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Abstract—We combine static analysis techniques with model-
based deductive verification using SMT solvers to provide
a framework that, given an analysis aspect of the source
code, automatically generates an analyzer capable of inferring
information about that aspect. The analyzer is generated
by translating the collecting semantics of a program to a
“marked” formula in first order logic over multiple underlying
theories. The “marking” can be thought of as a set of holes or
contexts corresponding to the “uninterpreted” APIs invoked
in the program. Just as a program imports packages and
uses methods from classes in those packages, we import the
semantics of the API invocations as first order logic assertions.
These assertions constitute the models used by the analyzer.
Logical specification of the desired program behavior (rather
its negation) is incorporated as a first order logic formula.
An SMT-LIB formula solver treats the combined formula as
a “constraint” and “solves” it. The “solved form” can be
used to identify logical (security) errors in Java (Android)
programs. Security properties of Android are represented as
constraints and the analysis aims to show that these constraints
are respected.
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I. INTRODUCTION

Software systems routinely manage mission-critical activi-

ties in organizations that rely on dependable, situation-aware,

and timely delivery of classified or sensitive information.

Information flows in such enterprises are processed by

custom-built, open-source, and/or COTS software programs.

These software programs can be uncertified and may contain

malicious code or vulnerabilities that can be exploited by an

insider or an outsider to leak confidential data, misclassify

documents, perform pernicious activities, and destroy or

modify valuable information. Hence, the correctness and

reliability of software driving these systems have become

issues of utmost importance.

Application-independent errors in software systems like

buffer overflows and null dereferences can be exploited

by malicious applications to create security holes through

which confidential data can be leaked. Many of these bugs

are not detected until much later when catastrophic effects

are already visible [1] making difficult the task of runtime

fault handling mechanisms for ensuring recovery. A more

important concern is the lack of proper tool support for

detecting logical application-dependent errors in programs.

An examination of a list of well known incidents resulting

from software glitches reveals that application-dependent

logical errors were the causes of most [2] [3] [4] (e.g.,

the USS Yorktown breakdown and the failure of the Patriot

missile). Many of these logical errors were deep (as opposed

to simple typos) and are difficult to detect using state-of-the-

art testing techniques alone [5].

We combine static analysis techniques with model-based

deductive verification using SMT solvers to provide a frame-

work that, given an analysis aspect of the source code,

automatically generates an analyzer capable of inferring

information about that aspect. A model-based technique is

necessary since for many of the APIs invoked as well as

the objects instantiated, the (source) code is not available.

The only information that the analyzer can get about the

properties of these artifacts is from their models. The an-

alyzer is generated by translating the collecting semantics

of a program to a “marked” formula in first order logic

over multiple underlying theories. The “marking” can be

thought of as a set of holes or contexts corresponding to

the “uninterpreted” APIs invoked in the program. Just as a

program imports packages and uses methods from classes

in those packages, we import the semantics of the API

invocations as first order logic assertions. These assertions

constitute the models used by the analyzer. Logical specifi-

cation of the desired program behavior (rather its negation)

is incorporated as a first order logic formula. An SMT-LIB

formula solver treats the combined formula as a “constraint”

and “solves” it. The “solved form” can be used to identify

logical (security) errors in Java (Android) programs.

II. RELATED WORK

Techniques for software verification and validation fall

into three main categories. The first category involves in-

formal methods such as software testing and monitoring.

Such techniques scale well; this is by far the most used

technique in practice to validate software systems. Testing

accounts for forty to sixty percent of the development effort

[5] [6]. Traditional software testing methods [7], however,

are too ad hoc and do not allow for formal specification
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and verification of high-level logical properties that a system

needs to satisfy. In the realm of safety critical software where

exponential blow up in the number of possible situations

to be dealt with is inevitable, traditional testing techniques

can hardly be used to provide any amount of confidence.

The second category of techniques for software verification

and validation involves formal methods. Traditional formal

methods such as model checking and theorem proving are

usually too heavy and rarely can be used in practice without

considerable manual effort.

Model checking is an automatic approach to verification,

mainly successful when dealing with finite state systems. It

not only suffers from the infamous state explosion problem

but also requires construction of a model of the software.

