applications.

B. Our Solution

We developed a static analyzer SCANDAL that detects
privacy leaks in Android applications. SCANDAL determines
if there exists any flow of data from an information source
through a sink. SCANDAL is a sound analyzer. It covers all
possible states which may occur when using the application.

In other words, SCANDAL can detect every possible privacy
leak in the application.

The following is a simple example of an interprocedural
privacy leak SCANDAL detected. The example code is
from the Dalvik bytecode of Google Wallpaper 4.2.2. This
application sends a device ID, called IMEI, to the content
server. At line 2, the application gets device ID by calling
the getDeviceId API and stores it in a global variable.
After that, in the getLocale_version_IMEI_W_H
method, the IMEI is loaded and is appended to some other
string values and returned. The returned string is passed to
the getSearchURL method, and also manipulated and
returned to initTagWebView. Finally, the string that
contains IMEI is made into a URL and sent to the content
server of the application.

1 Wallpapers.onCreate()

2 callv TelephonyManager.getDeviceId()

3 move-result r3
4 puts r3 eWallpaperConst.IMEI

5

6 XMLTools.getLocale_version_IMEI_W_H()

7 gets r5 eWallpaperConst.IMEI

8 callv StringBuilder.append(r4,r5)
9 move-result r4

10 callv StringBuilder.toString(r4)
11 move-result r4
12 return r4
13

14 XMLTools.getSearchURL()

15 calld getLocale_version_IMEI_W_H

16 move-result r2
17 callv StringBuilder.append(r1,r2)
18 move-result r1
19 callv StringBuilder.toString(r1)
20 move-result r0
21 return r0
22

23 SearchTagsActivity.initTagWebView()

24 calld XMLTools.getSearchURL(r1)

25 move-result r1
26 callv WebView.loadUrl(r1)



The following is another example of a privacy leak
SCANDAL detected. The example code is from the Dalvik
bytecode of Bible Quotes. At line 3, this application
sends location information to an advertisement server. The
application obtains the location information by calling
the getLatitude API and stores it in an array. After
that, the information passes various manipulation steps and
is made as a part of an HTML code, which renders the
advertisement. Finally, the advertisement is shown on the
WebView.

1 protoFromLocation()

2 new-array r1, r1, Object

3 callv Location.getLatitude(r10)

4 move-result r3
5 mul-double r3, r7

6 double-to-long r3, r3
7 calld Long.valueOf(r3)
8 move-result r3
9 aput-object r3, r1, r2

10 calld String.format(r0, r1)
11 move-result r0
12 return r0
13

14 getLocationParam()

15 callv protoFromLocation(r6, r5)

16 move-result r1
17 const-string r5 "e1+"

18 callv StringBuilder.append(r0, r5)

19 callv StringBuilder.append(r0, r1)
20 ...

21 callv StringBuilder.toString(r0)
22 move-result r5
23 return r5
24

25 genearteHtml()

26 callv getLocationParam(r11)

27 move-result r4
28 calld AdSpec.Parameter.<init>(r11, r12, r4)
29 callv List.add(r5, r11)
30 ...

31 new r11, StringBuilder

32 calld StringBuilder.<init>(r11)

33 const-string r12,

34 ";\n</script>\n<script type=

35 ’text/javascript’ src=’"

36 callv StringBuilder.append(r11, r12)

37 move-result r11

38 callv AdSpec.getAdUrl(r15)

39 move-result r12

40 callv StringBuilder.append(r11, r12)

41 move-result r11

42 const-string r12,

43 "’></script>\n</body>
44 \n</html>"

45 ...

46 calld AdUtil.generateJSONParameters(r5)
47 move-result r12
48 callv StringBuilder.append(r11, r12)
49 move-result r11
50 callv StringBuilder.toString(r11)
51 move-result r11
52 return r11
53

54 showAds()

55 callv generateHtml(r4, r5, r6)

56 move-result r0
57 callv WebView.loadData(r1,r0,r2,r3)

A brief video demo of the experiments is available at our
website [16].

