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Abstract

Context: Android is a programming language based on Java and an operating
system for embedded and mobile devices, whose upper layers are written in
the Android language itself. As a language, it features an extended event-
based library and dynamic inflation of graphical views from declarative XML
layout files. A static analyzer for Android programs must consider such features,
for correctness and precision. Objective: Our goal is to extend the Julia
static analyzer, based on abstract interpretation, to perform formally correct
analyses of Android programs. This article is an in-depth description of such an
extension, of the difficulties that we faced and of the results that we obtained.
Method: We have extended the class analysis of the Julia analyzer, which lies
at the heart of many other analyses, by considering some Android key specific
features such as the potential existence of many entry points to a program
and the inflation of graphical views from XML through reflection. We also
have significantly improved the precision of the nullness analysis on Android
programs. Results: We have analyzed with Julia most of the Android sample
applications by Google and a few larger open-source programs. We have applied
tens of static analyses, including classcast, dead code, nullness and termination
analysis. Julia has found, automatically, bugs, flaws and inefficiencies both in
the Google samples and in the open-source applications. Conclusion: Julia is
the first sound static analyzer for Android programs, based on a formal basis
such as abstract interpretation. Our results show that it can analyze real third-
party Android applications, without any user annotation of the code, yielding
formally correct results in at most 7 minutes and on standard hardware. Hence
it is ready for a first industrial use.
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1. Introduction

Android is a main actor in the operating system market for mobile and em-
bedded devices such as mobile phones, tablets and televisions. It is an operating
system for such devices, whose upper layers are written in a programming lan-
guage, also called Android. As a language, Android is Java with an extended
library for mobile and interactive applications, hence based on an event-driven
architecture. Any Java compiler can compile Android applications, but the re-
sulting Java bytecode must be translated into a final, very optimized, Dalvik
bytecode to be run on the device.

Static analysis of Android applications is important because quality and
reliability are keys to success on the Android market [2]. Buggy applications
get a negative feedback and are immediately discarded by their potential users.
Hence Android programmers want to ensure that their programs are bug-free,
for instance that they do not throw any unexpected exception and do not hang
the device. But Android applications are also increasingly deployed in critical
contexts, even in military scenarios, where security and reliability are of the
utmost importance. For such reasons, an industrial actor such as Klocwork [16]
has already extended its static analysis tools from Java to Android, obtaining
the only static analysis for Android that we are aware of. It is relatively limited
in power, as far as we can infer from their web page. We could not get a free
evaluation licence.

A tool such as Klocwork is based on syntactical checks. This means that
bugs are identified by looking for typical syntactical patterns of code that often
contain a bug. The use of syntactical checks leads to very fast and practical
analyses. However, it fails to recognize bugs when the buggy code does not
follow the predefined patterns known by the analyzer. The situation is the
opposite for semantical tools such as Julia, where bugs are found where the
artificial intelligence of the tool, based on formal methods, has not been able to
prove that a program fragment does not contain a bug. This second scenario is
much more complex and computationally expensive, but provides a guarantee of
soundness for the results: if no potential bug (of some class) is found, then there
is no bug of that class in the code. In other terms, syntactical tools are fast
but unsound. Both approaches signal false alarms, that is, potential bugs that
are actually not a real bug. Precision (i.e., the amount of real bugs w.r.t. the
number of warnings) is the key issue here, since the number of false alarms should
not overwhelm the user of the tool. This is acknowledged by most developers of
static analysis tools. For instance, we can quote the web page of Coverity [7]:
“By providing the industry’s most accurate analysis solution and the lowest
false positive rate, you can focus on the real and relevant defects instead of
wasting development cycles”. Hence, most of the effort of the developer of a
static analyzer is towards the reduction of the number of false positives. This
is much more difficult for sound analyzers, since they cannot just throw away
warnings and nevertheless stay sound. In any case, the presence of a company
such as Klocwork on this market shows that industry recognizes the importance
of the static analysis of Android code.
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A more scientific approach is underlying the SCanDroid tool [14], currently
limited to security verification of Android applications. It performs an informa-
tion flow analysis of Android applications, tracking inter-component communi-
cation through intents and the potential illegal acquisition of security privileges
through a coalition of applications. Its basis is a constraint-based analysis of
the code and there is a soundness guarantee, at least for a restricted kind of
bytecodes. Klocwork does not currently perform any information flow analysis
of Android applications.

Julia is a static analyzer for Java bytecode, based on abstract interpreta-
tion [6], that ensures, automatically, that the analyzed applications do not con-
tain a large set of programming bugs. It applies non-trivial whole-program,
interprocedural and semantical static analyses, including classcast, dead code,
nullness and termination analysis. It comes with a correctness guarantee, as it
is typically the case in the abstract interpretation community: if the applica-
tion contains a bug, of a kind considered by the analyzer, then Julia will report
it. This makes the result of the analyses more significant. Although Java and
Android are the same language, with a different library set, the application of
Julia to Android is not immediate and we had to solve many problems before
Julia could analyze Android programs in a correct and precise way. Many are
related to the different library set, others to the use of XML to build part of the
application. In this article, we present those problems together with our solu-
tions to them and show that the resulting system analyzes non-trivial Android
programs with high degree of precision and finds bugs in third-party code. This
paper does not describe in detail the static analyses provided by Julia, already
published elsewhere, but only the adaptation to Android of the analyzer and of
its analyses. In particular, our class analysis, at the heart of simple checks such
as classcast and dead code analysis, is described in [27]; our nullness analysis is
described in [25, 26]; our termination analysis is described in [28].