The third category of techniques for software verification

and validation are static analysis [8] and abstract inter-

pretation [9]. Static analysis refers to the technique(s) for

automatically inferring a program’s behavior at compile

time. While static analysis tools have met with tremen-

dous practical success and have been routinely integrated

with state of the art compilers, such tools can only detect

shallow and simple errors due to their lack of deductive

power. For example, traditional static analysis tools cannot

detect the presence of deadlocks or the violation of mutual

exclusion in concurrent programs. Abstract interpretation is

a technique for collecting, comparing, and combining the

semantics of programs. It has been successfully used to

infer run time properties of a program that can be used

for program optimization. The next few paragraphs review

the most successful approaches to program analysis. In

recent years, much work has been done on static analysis of

software. Some static analysis tools, such as Uno [10], Splint

[11], Polyspace [12], Codesurfer [13], PREfix and PREfast

[14], ESP [15], and PAG [16] perform lightweight data

flow analysis. Coverity [17] performs data flow analysis as

directed by checkers written in MetaL, a language designed

to encode checking automata. Astree is a static program

analyzer that is aimed at proving absence of runtime errors

in embedded programs. Astree can handle only a “safe”

subset of C, rather than the full C language. Also, it

applies only to particular runtime errors rather than general

properties of programs. Halbwachs et al [18] use linear

relation analysis for discovering invariant linear inequalities

among the numerical variables of a program. Their tech-

niques have been used to validate (e.g., analyze delays)

in synchronous programs written in the language Lustre.

Several abstractions have been considered to provide an

approximate (conservative) answer to the validation problem

such as widenings, convex approximations and Cartesian

factoring [19]. These approximations are implemented using

the polka [18] polyhedral library. Alur et al [20] have used

predicate abstraction for analyzing hybrid systems. In this

technique, a finite abstraction of a hybrid automaton is

created a priori using the initial predicates provided by the

user.

III. OVERVIEW OF THE ANDROID PLATFORM

Android is a software stack for mobile devices that

includes an operating system, middleware and key appli-

cations. A central feature of the Android system is that

an application can make use of elements of other appli-

cations. To accomplish this, the system needs to start a

process when any part of an application is needed. Android

doesn’t have a single entry point (no main() function). They

have essential components that the system can instantiate

and run as needed. The four main types of components

are:Activity, Service, Broadcast receivers,Content providers.

Android uses intent to activate the first 3 components. For

activities and services, the intent is the pair: <action name,

data>, which indicates the predefined action that the receiver

needs to take and the data to process. In our program

analysis framework, this intent object is our keyword, we use

this intent object to perform data flow analysis and function

call analysis.

The Android architecture supports building applications

with phone features and protecting users by minimizing the

consequences of bugs and malicious software. In Android,

an application can share its data and functionality with other

applications. These accesses must be controlled carefully for

security.

Android permissions are rights given to applications to

allow them to perform functions like take pictures, use the

GPS, or make phone calls. When applications are installed,

they are given a unique UID, and each application always

runs under that UID on that particular device. The UID of

an application is used to protect its data sharing with other

applications.

IV. ARCHITECTURE OF OUR MODEL

Figure 1 shows the architecture of our model-based

static analysis approach. The abstract collecting semantics

of Java programs are represented as “marked” constraints.

The “marking”s can be thought of as a set of holes or

contexts corresponding to uninterpreted APIs, i.e., library

APIs whose semantics are not known. Just as a program

imports packages and uses methods from classes in those

packages, we import the semantics of the API invocations

as first order logic assertions or constraints. These assertions

are the models that are used to “unmark” the abstract

collecting semantics constraints, i.e., “filling in” the “holes”

left by uninterpreted APIs. Analysis aspects are specified

as constraints. Basic constraint solving is done using a

combination of decision procedures provided by the Yices

[21] constraint solver.

The key steps involved in our analysis framework are

1) Verify the permissions of the Android APIs invoked in

the Java source code based on the Manifest.xml.
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Figure 1. Architecture of our model

The results of the permission verification are used to

modify the models of the APIs

2) Generate abstract collecting semantics constraints

from the Java source code,

3) Import models of uninterpreted methods and objects

as assertions into the already generated constraints;

uninterpreted methods/objects need to be annotated

by the programmer; annotation is needed since a par-

ticular method might be overridden by the developer

and hence importing its “conventional” model from

a model library may result in unsoundness of the

analysis, and

4) Generate an analyzer by adding appropriate analysis

“aspect” constraints,

5) Analyze by solving the constraints.

A. Permission verification

In this section, we discuss how we verify whether an

application has the correct permission settings. Android

permissions can be categorized into different protection

levels [22] [23].

Permissions are defined in the Mainifest.xml file.

Our framework will examine this file and retrieve the

permission information. We build a required permission list

by analyzing the APIs invoked in a program and compare

it with the permission information P retrieved from the

Mainifest.xml file. We map the Android API calls

to the required permission list using Stowaway [24]. If

every required permission is provided we consider that the

application has no permission violation. Otherwise, any API

calls which have no appropriate permissions provided will

be asserted as returning -1 in the analysis that follows.

B. Constraints, SMT-LIB formula Solvers, and Satisfiability

Constraints are special formulas of first order logic [25].