C. Organization

Sections 2 through 4 describe an overview of SCANDAL,
Section 5 shows the experiment results, Section 6 discusses
the limitations, Section 7 describes related work, and Section
8 concludes.

II. ANALYSIS TARGET

We build a static analysis framework for Android pro-
grams which takes Dalvik VM bytecode as an input to detect
privacy leaks in Android applications.

A. Target: Privacy Leaks

SCANDAL determines if there exists a flow of data from
an information source through a sink. We call such a flow
a privacy leak.

1) Sources: API calls that return private information are
considered as information sources. We track 3 types of
private information:

• Location Information: Applications can send users’
physical location to remote advertisement servers [7].

• Phone Identifiers: Applications can send phone identi-
fiers to remote network servers [6], [7]. We track four
phone identifiers: phone number, IMEI (device ID),
IMSI (subscriber ID), and ICC-ID (SIM card serial
number).

• Eavesdropping: We track both audio (on microphone)
and video (on camera) eavesdropping.

2) Sinks: API calls that can transfer data to the network,
file or SMS are considered as sinks.

• Network/File: Relevant API calls in the Webview,
Outputstream, DataOutputStream, and
HttpURLConnection objects are considered as
sinks.

• SMS: sendTextMessage() function in object
SmsManager is also considered as a sink.

Whenever private data is sent out of the phone, SCANDAL
considers it as a privacy leak. Such a leak might reasonably



be expected by users, depending on the functionality of the
application. We do not try to understand the intention of the
situations.

B. Target Language: Dalvik VM Bytecode

Dalvik is the register-based virtual machine in the Android
operating system. Android developers commonly write an
application in a dialect of Java, and the application is
compiled to bytecode.

SCANDAL deals with the Dalvik bytecode, rather than
translating the Dalvik bytecode to Java. We do this because
known reverse engineering tools, such as dex2jar, fail in
some cases. It is also possible for malicious developers to
deliberately modify an application at the bytecode level,
which makes the application hard to be decompiled. By
dealing directly with the bytecode, we do not have to suffer
from such issues.

III. HOW SCANDAL WORKS

In this section, we discuss the architecture of SCANDAL
and how SCANDAL works.

We designed SCANDAL in the abstract interpretation
framework [4], [5]. We designed Dalvik Core, an interme-
diate language for the analyzer. We defined the concrete
and abstract semantics of Dalvik Core. Our analysis is
path-insensitive, context-sensitive with a context depth 1,
and adopts a hybrid of flow-sensitive and flow-insensitive
analysis.

A. Front-end

SCANDAL takes a packaged Android application (.apk)
file as an input. We can extract the bytecode of the applica-
tion as a Dalvik Executable (.dex) file from the package.

Front-end consists of dumping and parsing of the Dalvik
Executable file. For the dump part, we modified the existing
reverse assembler DexDump. DexDump is included in the
Android SDK [2]. The original DexDump is made for human
readability, so the dumped result is not easy to be parsed
directly. We modified the code of DexDump so that the
dumped result could be parsed easily. Moreover, the original
DexDump drops some key information such as switch tables
or initial data of arrays. We also modified the code so it does
not omit any important data.

B. Dalvik Core

We designed Dalvik Core, an intermediate language, for
simple and efficient analysis. There are over 220 Dalvik
instructions, but a lot of the instructions have semantics
similar to some other instruction but differ only in detail.
For example, there are more than 20 instructions that move
a value into a register. The intermediate language consists of
15 instructions and can represent all of the original Dalvik
instructions.

We define the syntax of Dalvik Core in Figure 2. A
program is a tuple of instructions, method table, handler

table, and subtype relation. Each instruction is labeled with
the program counter, in an increasing order from 0. Method
table stores entry points of the methods. Handler table stores
exception handling stacks for every program points. The
symbol ? and � indicate various operators.

We define the concrete semantics of Dalvik Core in
Figure 3. Collecting semantics of a program, which our
analysis will safely approximate, is the set of all machine
states occuring during the execution of the program for all
inputs. This set is defined as the least fixed point of

λS.S0 tNext S (1)

where S0 is the set of all initial states and the Next func-
tion does the one-step execution by applying the transition
operation → to each state in T.

