
Detect and optimize the energy consumption of mobile app through
static analysis: an initial research

Jingtian Wang
1, 2

 Guoquan wu
1

 Xiaoquan Wu
 1, 2

Jun Wei
1

1
Technology Center of Software Engineering

Institute of Software, Chinese Academy of Sciences
2
Graduate University of Chinese Academy of Sciences

{wangjingtian10, gqwu, wuxiaoquan07, wj}@otcaix.iscas.ac.cn

ABSTRACT

Although the market for smartphones is growing rapidly, their

utility remains severely limited by the battery life. As such, much

research effort has been made to understand the power

consumption of the application running on mobile devices.

However, dynamic profiling tools need to run on the customized

android platform, making them not suitable for ordinary mobile

app developers. To address this limitation, this paper proposed a

light-weight approach to find possible I/O energy wasting code in

Android apps through static program analysis technique. We also

provide a case study to evaluate the effectiveness of our approach.

General Terms

Algorithms, Measurement, Performance, Experimentation

Keywords

Mobile app, Energy profiler, Static analysis

1. INTRODUCTION
Friendly, open-source, and abundant third-party applications, all

these characteristics of Android platform have attracted many

users and developers. Despite the immense popularity of

smartphones and app market, their utility remains severely limited

by battery life. However, battery life limits the utility. In terms of

batter technology, the trends indicate that battery’s ability will not

have great improvement in recent years [9]. Thus, energy

optimization for Android platform is of critical importance.

Hardware components are the sources of energy consumption on

smartphones, such as LCD screen, CPU, WiFi, NIC, GPS, and

Secure Digital Card (sdcard for short). All these components’

energy costing behavior is triggered by the applications running

on the smartphones besides background services. However, many

apps developed so far are not energy-aware. Most developers

focus on the app’s functionality while ignoring the energy

consumption. Thus, developers need a tool to help them to

develop energy-aware mobile apps.

In [1][2], Pathak et. al proposed an energy profiler, called Eprof,

to understand and optimize the energy consumption of mobile

apps. The characteristic of Eprof is that it can get the energy

consumption at the granularity of methods or threads in an

application based on system call tracing. Using Eprof, the authors

also observed that most energy in an app is spent on accessing I/O

components, and tail energy typically accounts for the largest

fraction of the I/O energy. To better understanding the energy

consumption, a new energy accounting presentation called I/O

energy bundle, is proposed to capture the energy dissipation at

high level. Bundle is defined as a continuous period of an I/O

component, and corresponds to the process from an I/O

component energy base state to next base state in its power FSM.

However, this dynamic approach needs to modify the android

platform to log all system calls in order to trace method execution,

and it’s not easy to implement such fine-grained energy profiler

tool. Since all system calls of the I/O components can be reflected

through the API of the I/O components provided by Android SDK,

we start with static program analysis of the app’s source code

instead of modifying the android platform to understand the

energy behavior of the I/O components.

For energy optimization, as most I/O components have tail power

state which keeps a high power state after finishing the I/O

activities, what we can do is to reduce the number of tail energy

occurrence. That is, we can put I/O operations that will cause

energy tail as close as possible, in order to overwrite the previous

operation of the tail effect. Thus, we define the appearance of

periodic I/O operations as I/O energy wasting pattern.

The approach we offered can help developers to locate energy

wasting pattern, and consequently optimize smartphone

application. The main steps that finding energy wasting pattern in

mobile app include: 1) locating routines that implement I/O

operation according to the I/O operation list we collected; 2)

getting the I/O routines’ reverse control flow by static program

analysis, in order to confirm whether there are adjacent and

continuous I/O operations, 3) analyzing statements between

adjacent I/O operations through data flow analysis, which can

benefit developers to analyze whether there are operations

between adjacent I/O can be pre-processed or centralized process

to overwrite tail power state.

I/O component includes 3G, WiFi, sdcard, LCD screen etc. We

have done some WIFI I/O experiments, the results suggest that

WIFI I/O operation don’t have obvious tail power state, the WIFI

component quickly get back to the low power state after I/O

execution. According to our strategy, it has little space to optimize.

In addition, for LCD screen, its usage results from users’

operation, if the app do not acquire screen wakelock[6], it have

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Internetware’12, Octorber 29–31, 2012, Qingdao, China.

little direct influence on screen energy consumption. Thus, we

mainly focus on 3G and sdcard in this paper.

This paper is organized as follows. Section 2 presents the

observations we have founded during abundant use and analysis

of applications, then we introduce the method to find possible I/O

energy wasting pattern in Section 3. In Section 4, a case study is

presented to verify whether the method mentioned in section 2

can bring energy reduction. We present related works in section 5.

In the end we conclude the paper.