It must be stated that our Julia analyzer is not sound in the presence of
reflection, redefinitions of the class loading mechanism of Java and multithread-
ing. This does not mean that programs using those features cannot be analyzed,
but only that the results might be incorrect. Actually, one main achievement of
our work has been to teach Julia about the specific use of reflection that is done
during the XML layout inflation in Android, so that the results of the analysis
remain sound in that case (but not for other uses of reflection).

Our analyzer assumes a closed world assumption, in the sense that, for
instance, it assumes that, at the entry points, variables might be bound to
every class compatible with their declared type, might share in any possible
way or hold null. The same assumption cannot be made for libraries, that can
be expanded and whose behavior can be modified by subclassing. Hence ours
is not a modular analysis for libraries since we only analyze complete (closed)
Android applications.

There are many static analyzers that are able to analyze Java source code
and find bugs or inefficiencies. Most of them are based on syntactical analyses
(Checkstyle [4], Coverity [7], FindBugs [11, 3], PMD [23]) or use theorem prov-
ing with some simplifying (and in general unsound) hypotheses (ESC/Java [12]).

3



Since the Android language is Java, only the library changes, it might be in prin-
ciple possible to apply those analyzers to Android source code as well. However,
as we show in the next sections, there are new language features, such as XML
inflation, that are not understood by those tools and that affect the same con-
struction of the control flow graph of the program, usually performed through a
type inference analysis known as class analysis [20]; there are many new kinds
of bugs in Android code, because of the way the library is used, that are not
typical of Java. Hence, either a static analyzer assumes that those features do
not exist and those bugs do not occur (unsoundness) or must deal with them,
possibly in a sound way. We think that the solutions that we highlight in this
paper can be applied to those static analyzers as well, since they are not limited
to our specific static analyzer of choice.

The rest of this paper is organized as follows. Section 2 justifies the dif-
ficulties of the static analysis of Android programs. Section 3 introduces the
Android concepts relevant to this paper. Section 4 presents the more relevant
static analyses that we performed on Android code. Sections 5, 6 and 7 describe
how we improved Julia to work on Android. In particular, Section 5 discusses
the construction of a sound control-flow graph through class analysis, in the
presence of XML inflation. Section 8 presents experimental results over many
non-trivial Android programs from the standard Google distribution and from
larger open-source projects; it shows that Julia found some actual bugs in those
programs. Section 9 concludes the paper. This article is an extended version of
a shorter conference paper presented at CADE in 2011 [22]. The full experimen-
tal evaluation of Sect. 8 does not appear in [22]. Moreover, Sect. 4, Sect. 5 and
Sect. 6 provide a deeper presentation of the way we extended Julia, compared
to the corresponding sections of [22].

Julia is a commercial product (http://www.juliasoft.com) that can be
freely used through a web interface available from the web site of the company,
whose power is limited by a time-out and a maximal size of analysis. Fausto
Spoto is the chairman of the company, that he established in November 2010.
He is also the main developer of the Julia software. Étienne Payet is currently
an associate professor in Reunion (France). He is not a member of Julia Srl but
he regularly collaborates with Fausto Spoto on scientific matters.

2. Challenges in the Static Analysis of Android

The analysis of Android programs is non-trivial since we must consider some
specific features of Android, both for correctness and precision of analysis.

First of all, Julia analyzes Java bytecode while Android applications are
shipped in Dalvik bytecode. There are translators from Dalvik to Java byte-
code (such as undx [24] and dex2jar [8]). But Android applications developed
inside the Eclipse IDE [9] can always be exported in jar format, that is, in Java
bytecode. Eclipse is the standard development environment for Android at the
moment, hence we have preferred to generate the jar files from Eclipse.

Another problem is that Julia starts the analysis of a program from its main
method while Android programs start from many event handlers. This is also a
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problem for some event-based Java programs, such as Swing programs using the
actionPerformed event handlers. This is much more problematic for Android
code, where the whole program works through event handlers that are often
called through reflection, so that they might actually look like deadcode to a
static analyzer that does not understand reflection. Hence, we had to modify
Julia so that it starts the analysis from all such handlers, considering them as
potentially concurrent entry points. It must be stated that the Android event
handlers are executed by a single thread, so we had not to consider the difficult
problem of the analysis of multithreaded applications. Entry points are analyzed
from a worst-case assumption, stating for instance that their parameters and
receiver can belong to any class compatible with their static type, or can always
be null or hold overlapping data structures.

A much more complex problem is the declarative specification of user in-
terfaces through XML files, used by Android. This means that the code is not
completely available in bytecode format, but is rather inflated, at runtime, from
XML layout files into actual bytecode, by using Java reflection. This prob-
lem must not be underestimated by thinking that layout code only contains
graphical aspects, irrelevant to static analysis. Instead, in Android programs,
XML-inflatable classes, such as views, menus and preferences, contain most or
even all the code of an application, including its business logic. Moreover, the
link between XML inflated code and the explicit application code introduces
casts and potential null pointer exceptions. Hence, the analyzer must consider
XML inflation in detail if we want it to be correct.