A machine state is a tuple of memory, environment,
callback environment, program counter, and continuation.
Memory models the heap memory while environment is
for registers. Callback environment contains event-handlers
which have been registered at the state. Continuation cap-
tures return points of the methods. State transition operation
→ is defined for every instructions. Function V defines
the value of an expression under its environment. We used
usual record notation for record values. We considered an
array value as a record, but with an integer index as a field
name. lG indicates a reserved location for global variables.
Handler is a function that returns the exception handler
which should be used to handle a given exception.

Our analyzer is sound with respect to Dalvik Core;
anything that is not represented in the intermediate language
could lead to unsoundness. For example, using Android APIs
which are not manually encoded in the analyzer might lead
to an unsound result. It is possible to design the analyzer
sound even in those cases, but then the precision (true alarm
ratio) will degrade drastically.

Figure 1: Dalvik Application’s Execution Model

C. Translation

We designed and implemented a translator to convert
Dalvik VM bytecode into Dalvik Core. The translator builds



pgm ∈ Program = Instruction+ ×MethodTable ×HandlerTable × Subtype

MT ∈ MethodTable = (Type × ID)
fin→ PC

HandlerTable = PC
fin→ (Type × PC )∗

� = Subtype ⊂ Type2

ty ∈ Type
id ∈ ID
pc ∈ PC

instr ∈ Instruction
instr ::= move e e

| istype e e ty
| new e ty
| get e e id
| put e e id
| gets e id
| puts e id
| addcallback id e
| call ty id e∗

| vcall id e+

| return
| throw e
| jmpnz e pc
| switch e (e, pc)+

| wait
e ∈ E
e ::= r | i | “str” | ty | ? e | e � e

Figure 2: Syntax of Dalvik Core

control flow graph, adds hard-coded definitions of library
calls, and create the main entry point according to our model
of the whole execution of a Dalvik application.

Figure 1 describes the execution model of a Dalvik
application. We divided an execution into two phases: initial-
izing phase and event-handling phase. During the initializing
phase, the application constructs the activity objects and
initializes static variables. After initialized, the application
waits for events, and calls the appropriate callback methods,
called listeners, when an event occurs.

D. Abstract Interpretation

SCANDAL is an abstract interpreter. To detect all potential
privacy leaks in Android applications, SCANDAL consid-
ers every machine state which may occur when executing
applications. It computes a sound approximation of every
machine state of the Dalvik Core program.

We define the abstract semantics of Dalvik Core in
Figure 4. The abstract semantics follows conventional ab-
stract interpretation designs. Abstract machine states are
partitioned into sets of states by program point. The abstract
semantics is the least fixed point of a function that transfers
an abstract trace into next abstract trace. State transition
operation →̂ is defined for every instruction. Formally, our

analyzer computes a fixed point of the following abstract
semantic function

λŜ.Ŝ0 t ˆNext Ŝ (2)

which is proven, within the abstract interpretation frame-
work, a safe approximation of the collecting semantics (1).
The Ŝ0 is a table from program points to their abstract
initial states, and the ˆNext function approximates the one-
step execution by applying the abstract transtions operation
→̂.

Most of the abstract domains are also defined conven-
tionally. Integer domain is defined as the flat domain.
Heap memory locations are abstracted by sets of allocation
sites. All the abstract values of elements in an array are
joined together. String values have a special domain called
Prefix Domain, which keeps prefixes of strings. For exam-
ple, in Google Wallpaper 4.2.2 we introduced in section
1.B, the leaked string which contains the device ID is
represented as “http://www.imnet.us/api/wallpapers/photos/
search keywords?”*. A device ID follows the constant part
of the string. Since the device ID is unique for each phone,
it cannot be specified during static analysis. But SCANDAL
can analyze prefixes of a string, which in this case helps
identify the sink of the leak. Other values have power set