A constraint system formally specifies the syntax and se-

mantics of constraints.

A constraint solver implements an algorithm for checking

satisfiability/consistency of a set of constraints using the con-

straint theory, i.e., determining if there exists an assignment

of the variables that satisfies the constraints. A solver uses

axioms of the constraint theory together with simplification

rules as rewrite rules to transform the constraints to a

“normal” form called the “solved form”. The final constraint

that results from such a computation is called the answer.

C. SMT-LIB formulas and Yices

Satisfiability Modulo Theories (SMT) libraries [26] pro-

vide a framework for checking the satisfiability of first-

order formulas with some background logical theories. SMT-

LIB is an SMT library that provides a standard description

of the background theories used in SMT systems; it gives

a common input and output languages for SMT formula

solvers.

Yices [21] is an efficient SMT-LIB formula solver that

decides the satisfiability of arbitrary formulas containing

uninterpreted function symbols with equality, linear real

and integer arithmetic, scalar types, recursive datatypes,

tuples, records, extensional arrays, fixed-size bit-vectors,

quantifiers, and lambda expressions.

V. INFERRING COLLECTING SEMANTICS OF JAVA

PROGRAMS

We need to perform both intraprocedural and interpro-

cedural analysis for analyzing deep logical properties of

Java programs. In intraprocedural analysis, from a data flow

analysis of the source code, in a series of steps we build

a constraint system that captures its collecting semantics.

In case of interprocedural analysis, we need to build a call

graph and define some external rules relating the different

API invocations and detect if the analyzed code breaks these

rules.

In our analysis framework, we follow the following se-

quence of steps to check if the a program satisfies a user-

defined analysis aspect.

1) We first perform a dataflow analysis of the Java source

code and generate its collecting semantics

2) Based on the dataflow analysis results, we generate

the static single assignment [27] graph of the program

3) We convert the SSA graph to the SMT-LIB formulas

(see below)

4) Finally, we import models of uninterpreted API invo-

cations as first order logic assertions

We illustrate the above steps using the following example

1 c l a s s udhpcd

2 {
3 i n t g e t S o c k e t ( i n t l i s t e n m o d e )

4 {
5 i n t fd = 0 ;

6 i f ( l i s t e n m o d e == 2)

7 {
8 fd = l i s t e n s o c k e t ( ) ;

9 }
10 e l s e
11 {
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Figure 2. Data Flow

12 fd = r a w s o c k e t ( ) ;

13 }
14 }
15 }

In the program above, listen_mode is the user input.

listen_socket() is a method, which will return a

positive integer; raw_socket() is a method provided by

operating system, which will return a specific integer number

greater than zero.

We perform a data flow analysis of the source code and

represented in Figure 2; the integer number in the data flow

graph indicates the line number of each statement in the

program.

After line 12 the value of the variable fd can be the

return value of listen_socket() or raw_socket();

since this program has two branches. At compile time, we

cannot determine which path the control will follow; so we

consider the value of fd is {listen mode = 2
∧

fd =
listen socket(); listen mode �= 2

∧
fd = raw socket()}

where the semicolon represents disjunction.

To construct SMT-LIB logic formulas capturing the col-

lecting semantics of the program, we need to convert the

program to a static single assignment graph as in Figure 3.

From the SSA graph in Figure 3, we create an assertion

for each node. For example, the first node in the graph is

fd1=0, we can create ( assert (= fd1 0)). The node of “fd4

=Phi{fd3,fd2}” is a φ function, we build a disjunction (or

(= fd4 fd3)(= fd4 fd2) ). There are two labeled edges, so

we need to create two implications: (=> (= listen mode 2)

(= fd2 listen socket ) ) and (=> ( distinct listen mode

Figure 3. Static Single Assignment of the program

2) (= fd3 raw socket) ). The semantics of the APIs are

incorporated as follows. If an API has no permission pro-

vided, we assert the API returns −1. Else we import an

assertion characterizing the API from a model library. For

example, for the listen_socket and raw_socket, we

import the assertion ( assert (and (> listen socket 1) (=

raw socket 1)) ).

The post condition of the program considered above

is fd> 1. Verifying whether this postcondition holds is

considered the analysis aspect for this program. This analysis

aspect is incorporated into the SMT-LIB formula character-

izing the collecting semantics of the program by adding the

conjunct (< fd4 1). The combined SMT-LIB formula was

found to be unsatisfiable by the Yices solver indicating the

program satisfies the specification.

We now describe an algorithm for converting an SSA

graph of a program to SMT-LIB formulas that capture its

collecting semantics. Let G = 〈N , E〉 be the SSA graph of

the program. In this graph, each node represents a statement

in the program. We represent the if and loop conditions

as edge labels in the graph. We can generate SMT-LIB

formulas capturing collecting semantics of the program

using Algorithm 1 that formalizes the intuition described

above.