Finally, a real challenge is the size of the libraries: in general, Android
programs use both a restricted java.* and the new android.* hierarchies.
Their classes must be analyzed along with the programs, which easily leads to
the analysis of 10,000 methods or more.

3. Android Basics

We describe here only the concepts of Android that are useful in this paper.
For more information, see [1].

Android applications are written in Java and run in their own process within
their own virtual machine. They do not have a single entry point but can
rather use parts of other Android applications on-demand and can require their
services by calling their event handlers, directly or through the operating system.
In particular, Android applications contain activities (code interacting with
the user through a visual interface), services (background operations with no
interaction with the user), content providers (data containers such as databases)
and broadcast receivers (objects reacting to broadcast messages). Event handlers
are scheduled in no particular ordering, with some notable exceptions such as
the lifecycle of activities.

An XML manifest file registers the components of an application. Other
XML files describe the visual layout of the activities. Activities inflate layout
files into visual objects (a hierarchy of views), through an inflater provided
by the Android library. This means that library or user-defined views are not
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1 public class LunarLander extends Activity {
2 private LunarView mLunarView;
3 @Override
4 protected void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState );
6 // tell system to use the layout defined in our XML file
7 setContentView(R.layout.lunar_layout );
8 // get handles to the LunarView from XML
9 mLunarView = (LunarView) findViewById(R.id.lunar );

10 // give the LunarView a handle to a TextView
11 mLunarView.setTextView (( TextView) findViewById(R.id.text ));
12 }
13 }

Figure 1: A portion of the source code Android file LunarLander.java.

1 <FrameLayout xmlns:android="http :// schemas.android.com/apk/res/android"
2 android:layout_width="match_parent" android:layout_height="match_parent">
3 <com.example.android.lunarlander.LunarView android:id="@+id/lunar"
4 android:layout_width="match_parent" android:layout_height="match_parent"/>
5 <RelativeLayout
6 android:layout_width="match_parent" android:layout_height="match_parent" >
7 <TextView android:id="@+id/text"
8 android:text="@string/lunar_layout_text_text"
9 android:visibility="visible"

10 android:layout_width="wrap_content" android:layout_height="wrap_content"
11 android:layout_centerInParent="true" android:gravity="center_horizontal"
12 android:textColor="#88 ffffff" android:textSize="24sp"/>
13 </RelativeLayout >
14 </FrameLayout >

Figure 2: The XML layout file lunar layout.xml.

explicitly created by new statements but rather inflated through reflection. Li-
brary methods such as findViewById access the inflated views. As an example,
consider the activity in Fig. 1, from the Google distribution of Android 2.2.
The onCreate event handler gets called when the activity is first created, af-
ter its constructor has been implicitly invoked by the Android system. The
setContentView library method calls the layout inflator; its integer parameter
uniquely identifies the XML layout file shown in Fig. 2. From line 3 of the file in
Fig. 2, it is clear that the view identified as lunar at line 9 of Fig. 1 belongs to the
user-defined view class com.example.android.lunarlander.LunarView. The
cast at line 9 in Fig. 1 is hence correct. Constants R.layout.lunar_layout and
R.id.lunar are automatically generated at compile-time from the XML layout
file names and from the view identifiers that they contain, respectively. The
user can call setContentView many times and everywhere in the code; he can
pass the value of any integer expression to it and to findViewById, although
the usual approach is to pass the compiler generated constants. This declar-
ative construction of objects also applies to preferences (graphical application
options) and menus.
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4. The Set of Static Analyses that we Apply

We describe here the main analyses that we let Julia apply to Android
programs. The first six are relatively simple, compared to the last two. Except
for the method redefinition checks, that are purely syntactical, they all exploit
the class analysis, already performed during the extraction of the application,
which computes an over-approximation of the control-flow graph of the program.
Hence they exploit semantical, whole-program and inter-procedural information
about the program.

These analyses are not new. They are very well-known static analyses of
object-oriented code, already performed by tools such as Klocwork, Coverity and
FindBugs, see their respective homepages. The novelty is their implementation
inside a sound tool for Android code.

Equality Checks. Java programmers can compare objects with a pointer iden-
tity check == and with a programmatic check equals. In most cases, the
latter is preferred. But == is used for efficient comparisons of interned
objects, when the programmer knows that identity equality corresponds
to programmatic equality. The use of both kinds of checks on the same
class type is hence a symptom of a potential bug. Moreover, the use of
equals or == on arrays is very likely a bug. In order to determine the
classes == and equals are applied to, Julia uses an improvement of the
0-CFA class analysis defined in [20].

Classcast Checks. Incorrect classcasts are typical programming bugs. The
introduction of generic types into Java has reduced the use of casts, but
programmers still need them sometimes. Unfortunately, Android has ac-
tually introduced new situations where casts are needed, such as at lines
9 and 11 in Fig. 1. Julia applies its class analysis to prove casts correct.
We had to consider the idiosyncracies of the Android library to keep this
class analysis so precise to prove those casts correct.