Trace = State+

st ∈ State = Mem × Env × CBEnv × PC × Conti

M ∈ Mem = Loc
fin→ Obj

σ ∈ Env = Reg
fin→ Val

C ∈ CBEnv = 2Id×Val

K ∈ Conti = (Env × PC )∗

l ∈ Loc
r ∈ Reg

obj ∈ Obj = Type × (Id
fin→ Val)

v ∈ Val
v ::= i | l | “str” | ty

〈M, σ, C , pc : move r e, K〉→̂〈M, σ{r 7→ V σ E}, C , pc+ 1, K〉

〈M, σ, C , pc : istype rd rt ty, K〉→̂〈M, σ{rd 7→ 1}, C , pc+ 1, K〉
M(σ(rt)).ty � ty

〈M, σ, C , pc : istype rd rt ty, K〉→̂〈M, σ{rd 7→ 0}, C , pc+ 1, K〉
M(σ(rt)).ty � ty

〈M, σ, C , pc : new rd ty , K〉→̂〈M{l 7→ {}ty}, σ{rd 7→ l}, C , pc+ 1, K〉
l /∈ Dom(M)

〈M, σ, C , pc : get rd ro id , K〉→̂〈M, σ{rd 7→M(σ(ro)).id}, C , pc+ 1, K〉

〈M, σ, C , pc : put rs ro id , K〉→̂〈M{σ(ro) 7→M(l) + {id = σ(rs)}}, σ, C , pc+ 1, K〉

〈M, σ, C , pc : gets rd id , K〉→̂〈M, σ{rd 7→M(lG).id}, C , pc+ 1, K〉

〈M, σ, C , pc : puts rs id , K〉→̂〈M{lG 7→M(lG) + {id = σ(rs)}}, σ, C , pc+ 1, K〉

〈M, σ, C , pc : addcallback id ra, K〉→̂〈M, σ, C ∪ {(id, σ(ra))}, pc+ 1, K〉

〈M, σ, C, pc : call ty id ra rb ..., K〉→̂〈M, {r0 7→ σ(ra), r1 7→ σ(rb), ...}, C, MT (ty , id), (σ, pc);K〉

〈M, σ, C, pc : vcall id ra rb ..., K〉→̂〈M, {r0 7→ σ(ra), r1 7→ σ(rb), ...}, C, MT (M(σ(ra)).ty, id), (σ, pc);K〉

〈M, σ, C, pc : return, (σ′, pc′);K〉→̂〈M, σ′, C, pc′ + 1, K〉

(σ′, pc′,K′) = Handler(σ, pc, K, M(σ(r)).ty)

〈M, σ, C , pc : throw r, K〉→̂〈M, σ′{rex 7→ σ(r)}, C , pc′, K′〉

〈M, σ, C , pc : jmpnz e pc′, K〉→̂〈M, σ, C , pc′, K〉
V σ e 6= 0

〈M, σ, C , pc : jmpnz e , K〉→̂〈M, σ, C , pc+ 1, K〉 V σ e = 0

〈M, σ, C , pc : switch e ST , K〉→̂〈M, σ, C , pc′, K〉
(V σ e, pc′) ∈ ST

〈M, σ, C , pc : switch e ST , K〉→̂〈M, σ, C , pc+ 1, K〉
(V σ e, ) /∈ ST

〈M, σ, C , pc : wait, K〉→̂〈M, {r0 7→ l, r1 7→ input(), ...}, C , MT (M(l).ty, id), (σ, pc);K〉
(id, l) ∈ C

Figure 3: Concrete Semantics



ˆTrace = PC
fin→ ˆState

ŝt ∈ ˆState = ˆMem × ˆEnv × ˆCBEnv × PC × ˆConti

M̂ ∈ ˆMemory = L̂oc
fin→ Ôbj

σ̂ ∈ ˆEnv = Reg
fin→ V̂al

Ĉ ∈ ˆCBEnv = 2Id×V̂al

K̂ ∈ ˆConti = 2PC

l̂ ∈ L̂oc = PC + {lG, null}
ˆobj ∈ Ôbj = Type

fin→ (Id
fin→ V̂al)