2. OBSERVATIONS
In [2], I/O energy bundles present intuitive view of how I/O

routines executed in apps and find there are always some I/O

operations which occurs repeatedly. In order to better understand

I/O characteristics in smartphone apps, we used apps that contain

the I/O operations on sdcard or network, and decompile the

Android bytecode to analysis, and have the following

observations.

First, numbers of operations exist during two adjacent I/O

operations which delayed I/O component tail power state. Many

apps such as News, Microblog, Social Network, E-commerce app,

use I/O to load resources(pictures, texts etc.) In this paper, we

consider the picture resources, since the size of text resource is

small, and apps can load all text resource once which generally

does not lead to multiple I/O operations. As Android adopts

event-driven programming model, many apps choose to download

pictures when users scroll on the current page. Also, the energy-

unaware app development can lead to periodic I/O at runtime.

Thus periodic I/O is common.

Periodic I/O operations can result in many tail power states, as

presented in fig.1 (a) [9], the each summit of the curve indicates

each real I/O activities, while the subsequent curve did not

immediately return to the initial level, and periodic I/O brought

multiple transition stage. Intuitively, batching multiple I/O

activities is the way to reduce tail power state, which can cut

down multiple tail power state to the last one tail state, as

presented in fig.1(b), the summit of the curve followed by another

summit, the intermediate transition stages are overwritten.

(a)

(b)

 Fig.1 Energy consumption of I/O

Second, the periodic I/O operations always appeared in loops, like

PhotoSlide, PhotoBucket, NYTimes. Apps need to execute

multiple I/O to load plenty of resources, and putting the several

uniform operations in loops is efficient.

These two observations can help us to find possible energy

wasting pattern and to offer optimizing suggestions. Based on

these observations, in section 3, we propose a light weight

approach for app developers to find the potential inappropriate

design of I/O operations in apps source code.

3. APPROACH
The process to find possible energy wasting pattern mainly

include three steps (see figure 2):

 1) Locating I/O operations. The idea is that searching source

code to judge whether there are statements matched the operations

in the list we have collected (see Section 3.1);

 2) Searching specific code pattern. I/O energy wasting pattern is

defined as the occurrence of periodic I/O operations inside loops.

We use static analysis techniques to search this pattern. If the

pattern matched, then obtain the flow graph between two adjacent

I/O operations (Section 3.2);

 3) Analysis. This step uses data flow analysis to analyze the flow

graph generated in the second step, then offer advices of energy-

aware optimizing, the details are described in Section 3.3.

Figure 2. The process of method

3.1 I/O Operations Locating
 In our experience, I/O activities are always accompanied by

several fixed operations. It needs to track those statements to

locate the I/O routines. Therefore, we collect I/O component (NIC,

sdcard) operation list in which operations will appear when

execute I/O.

3.1.1 Network
 In android SDK, there are two types of network connections

operating, listed in Table 1. After building connection, apps may

download or upload resources with servers.

 On android platform, each resource needs a connection since the

unique URL is an attribute of the connection. Download a lot of

resources will bring periodic I/O.

Table 1. Network I/O operation list

 Source Code

I

DefaultHttpClient http = new DefaultHttpClient();

HttpGet method = new HttpGet(url);

HttpResponse response =http.execute(method);

II

URL url = new URL(uri);

HttpURLConnection connection = (HttpURLConnection)

url.openConnection();

connection.connect();

3.1.2 sdcard
Sdcard is mounted as the file system, the write/read operation was

the same as natural file system. File path is the unique difference,

the default path of sdcard root directory is “/sdcard/*”. Apps need

to built directory in sdcard to store data. The common methods to

find specific file include: a. Find the file according to the

absolute path.

Environment.getExternalStorageDirectory();

 b. Obtain the metadata of files in specified type by MediaScanner,

to enumerate all files information on external storage, such as

name, size, author, and file path. The necessary operation is listed

as following:

Cursor managedQuery(Uri uri, String[] projection, String

selection, String[] selectionArgs, String sortOrder);

The above operations are only the preparation for sdcard I/O

operations. We already pinpoints in previous paragraph that the

operation of files on sdcard are the same as operating of natural

file system. The actual I/O operations are listed in table 2.

3.2 Specific Code Pattern Searching
Firstly, locate routines that execute I/O operations according to

operation lists shown above.

Secondly, it needs to judge whether the apps has a loop which

contains multiple continuous and uniform I/O operations. We use

reverse search of control flow from the I/O method located in the

first step, namely, generating the control flow from the bottom up.

1) when another uniform I/O is found, add the “traversed” tag and

continue to search up. If the marked statement exceeded two times,

we can draw the conclusion that there is a specified energy

wasting pattern in the application. 2) if there are no related I/O

routines along the control flow till the root method, we can decide

that this application doesn’t contain this specified pattern.