Static Update Checks. The modification of a static field from inside a con-
structor or an instance method is legal but a symptom of a possible bug or,
at least, of bad programming style. For this reason, we check when that
situation occurs. We only do that inside the reachable code, by exploiting
the class analysis computed by Julia.

Dead Code Checks. By dead code we mean here a method or constructor
never invoked in the program and hence useless. This is often conse-
quence of a partial use of a library but also the symptom of an actual
bug. Spotting dead code is hence important for debugging. The identi-
fication of dead code is quite complex in object-oriented programs, since
method calls have no explicit target but are resolved at run-time. Here,
the class analysis of Julia comes to help again, by providing a precise
static over-approximation of the set of run-time resolved targets. Android
complicates this problem, since event handlers are called by the system,
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implicitly, and since some constructors are invoked, implicitly, during the
XML layout inflation.

Inconsistent Definition of hashCode and equals. Redefining one of those
methods but not the other is very often a programming bug since it
leads to unpredictable behaviors when the objects are stored into a col-
lection. That situation is easy to check. Julia adds a more clever test
that uses aliasing: it checks that a redefinition of equals definitely calls
super.equals with the same arguments; in that case, missing to redefine
hashCode is still safe.

Method Redefinition Checks. In Java, method redefinition may be a source
of bugs when the programmer does not use the same name and argument
types for both the redefining and redefined methods. This may happen as
a consequence of incomplete renaming or incorrect refactoring. Similarly,
the programmer might use an inconsistent policy while calling super,
forgetting some of those calls. This check controls such situations.

Nullness Checks. In Java, dereferences occur when an instance field or an
array is accessed, when an instance method is called and when threads
synchronize. They must not occur on the special value null, or a run-time
exception is raised. This is, however, a typical and frequent programming
bug. Its automatic identification has been the subject of many articles,
starting from the original work in [5]. Julia performs a very precise nullness
analysis for Java, described in [25, 26]. Android complicates the problem,
because of the XML layout inflation and of the use of the onCreate event
handler to perform tasks, such as state initialization, that in Java are
normally done in constructors. Hence the precision of the nullness analysis
of Julia, applied to Android code, is not so high as for Java. For instance,
it cannot determine that field mLunarView in Fig. 1 is non-null when it is
dereferenced. Thus we had to improve its precision by considering some
specific features of Android, as we describe in Sect. 6.

Termination Checks. A non-terminating program is often considered incor-
rect. Hence, termination analysis can be used during debugging to spot
those methods or constructors that might not terminate. Many termi-
nation analyses have been defined for logic, functional and imperative
programs, starting from [13]. Julia already performs termination analysis
of Java code [28], has won the international competition of termination
analysis for Java bytecode on July 2010 and was second in the same com-
petition in 2011. The application of its termination analysis to Android
code is challenging because of the size of the Java and Android libraries
together.

5. Class Analysis for Android

Before a static analysis tool can analyze a program, the latter must be avail-
able and its boundaries clear. This might seem obvious, but it is not the case
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for object-oriented languages. They allow dynamic lookup of method imple-
mentations in method calls, on the basis of the run-time class of their receiver.
Hence, the exact control-flow graph of a program is not even computable, in
general. An over-approximation can be computed instead, where each method
call is decorated with a superset of its actual run-time targets. This is ob-
tained through a class analysis that computes, for each program variable, field
or method return value, a superset of the class types of the objects that it might
contain at run-time. Some traditional class analyses are compared, formalized
and proved correct in [10, 27]. In particular, Julia uses an improvement of the
0-CFA class analysis defined in [20]. The latter builds a constraint graph whose
nodes are the variables, fields and method return values in the program. Arcs
link these nodes and mimick the propagation of data in the program. The new
statements inject class types in the graph, that propagate along the arcs. The
receiver of a virtual method call uses a node that, once reached by a class tag,
resolves the method from that class tag and starts the analysis for the resolved
method. After propagation, each node over-approximates the set of classes for
the variable, field or method return value that it stands for. Julia improves that
analysis by deploying it in a flow-sensitive way. This means that the same local
variable in a method body can have distinct approximations at distinct program
points. This is important since Java compilers often recycle the same bytecode
local variable for distinct source code local variables, for optimization purposes.
But then, a flow-sensitive analysis is needed to distinguish the approximation
of two conceptually distinct uses of the same bytecode local variable. In order
to keep the cost of the analysis tractable, the same node of the graph is used
when it is clear that the approximation of a local variable does not change from
a program point to a subsequent one, as it is almost always the case.

Since the control-flow graph of the program is not yet available when the
class analysis starts, the latter extracts the control-flow graph on-demand, start-
ing from the main method of the program, during the same propagation of the
class types. This is problematic for Android programs, that do not have a single
main entry point, but many event handlers, that the system calls when a specific
event occurs. They are syntactically identified as implementations overriding
some method in the android.* hierarchy. Class analysis must hence start from
all event handlers and use, at their beginning, a worst-case assumption about
the state of the system: any class type may be bound to the receiver or parame-
ters of the handler, as long as it is compatible with their static type. Moreover,
the constructors of those classes (if these are not abstract) must be consid-
ered as entry points as well, recursively, since their instances might have been
constructed by the operating system, by reflection.