〈M̂, σ̂, Ĉ, pc : move r e, K̂〉→̂〈M̂, σ̂{r 7→ V̂ σ̂ e}, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : istype rd rt ty, K̂〉→̂〈M̂, σ̂{rd 7→ 1}, Ĉ, pc+ 1, K̂〉
∀l ∈ σ̂(rt) ∀ty′ ∈ Dom(M̂(l)) ty′ � ty

〈M̂, σ̂, Ĉ, pc : istype rd rt ty, K̂〉→̂〈M̂, σ̂{rd 7→ 0}, Ĉ, pc+ 1, K̂〉
∀l ∈ σ̂(rt) ∀ty′ ∈ Dom(M̂(l)) ty′ � ty

〈M̂, σ̂, Ĉ, pc : istype rd rt ty, K̂〉→̂〈M̂, σ̂{rd 7→ >}, Ĉ, pc+ 1, K̂〉
otherwise

〈M̂, σ̂, Ĉ, pc : new rd ty , K̂〉→̂〈M̂{pc 7→ {}ty}, σ̂{rd 7→ {pc}}, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : get rd ro id , K̂〉→̂〈M̂, σ̂{rd 7→
⊔
l∈σ̂(ro) M̂(l).id}, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : put rs ro id , K̂〉→̂〈
⊔
l∈σ̂(ro) M̂{l 7→ M̂(l) + {id = σ̂(rs)}}, σ̂, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : gets rd id , K̂〉→̂〈M̂, σ̂{rd 7→ M̂(lG).id}, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : puts rs id , K̂〉→̂〈M̂{lG 7→ M̂(lG) + {id = σ̂(rs)}}, σ̂, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : addcallback id ra, K̂〉→̂〈M̂, σ̂, Ĉ ∪ {(id, σ̂(ra))}, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : call ty id ra rb ..., K̂〉→̂〈M̂, {r0 7→ σ̂(ra), r1 7→ σ̂(rb), ...}, Ĉ, MT (ty , id), {pc}〉

〈M̂, σ̂, Ĉ, pc : call ty id ra rb ..., K̂〉→̂〈⊥, σ̂, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : vcall id ra rb ..., K̂〉→̂〈M̂, {r0 7→ σ̂(ra), ...}, Ĉ, MT (ty , id), {pc}〉
l ∈ σ̂(rt), ty ∈ Dom(M̂(l))

〈M̂, σ̂, Ĉ, pc : vcall id ra rb ..., K̂〉→̂〈⊥, σ̂, Ĉ, pc+ 1, K̂〉

〈M̂, σ̂, Ĉ, pc : return, K̂〉→̂〈M̂, {rret 7→ σ̂(rret), rret+1 7→ σ̂(rret+1)}, Ĉ, pc′ + 1, ⊥〉
pc′ ∈ K̂

(σ̂′, pc′, K̂′) ∈
⊔

ty∈σ̂(r)
ˆHandler(σ̂, pc, K̂, ty)

〈M̂, σ̂, Ĉ, pc : throw r, K̂〉→̂〈M̂, σ̂′{rex 7→ σ̂(ra)}, Ĉ, pc′, K̂〉

〈M̂, σ̂, Ĉ, pc : jmpnz e pc′, K̂〉→̂〈M̂, σ̂, Ĉ, pc′, K̂〉
V̂ σ̂ e 6= 0

〈M̂, σ̂, Ĉ, pc : jmpnz e , K̂〉→̂〈M̂, σ̂, Ĉ, pc+ 1, K̂〉
V̂ σ̂ e = 0 ∨ V̂ σ̂ e = >

〈M̂, σ̂, Ĉ, pc : switch e ST , K̂〉→̂〈M̂, σ̂, Ĉ, pc′, K̂〉
(V̂ σ̂ e, pc′) ∈ ST

〈M̂, σ̂, Ĉ, pc : switch e ST , K̂〉→̂〈M̂, σ̂, Ĉ, pc′, K̂〉
V σ e = > ∧ ( , pc′) ∈ ST