VI. EXPERIMENTS AND LIMITATIONS

In this section, we describe experiments that we conducted

using our analysis framework.

We analyzed the source code from Android Bluetooth

ChatServices application. This application builds a Bluetooth

network platform to allow a device to exchange data with

other Bluetooth devices. It has three main functionalities:

1. Discover the Bluetooth devices, 2. Paire and connect the

devices, 3. Transfer data among these devices.

The application uses several API calls such as:

BluetoothAdapter.getDefaultAdapter(),

BluetoothAdapter.getRemoteDevice(address),

BluetoothSocket and BluetoothChatService.

We provide these API models based on the Android

Development Documentations. For this application, we sim-

ply consider that the application can set up the Bluetooth
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Algorithm 1 Converting SSA to SMT Algorithm

for n ∈ N do
if n is a simple assignment statement V AR = EXP
then

Create an assertion (assert (= VAR EXP)) in SMT;

end if
if n is a assignment statement with API call V AR =
API then

Create an assertion (assert (= VAR API));

end if
if n is a φ function statement then

Let v be the variable in this statement and the set W
be the values of this φ function;

Create a disjunction v = wi, where wi ∈W ;

end if
if n is a function call statement FUN() then

Create an assertion (assert (= FUN

FUN SUMMARY));

end if
for e ∈ E do

if e is labeled then
Let n be the node directed by this edge;

Create a conjunction of implication formula e →
n;

end if
end for
if The API permission is provided then

Provide the API model as (assert (= API

API specification value));

else
Set the API model as −1 (assert (= API −1);

end if
Provide the function summary as the function re-

turn value after the function analyzed (assert (=

FUN SUMMARY FUN return value)).

end for

service and can connect to any devices discovered. So we set

BluetoothChatService to return a non-null object,

and in the SMT specification, we model the API function

value as (not −1). The source code analyzed satisfied the

specification. We downloaded several free android applica-

tion source code and ran our static analysis tool to the source

code. In Table I, we report some possible program vulner-

abilities we detected from the analysis. In the application

Android SMSPopup, we detected a possible command

injection error; the command statement is an array that

comes from another function which may possibly provide

a wrong statement. In openGPStracker, we found that

it has more permissions than required; this may lead to the

overprivileged permission problem. We also detected that the

application openGPStracker has a hardcoded password.

Android SMSPopup

1) In class SmsReceiverService.java
there is a false null checker
for statement. The branch if
(message.isSms()&&message.
getMessageClass()==MessageClass.
CLASS 0) will never be reached.

2) in class SmsPopupUtils.java the
method getUnreadSmsCount(
Context context) is never called.

3) in class SmsPopupUtils.java
there is a system command
call Runtime.getRuntime().exec
(commandLine.toArray(new String
[0])). getInputStream () ), this
statement may lead to a command
injection error.

openGPStracker

1) In class Constants.java on line 98,
there is a hardcoded password.

2) The function serializeWaypoints ()
in GpxCreator.java fails to perform
a null checker for variable mediaUri
on line 440.

3) The expression if ( startImmidiatly
&&mLoggingState==Constants
.STOPPED) in GPSLoggerSer-
vice.java line 563 is always
evaluated as true, the else branch
will never be reached.

OpenSudoku

1) The method update () in IMNumpad.java
fails to perform a null checker for state-
ment on line 208 and line 229.

2) The method saveToFile () in FileExport-
Task.java returns in a catch block on line
156, which may lead to a return value lost
error.

Table I
EXPERIMENTAL RESULTS

A. Limitations

In the intraprocedural analysis, the constraint system

includes all the possible values of variables; this may

lead to false positives. More accurate abstract interpretation

techniques are required to provide a precise analysis. In

the interprocedural analysis, we model functions based on

summaries; this abstraction loses accuracy and gives out

false negatives. Another problem is that our tool needs

developers to create external XML files to specify the

correctness properties of the program; these files may not

be easy to construct. In future, we need to develop XML

patterns and good graphic user interfaces to help developers

specify properties.

VII. CONCLUSIONS

Android applications can communicate with each other

using system provided mechanisms like files, Activities,

Services, BroadcastReceivers, and ContentProviders. If de-

velopers use one of these mechanisms they need to be sure
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that they are communicating with the right entity. It is easy to

violate the permissions inadvertently. Our program analysis

framework can help developers to detect programming errors

and permission violation statically. Developers need to un-

derstand which permissions need to be set up correctly and

need some background knowledge in logic and constraint

solving. Our future work will focus on designing a good

user interface to help users easily set up the constraints and

uncover logical errors in programs.
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