This does not solve the problem of class analysis for Android programs
yet. As we said above, new statements inject class types in the constraint
graph. But, for instance, there is no new LunarView statement in the pro-
gram in Fig. 1. So consider the LunarView object held in field mLunarView.
How and where is it created? It turns out that Android does heavy use of
reflection inside setContentView, to inflate graphical views from XML layout
files. It instantiates the views from the strings found in the XML file, such as
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com.example.android.lunarlander.LunarView at line 3 in Fig. 2. This can
only happen through reflection, since the user can define new view names, as in
this example. It is well known that class analyses are in general incorrect in the
presence of reflection, but for the simplest ones. Here, we want to stick with
Julia’s class analysis and we want it to work on Android code.

The first step in that direction has been to instrument the code of the library
class android.view.LayoutInflater, that performs the inflation. Namely, Ju-
lia replaces reflection, there, with a non-deterministic execution of new state-
ments, for all view classes reported in the layout files of the application. This
makes the class analysis of Julia correct w.r.t. layout inflation. But we have a
problem of precision here: both class types LunarView and TextView are com-
puted for the return value of the findViewById calls in Fig. 1, since both class
names occur in the layout file in Fig. 2 and hence two new statements are in-
strumented in the code of the inflator. This is correct but imprecise: we know
that the first call yields a LunarView, while the second call yields a TextView,
consistently with the constants passed to findViewById and with the identifiers
declared in Fig. 2, at lines 3 and 7. Without such knowledge, specific to the
way the Android library behaves, Julia will not be able to prove correct the two
casts on the return value of findViewById in Fig. 1 and it will issue annoying,
spurious warnings about apparently incorrect classcasts.

Thus, the second step has been to improve the precision of the class analysis
of Julia, with explicit knowledge on the view identifiers. We introduced new
nodes views(x ) in the constraint graph, one for each view identifier x occurring
in the XML layout files. Node views(x ) contains a superset of the class types of
the views labelled as x . Note that the same identifier x can be used for many
views in the same or different layout files and this is why, in general, we need a
set. Node views(x ) is used for the return value of the findViewById(R.id.x)
calls. Moreover, we build the arc

{name | x identifies a view of class name in some layout file} → views(x )

to inject into views(x ) all class types explicitly bound to the identifier x . Since
it is possible, although unusual, to set the identifier of a view explicitly, through
its setId method, in that case we build an arc from the receiver of setId to all
views(y) nodes, for every y that identifies a view whose class is consistent with
the static type of the receiver of setId() (i.e., of the view whose identifier is
modified). This is imprecise but correct. Moreover, we let (very unusual) calls
findViewById(exp), for an expression exp that is not, syntactically, a constant
view identifier, keep their normal approximation for the return value, containing
all views referenced in the XML layout files. Again, this is imprecise but correct
and only applies in very unusual situations. This same technique is used also
for menus and preferences, that work similarly in Android.

We have performed other improvements to the class analysis of Julia, for
better precision, although they are less important than those described above.
For instance, we determine, precisely, the class type of the return value of
method android.content.Context.getSystemService. The latter receives a
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string s as parameter and yields a service, such as a layout manager, a loca-
tion service, a vibrator service etc. But that method is defined as returning
a java.lang.Object, which requires a cast of its return value to the required
service class. The correctness of these casts depends on s. The standard class
analysis of Julia infers that the return value of getSystemService belongs to
any service class, which is too imprecise to prove the correctness of such casts.
Since this method is used often, this would induce Julia to issue many spurious
classcast warnings. Hence, we have instructed Julia to check if s is equal to
one of the constant service strings defined in the Android library. In that case,
the class of the return value of getSystemService is uniquely determined and
the casts can be proved correct. We do this only if the user does not redefine
getSystemService, since otherwise he might violate the contract on the class
type of the returned service.

6. Nullness Analysis for Android

Julia includes one of the most precise correct nullness analyses for Java.
It combines many distinct static analyses, all based on abstract intepretation.
A basic analysis is strengthened with others, to get a high degree of preci-
sion [25, 26]. We can apply it to Android, without any modification. The
results are precise, with some exceptions that we describe below, together with
our solutions.

Consider Fig. 1. The nullness analysis of Julia, without any improvement,
issues a spurious warning at line 11, complaining about the possible nullness of
field mLunarView there. This is because Julia is not so clever to understand that
the setContentView at line 7 inflates a layout XML file where a view identified
as lunar exists, so that the subsequent findViewById call at line 9 does not
yield null. Since this programming pattern is extensively used in Android, failing
to cope with this problem would generate many spurious nullness warnings.