〈M̂, σ̂, Ĉ, pc : switch e ST , K̂〉→̂〈M̂, σ̂, Ĉ, pc+ 1, K̂〉
(V σ e, ) /∈ ST

〈M̂, σ̂, Ĉ, pc : wait, K̂〉→̂〈M̂, {r0 7→ l, r1 7→ >, ...}, Ĉ, MT (ty, id), {pc}〉
(id, l) ∈ Ĉ, ty ∈ Dom(M̂(l))

Figure 4: Abstract Semantics



domains.
To detect privacy leak, we collect information on where

the value was created. When a value is created at an
information source, we denote the program counter of the
source and send it through the analysis. When a value is
created from existing values, we denote the union of all
sets of the program counters from existing values. By this,
we can collect every values which could be created from
information sources. If such values flow out through an
information sink, SCANDAL detects it and consider it as
a privacy leak.

SCANDAL runs both flow-sensitive and flow-insensitive
analysis for different part of an application. For the initialize
phase, SCANDAL runs flow-sensitive analysis for better pre-
cision. On the other hand, during the event-handling phase,
the order of executions of methods can be random. So during
the second phase, flow-sensitive analysis does not give us
enough precision despite of analysis cost. Therefore, for the
second phase, SCANDAL runs flow-insensitive analysis.

IV. ANALYSIS OF DALVIK’S CHALLENGING FEATURES

A. Library Call

The analyzer has to know the semantics of library function
calls to analyze precisely. There are about 3,000 API classes
in the Android platform, and each class contains from several
to dozens of methods. The source code of such classes and
methods are not included in the application.

To maintain the precision, SCANDAL includes the def-
initions of popular API methods and classes. We chose
220 methods which are frequently used in the popular
applications we collected for the experiments. The semantics
of those methods are encoded in our core language. The
front-end translator transforms the library method calls into
the encoded core language instruction sequences.

B. Implicit Method Invocation

The analyzer should handle methods that are never ex-
plicitly invoked in the program. Such methods might be
dead code, but it is also possible that they are intended to
be invoked implicitly. Every Android application frequently
includes methods that are not explicitly invoked, such as
Listeners, Threads, and Intents.

SCANDAL handles implicit method invocation. We manu-
ally coded the semantics and calling conventions of the pop-
ular API functions which add listeners, initialize threads, or
activate an activity by an intent. For example, an instruction
that calls Button.setOnClickListener() is trans-
lated into a command of Dalvik Core as addcallback
Button.onClickListener.

C. Reflection

Reflection is a feature of Java that allows dynamic code
generation. It is possible to instantiate new objects and
invoke methods from the name of the classes or methods.

SCANDAL handles simple cases of reflection by analyzing
string values. We run a string analysis using prefix do-
main, which keeps a prefix of a string as the abstracted
value. By this string analysis, we can narrow down the
names of objects that should be instantiated. For example,
SCANDAL handles method Class.forName() by creat-
ing java.lang.Class objects according to the abstract
string value of the argument.

V. EXPERIMENTS

In this section, we show experiment results of SCANDAL.
We tested our analyzer with applications from the official
market and third-party markets.

A. Official Android Market Applications

We analyzed 90 free applications from Android Market
[1]. 10 popular free applications from 9 random categories
are chosen, as in July 2011. We extracted packaged applica-
tions as .apk files using adb (Android Debug Bridge), which
is included in the Android SDK [2].

SCANDAL detected privacy leaks in 11 applications. Table
1 summarizes the analysis result. We manually inspected the
result and confirmed every application included actual leaks.
We also identified the sinks.

1) Location to advertisement server: 6 applications sent
location information to advertisement servers. 3 applica-
tions included AdMob modules and the other 3 included
AdSenseSpec modules. Location information was either
sent directly to their servers, or used as the part of the
HTML code which WebView module loads to render the
advertisement.

2) Location to file or analytics tool server: 5 ap-
plications outputted location information as a file, and
some of the applications are believed to send loca-
tion information to an application analytics tool server
(http://data.flurry.com/aar.do). All 5 applica-
tions included FlurryAgent module in their bytecode.

3) Phone identifiers to remote server: 1 application sent
out IMEI to a remote server.