The nullness analysis of Julia includes, already, an expression non-nullness
analysis that computes, at each program point, sets of expressions that are
locally non-null. For instance, this analysis knows that if a check this.foo(x)
!= null succeeds, then the expression this.foo(x) is subsequently non-null, if
foo does not modify any field or array read by foo itself. This local non-nullness
is lost as soon as the subsequent code modifies a field or array read by foo. To
check these conditions, Julia embeds a side-effect analysis of method calls. We
exploited this analysis to embed specific knowledge on the setContentView
method. Namely, after a call to setContentView(R.layout.file), we let the
expression non-nullness analysis add non-null expressions that have the form
findViewById(R.id.z), for every identifier z of a view reported in file.xml.
These expressions remain non-null as long as no field or array is modified, that
is read by findViewById (for instance, by a setId or another setContentView),
but this is the standard way of working of our expression non-nullness analysis,
so we had to change nothing for that and the correctness of this approach follows
from the correctness of the expression non-nullness analysis that we have already
in Julia.
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This work removes the spurious warning at line 11 in Fig. 1, but it is not
completely satisfactory. Namely, Julia has just proved field mLunarView non-
null at line 11 in Fig. 1, but it is not necessarily able to prove the same at
other program points, in other methods of LunarLander.java not shown in
Fig. 1, since it does not know that the event handler onCreate is always called
before any other event handler of the activity. This is a consequence of the
activity lifecycle of Android. It specifies that activities are controlled by the
operating system that calls their event handlers in a specified order. In par-
ticular, onCreate is called, first and always, just after the instantiation of the
activity object by the system. The aim of the programmer here was to make
mLunarLander always non-null, in the sense that it is never accessed before be-
ing initialized to a non-null value at line 9 and is never reassigned null later,
during the life-cycle of the activity. (Fig. 1 does not show the whole activ-
ity code, but Julia checks it all.) This notion of globally non-null fields comes
from [15] and is used by Julia as well [26]. It is important since it is less fragile
than the local non-nullness of a field at a given program point, that can be easily
broken by imprecise side-effect information. Moreover, it is important since it
can be used by automatic type-checkers for nullness, such as [21]. But global
non-nullness works for fields that are definitely initialized to a non-null value in
all constructors of their defining class directly called in the program (hence not
only through the constructor chaining mechanism of Java), and are never read
before that moment. Method onCreate in Fig. 1 is not a constructor. Hence,
Julia does not prove mLunarLander globally non-null, which typically leads to
spurious warnings wherever it is derefenced, outside onCreate.

The problem, here, is that Android engineers have introduced the onCreate
event handler to put code that, in Java, would normally go into constructors.
This comes with some drawback: mLunarView cannot be declared final, al-
though, conceptually, it behaves so. (final fields can only be assigned in con-
structors.) More interestingly to us, Julia does not spot mLunarView as globally
non-null, although it does behave as such. Our solution has been to instrument
the code of the activities and give them an extra constructor whose code is

public LunarLander(...) { this(); onCreate(null); }

That is, it calls the standard constructor of the activity, normally empty, and
then the onCreate event handler, passing a null Bundle, exactly as it happens
at activity start-up. Class LunarLander.java has two constructors now: the
standard one, typically never used directly, and this extra one, that Julia uses
to simulate the creation of the activity. They are syntactically distinguished by
adding extra, dummy parameters to the instrumented constructor. This solves
our problem: the instrumented constructor is now the only constructor called,
directly, in the program, to create the activity. It makes mLunarView non-null.
(onCreate becomes a helper function of the instrumented constructor, see [26].)
Thus, mLunarView is correctly marked as globally non-null. The correctness
of this technique follows from that of the general technique for proving fields
globally non-null in Java, that we use here [26], since onCreate is always called
after the construction of a view during XML inflation.
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Note that this second technique does not replace the previous one on the
local non-nullness of mLunarView at line 11. Instead, the two techniques are
complementary: the first proves that a non-null value is written at line 9 of
Fig. 1, the second proves that mLunarView keeps being non-null during the
subsequent execution of the activity.

Even by using the technique described above, proving that a findViewById
yields a non-null value is difficult when it occurs far away from setContentView
(for instance, when it occurs in other methods than onCreate). This is because
the imprecisions in the side-effects analysis and the worst-case assumption at
the beginning of the event handlers typically erase any information on the non-
nullness of distant findViewById(R.id.z) calls. Hence, we have further im-
proved our nullness analysis by exploiting information on the creation points of
the receiver of each findViewById in the program. Those creation points are
then compared with those of the receivers of the setContentView calls in the
program, to determine an over-approximation S of the setContentView’s that
might affect any given findViewById. If a view is defined in all layout files
inflated in S, then the return value of findViewById is assumed as non-null. A
creation points analysis was already performed by the nullness analyzer of Julia,
hence we are not increasing the cost of the analysis here. We observe that this
procedure is correct only if we are sure that at least a setContentView has been
performed before the given findViewById is executed. To check this condition,
we have used the same technique that we use to identify globally non-null fields,
that must not be read before being assigned at least once. The correctness of
this last technique follows from the correctness of our creation points analysis.
It is a concretisation of the class analysis described and proved correct in [27],
where instead of the simple class tag, the exact creation point of an object is
tracked.

The use of a worst-case assumption at the beginning of the event handlers is
sometimes a too pessimistic hypothesis, that leads to a large number of spurious
warnings. Hence, for a few hundreds, frequently used event handlers, we have
manually provided annotations that specify how they are called by the operating
system. For instance, we provide the following annotations for two methods of
the library class android.app.Activity:

void onPrepareDialog(int id, @NonNullFromSystem Dialog dialog);

void onPrepareDialog(int id, @NonNullFromSystem Dialog dialog, Bundle args);

stating that a non-null value is always passed by the operating system for the
dialog parameter, but not for args. Without that information, the analyzer
would signal a spurious null-pointer warning at the first dereference of dialog
inside any implementation of those event handlers.

7. Termination Analysis for Android

Our termination analysis for Android is basically the same that we apply
to Java [28]. It builds linear constraints on the size of the program variables.
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This results in a constraint logic program whose termination is proved by the
BinTerm tool [28]. For efficiency, Julia uses zones [18] for the linear approxima-
tion. It can also use polyhedra, but their cost is much higher and we have not
experienced significant improvements in precision. This is probably due to the
relative simplicity of the algorithms used in Android applications, at least in
those that we have analyzed. Usually, loops over integer variables and unitary
increments are used; loop limits are constraints between a single variable and
a constant. More complex loops are typical of mathematical software, where
polyhedra might show their power. BinTerm uses polyhedra anyway. For extra
precision, we have defined the size of Android cursors as the number of elements
that must yet be scanned before reaching their end. This lets Julia prove ter-
mination of the typical loops of Android code, where a cursor over a database
is used to scan its elements.

We observe that our tool proves termination of loops and recursive meth-
ods. Most Android programs might diverge if the user or the system keep
interacting with their event handlers. Our work does not consider this case of
non-termination, which is typically always possible.

8. Experiments, False Alarms and Actual Bugs

Table 1 presents the result of our analyses of most sample programs in
the Google distribution of Android 3.1 and of some larger open-source pro-
grams (Mileage 2.2.5, OpenSudoku 1.1.1, Solitaire 1.12.1 and TiltMazes 1.2 [17];
ChimeTimer, Dazzle, OnWatch and Tricorder [19]; TestAppv2 and TxWthr [29]).
We have used a Linux quad-core Intel Xeon machine running at 2.66GHz, with
8 gigabytes of RAM. The latest version of these experiments is available at
http://julia.scienze.univr.it/runs/android/results.html, where it is
possible to download the exact bytecode that we have analyzed, for better re-
peatability of the experiments.

The choice of those tests is a consequence of the fact that we wanted Android
applications whose source code is available, since we must be able to verify
which warnings are actual bugs and doing that on bytecode would require too
much effort. Moreover, there is no standard set of benchmarks for the static
analysis of Android. In particular, the work on SCanDroid does not report any
experiment [14] and applies analyses different from ours. Hence, a threat to the
validity of our experiments comes from the same selection of our tests, but we
cannot find a representative standard alternative set of tests.

The notion used for precision in Table 1 is the most conservative we could
think about: for instance, in the case of nullness analysis, the most precise
analysis is an analysis that reports only the actual nullness bugs and no false
alarm. This means that its precision (according to our metrics) is 100% if there
is no actual nullness bugs and slightly below 100% otherwise. The same for class
casts or non-terminating methods. This notion of precision is strictly related
to the time spent by a programmer for checking the warnings. As we said in
the introduction, a reduced number of false positives is acknowledged as a key
aspect for a static analyzer.
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We have manually checked all the warnings in Table 1. Most of them look to
us as false alarms, but a definite answer is difficult, since we are not the authors
of those programs. However, we recognized a few of them as actual bugs and
we discuss them below. Note that we might not have spotted all warnings that
are actual bugs, since there is no way to decide if a warning is definitely a bug
or not.

8.1. Simple Checks

582 if (note == null || note.trim() == "")
583 (( TextView) view). setVisibility(View.GONE);
584 else
585 (( TextView) view). setText(note);

Figure 3: A portion of method setViewValue defined in OpenSudoku.

OpenSudoku defines the SudokuListActivity with an inner class imple-
menting a setViewValue method and containing the snippet of code in Fig. 3.
There, note is a local variable of type String and trim returns the string ob-
tained by removing white spaces from the beginning and end of note; variable
view is a parameter of setViewValue and constant View.GONE is used for set-
ting a view invisible so that it does not use any layout space. Julia spots the
test note.trim() == "" as a suspicious use of == instead of .equals. This is
an actual bug since, when note.trim() is the empty string, the == check fails,
the visibility of view is not set to View.GONE and view still uses some layout
space.

All 12 warnings about suspicious == tests, found by Julia in TxWthr, look as
actual bugs to us. These are tests such as if (widget.appname == "update"),
where the constant string "update" is assigned to widget.appname in a different
class and hence a distinct String object is used, according to the semantics of
Java.

ApiDemos defines classes GLColor and GLVertex. They override equals but
not hashCode. We have manually checked the two warnings issued there by
Julia and found that they are actual bugs, that lead to inconsistent behaviors
when instances of those two classes are used in collections.