4) Eavesdropping: We found no applications that have
video or audio eavesdropping behaviors.

Application size time mem Detected leak
Kids Preschool Puzzle 87 1 56 Location*
Job Search 167 1 108 Location**
Kids Shapes 225 1 155 Location*
Kids ABC Phonics 134 3 119 Location*
Backgrounds HD Wallpapers 109 4 141 IMEI
Bible Quotes 138 8 263 Location**
ES Task Manager 158 19 423 Location**
Multi Touch Paint 198 47 727 Location* **
Adao File Manager 255 62 1149 Location**
(D-Day) The Day Before 293 224 2657 Location**
Kids Numbers and Math 101 538 185 Location*

Table I
PRIVACY LEAKS DETECTED IN ANDROID MARKET APPLICATIONS



size is the size of the dex (Dalvik Executable) file (KB).
time is the CPU time spent (sec). mem is the peak memory
consumption (MB). Flurry* and advertisement** servers are
identified.

B. Black Market Applications

We analyzed 8 known malicious applications from third-
party (“black”) markets. These applications are originally
free and can be downloaded via Android Market. However,
infected applications, which seems to be the same as original
ones, can be found in third-party markets. We downloaded
.apk files of these applications from the Internet.

Table 2 summarizes the analysis result. All of the 8
applications sent out the phone number, IMEI, IMSI, ICC-
ID, and the location information. We manually inspected the
result and confirmed every application included actual leaks.
When the infected applications are executed, it immediately
sends several private information to a remote host, which is
believed to be a malicious server.

Application size time mem
Shot Gun 95 36 164
Baseball Superstars 2010 165 61 285
CacheMate for Root Users 174 67 245
Monkey Jump 2 169 74 442
Protector 107 75 209
Gold Miner 191 81 481
Mini Army 480 174 1292
Xing Metro 253 23049 1784

Table II
PRIVACY LEAKS DETECTED IN BLACK MARKET APPLICATIONS

C. False Positives

Although every application that SCANDAL detected in-
cluded actual leaks, some of the paths were identified as
false positives. After computing a sound approximation of
every machine state of the Dalvik Core program, SCANDAL
reports a list of paths, each of which is represented as a pair
of an information source and a sink, which are potential
privacy leaks. We manually identified every path detected
from 11 Android Market applications. Table 3 summarizes
the result.

Application #path #true #false #unknown
Kids Preschool Puzzle 59 2 16 41
Job Search 7 7 0 0
Kids Shapes 140 2 20 118
Kids ABC Phonics 59 2 16 41
Backgrounds HD Wallpapers 10 1 4 5
Bible Quotes 3 3 0 0
ES Task Manager 3 3 0 0
Multi Touch Paint 80 2 6 72
Adao File Manager 14 2 2 10
(D-Day) The Day Before 14 2 2 10
Kids Numbers and Math 59 2 16 41

Table III
PATHS IDENTIFIED IN ANDROID MARKET APPLICATIONS

#path is the total number of reported paths. #true is
the number of actual leaks which are identified. #false is
the number of false positives which which are identified.
#unknown is the unidentified paths.

False positives mainly occur because the actual leaks
are exaggerated when analyzing library calls. SCANDAL
computes a sound approximation of privacy leak information
of an input application. When library functions are called
during a path of a privacy leak, SCANDAL soundly approx-
imates that private information can be exchanged between
its arguments in every possible way, which leads to an
exaggeration. Unless a library function call doesn’t flow
any information between its arguments and also discontinues
itself, which is rare, there exist at least one actual leak among
the exaggerated set of paths.

We failed to identify some paths for several reasons. Some
of third-party Android libraries included in the applications
were heavily obfuscated and made it hard to manually follow
the bytecode. Some of the applications heavily used java data
structures (array, list, map, ...) or JSON and made it hard to
accurately identify the data flow within their structure.

VI. LIMITATIONS AND FUTURE WORK

A. Performance

The time and memory consumption during the analysis
can be improved further. We have presented sparse [13]
and localization [12], [14] techniques. These are strong
and general optimization techniques for C static analyzer.
One of our main future work is to adopt such techniques
to SCANDAL and improve the performance. These per-
formance improvements will offer different scenarios and
possibilities for the use of the analyzer.

B. Java Native Interface

SCANDAL does not support the Java Native Interface
(JNI) methods. JNI defines a way to interact with native
code. Application developers may use JNI to incorporate
the C/C++ libraries into the application. Since the target
language of our analyzer is Dalvik VM bytecode, we are
unable to run our analysis on JNI libraries. 16 out of 90 An-
droid Market applications we collected for the experiments
included JNI methods. Since it is possible to obtain private
information using JNI, it may cause new security problems.
Another one of our main future work is to extend the target
language of our analyzer to support JNI.

C. Reflection

SCANDAL does not fully support reflection-related APIs.
All 8 black market applications we collected for the ex-
periments used reflection while leaking private information.
We manually coded the semantics of reflection-related API
functions used in such cases. However, there are other ways
to use reflection, and we do not currently support them.



Also, SCANDAL can only handle simple use of reflection.
By using reflection, it is possible to instantiate new objects
and invoke methods from their names. In all 8 applications,
the names of the classes and methods were given as string
constants. We believe that malicious developers can heavily
obfuscate their behaviors using reflection. In such cases,
our analyzer might not be able to precisely detect privacy
leaks without adopting more complicated string analysis
techniques.

D. Extending Analysis

Our static analysis framework can be extended to analyze
other properties of Android applications. SCANDAL is an
abstract interpreter that computes a sound approximation
of privacy leak information of an input application. By
modifying domains and their abstractions, we can fairly
easily achieve another abstract interpreter that verifies other
semantical and interprocedural properties, such as array
bound checking or dead code checking.

VII. RELATED WORK

Several tools and techniques have been presented to detect
privacy leaks in smartphones using static analysis, but to
our best knowledge, this is the first static analyzer based
on the abstract interpretation framework for Android which
targets Dalvik VM bytecode. PiOS [6] presented a static
analysis for Objective-C code and detected privacy leaks in
iPhone applications. DroidRanger [15] and Enck et al. [8]
extensively studied Android market applications and gave
better understanding of the current ecosystem. TaintDroid
[7] and SCanDroid [11] are, respectively, dynamic and static
analyzer detecting privacy leaks in Android applications.

TaintDroid [7] monitors Android applications at runtime,
sacrificing runtime performance. TaintDroid monitors An-
droid smartphone and tracks how applications leak private
information. SCANDAL is fully automated, while TaintDroid
needs to execute an application to initiate privacy leaks.
Also, TaintDroid causes about 14% CPU overhead for
tracking, which is not an issue for SCANDAL. We believe
that by combining both approaches, both work can be
complementary to each other. For example, if SCANDAL
guarantees an application to be safe, we can turn off the
realtime monitoring while using the application.

SCanDroid [11] is limited because it cannot analyze
packaged Android applications. SCanDroid is an automated
static analyzer that reasons about data flows in Android
applications. It checks whether data flows through an appli-
cation are consistent with its permissions. However, it is not
tested on real-world Android market applications. They used
WALA, a collection of open-source libraries to analyze Java
programs. So it cannot be immediately applied to packaged
applications without the original Java code.

Enck et al. [8] used decompiling techniques that fail
in some cases. They studied 1,100 popular free Android

applications by using automated tools and manual inspec-
tions. They showed that Android applications often misuse
users’ private data. They designed and implemented a Dalvik
decompiler to recover Java source of an application before
analyzing. However, they failed to recover the source code
of about 5% of the total classes in the applications. SCAN-
DAL does not use reverse engineering techniques and deals
directly with the bytecode. So we do not have to suffer from
decompiling issues.

VIII. CONCLUSION

We provide a formal, sound, and automatic static analysis
for detecting privacy leaks in Android applications. We
tested our analyzer, SCANDAL, with real-world applications,
both from the official Android market and black markets. It
detected privacy leaks in 11 applications out of 90 popular
applications from Android market. It also detected various
privacy leaks in 8 known malicious applications.
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