8.2. Nullness Checks
Julia issues two warnings (among others) for the Mileage program:

FillUp.java:443: call with possibly-null receiver to insert

FillUp.java:445: call with possibly-null receiver to update

We have investigated those problems and found that Mileage defines the Model
class that declares the field and the methods in Fig. 4. openDatabase creates
a database object and stores its reference in m_db, while closeDatabase closes
the database and resets m_db to null. The programmer’s intent was to put
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18 protected SQLiteDatabase m_db = null;

72 protected void openDatabase () {
73 if (m_db == null)
74 m_db = SQLiteDatabase.openOrCreateDatabase (...);
75 }

84 protected void closeDatabase(Cursor c) {
85 ...
86 if (m_db != null) {
87 m_db.close ();
88 m_db = null;
89 }
90 ...
91 }

Figure 4: Field m db and methods openDatabase and closeDatabase defined in Mileage.

each database access operation inside an openDatabase/closeDatabase pair.
Unfortunately, this does not work when database access operations are nested.
This happens in the FillUp class, subclass of Model, whose save method (Fig. 5)
calls calcEconomy. The latter, in turn, executes a database operation bracketed

439 public long save() {
440 openDatabase ();
441 calcEconomy (); ...
442 if (...)
443 m_id = m_db.insert (...); // save a new record
444 else
445 m_db.update (...); // update an existing record
446 closeDatabase(null); ...
447 }

Figure 5: Method save defined in Mileage.

inside the usual openDatabase/closeDatabase calls (not shown in the figure).
Hence, after the call to calcEconomy inside save, m_db holds null and the calls
m_db.insert and m_db.update inside save raise a NullPointerException.

Julia issues the following warning (among others) for BluetoothChat:

BluetoothChatService.java:397: call with possibly-null receiver to read

Line 397 is inside the inner class ConnectedThread of BluetoothChatService
and contains bytes = this.mmInStream.read(buffer). Field mmInStream is
initialized in the constructor of ConnectedThread, shown in Fig. 6. But, there,
mmInStream and mmOutStream are set to null if there is some problem with the
bluetooth interface and an IOException is thrown inside the try block. A sim-
ilar bug has been found at line 253 of BluetoothChatService, in Wiktionary,
OpenSudoku, Dazzle and Real3D.

Julia also reports the warning
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370 public ConnectedThread(BluetoothSocket socket) {
371 mmSocket = socket;
372 InputStream tmpIn = null;
373 OutputStream tmpOut = null;
374 try { // Get the BluetoothSocket input and output streams
375 tmpIn = socket.getInputStream ();
376 tmpOut = socket.getOutputStream ();
377 } catch (IOException e) {}
378 mmInStream = tmpIn;
379 mmOutStream = tmpOut;
380 }

Figure 6: The constructor of class ConnectedThread in BluetoothChat.

300 while (true) {
301 mGoalX = (int) (Math.random ()*( mCanvasWidth -mGoalWidth ));
302 if (Math.abs(mGoalX -(mX-mLanderWidth /2)) > mCanvasHeight /6)
303 break;
304 }

Figure 7: A portion of method doStart defined in LunarLander.

BluetoothChatService.java:236: call with possibly-null receiver

to listenUsingRfcommWithServiceRecord

That line contains tmp = this.mAdapter.listenUsingRfcommWithService-
Record(NAME, MY_UUID) and it turns out that field mAdapter is initialized at
line 71, inside the constructor of BluetoothChatService, as

mAdapter = BluetoothAdapter.getDefaultAdapter();

However, method getDefaultAdapter yields null on devices that do not feature
a bluetooth adapter and this condition is not checked in the program.

8.3. Termination Checks
Most warnings issued by Julia about possibly diverging methods are false

alarms. A few are actually diverging methods, that can in principle run for an
indefinite time, as long as the user does not decide to stop a game or network
connection. An interesting diverging method, although not actually a bug,
is found in program LunarLander, whose inner class LunarView.LunarThread
has a doStart method containing the snippet of code in Fig. 7. Julia spots this
loop as possibly non-terminating: variable mGoalX is assigned a random value at
each iteration of the while loop. In principle, that value might keep falsifying
the condition of the if and the break statement might never be executed.
Although this is statistically improbable, it is, at least, a case of inefficient use
of computing resources.
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9. Conclusion

This is the first sound static analysis framework for Android programs, based
on a formal basis such as abstract interpretation. We have shown that it can
analyze real third-party Android applications, without any user annotation of
the code, yielding formally correct results in a few minutes and on standard
hardware. Hence it is ready for a first industrial use. Formal correctness means
for instance that programs such as VoiceRecognition in Table 1 are proved to
be bug-free, w.r.t. the classes of bugs considered by Julia.

The problems of the analysis of real Android software are far from trivial
and we do not claim to have solved them all. For instance, Table 1 shows far
from optimal precision for the nullness analysis of OpenSudoku and Solitaire,
with a relatively high number of warnings. It turns out that those programs
use arrays of references and Julia could not prove their elements to be non-null
when they are dereferenced. The size of the analyzed code is also problematic.
For instance, we could not perform the nullness and termination analyses of
ApiDemos (Table 1) because they ran into out of memory. Hence, our tool
still requires improvements w.r.t. precision and efficiency and we are actively
working at them.

We have recently extended our Julia static analyzer in order to analyze
GWT and Play applications. The sad point about those extensions is that
there is little in common between them, since most of the problems faced when
analyzing a Java framework are different for each framework. Hence, we have
actually provided a general plug-in mechanism for Julia, so that the developer
of Julia can specify which are the entry points of a program in a given Java
framework, how the code must be instrumented and how the XML files must
be processed. This is not a definite solution to the problem of analyzing Java
frameworks. In particular, the emergence of frameworks that do heavy use of
annotations (such as Spring or Hibernate) introduces new challenges, since the
semantics of the annotations is unknown to the analyzer.
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