Otherwise, for the I/O operations that are not the same with the

marked I/O beforehand, we start to search another path from these

I/O operations.

3.3 Flow Graph Analyzing
To obtain flow graph between two adjacent I/O after locating

continuous I/O operations, then we adopt reaching definitions

(RD for short) data-flow analysis, which statically determines

which definitions may reach a given point in the code, to decide

whether other operations are related to I/O operations and how to

optimize the implementation of I/O operations. There are three

possible situations in this step:

Figure 3. The first case

InputOutputExecuter in figures represents I/O operation. In this

situation (see figure 3), the result returned by I/O operation is

used by the subsequent operations. The suggested optimization is

to batch the I/O operations, that is prefetching the resource that

multiple I/O transferred. Taking loading pictures by I/O as an

example, developers can prefetch a group of pictures instead of

one picture a time. The number of the prefetched pictures is

related to the size of pictures and the memory that the application

could employ. Different scenarios have different settings and it

needs to be determined by developers.

Figure 4. The second case

In this case (see figure 4), the parameters of I/O routines come

from the previous operations. This situation limited the order of

operations that the I/O operations cannot be pre-processed. The

previous operations could be obtaining path of the file on sdcard,

getting the URL of network resources, or assigning the location

for the resources will be loaded. The optimization strategy for this

case is first to process/calculate the parameters that I/O operations

need, then to bundle multiple I/O operation in order to overwrite

tail power states.

Figure 5. The third case

We find the situation, illustrated in figure 5, through data flow

analysis. There are some operations which are not related to the

I/O routines occurred in the loop. In typical usage, there are time-

setting operations such as Thread.sleep function or time scheduler.

For this case, I/O batching strategy needs to take into account the

time factor. The quantity of I/O operations in each batching

should not be too large in order to guarantee the accuracy of the

trigger time. There is also another situation that the unnecessary

operations are brought by developers’ oblivious developing

manner. The corresponding optimization strategy is to move the

App←sdcard

Inputstream.read()

FileInputStream.read()

BitmapFactory.decodeFile()

App →sdcard

Outputstream.write()

FileOutputStream.wirte()

Bitmap.compress()

Table 2. sdcard I/O operation list

uncorrelated operations out of the loop in order to reduce the

count of operations between two continuous I/O operations.

However, the optimization advice is application-specific. The

present approach needs developers’ participation to keep the

balance between user experience and energy-saving purpose. We

leave automatic accurate optimization as future work.

4. CASE STUDY
In case study, we use the decompile tool dex2jar [11] and jd-gui

[12] to get the app source code. While in the actual scenarios,

developers can use the approach on source codes directly.

We use Photoslide app as an example to demonstrate the previous

workflow. Photoslide is a slide show application which can

transfer pictures on smartphones into a slide show.

First, locate the I/O routines according the I/O operation list. In

Photoslide source code, there is a unique I/O module,

ViewerUtil.LoadPicFirst

ViewerUtil.LoadPic()

{

…….

localObject = BitmapFactory.decodeFile(paramString, localOptions);

…….

}
Listing 1. Photoslide I/O routine operation list

Then, get the bottom-up control flow at the beginning of

ViewerUtil.LoadPic. In the traversal process, the marked I/O

routine (ViewerUtil.LoadPic) periodically appeared many times,

exceeding the threshold we set. We can decide that in Photoslide

there is a possible I/O energy wasting implementation. The

control flow is presented in figure 6.

Figure 6. Control flow of corresponding entry

 Finally, we analyze the local control flow between two adjacent

I/O operatings(BitmapFactory.decodeFile), shown in figure 7.

We do RD analysis for the flow graph to find operations related to

I/O. GetBitmap function is to obtain the file path. The result

returned from this function acts as the parameter of decodeFile,

which matches the second pattern in section 3.2. The parameter of

BitmapDrawable.draw is related to the I/O operation result,

applications can batch several I/O operations before

BitmapDrawable.draw, and this match the first pattern. Thus, the

app could prefetch all file paths and then bundle multiple I/O

operations to reduce energy consumption. Note that, the sleep

function appears in operation sequence suggest that the count of

the bundle I/O operation group should not be too much to

guarantee the accuracy of the trigger time.

 Figure 7.control flow between adjacent I/O

To verify whether the optimization category can bring energy

reduction, we rewrote the slide function in Photoslide, and design

another application according to the optimization advice. The two

applications both load 20 pics from sdcard.

APP I load one picture once a time, stop 2 seconds, and load next

pictures. The energy consumption shown as figure 8.

 Fig 8. Result of App I (sdcard)

 APP II, the optimized application load a group of pictures once a

time(in this experiment we set the number of group is five), then

load picture from memory, stop 2 seconds, load next picture from

memory. When the group was complete shown, the app load

another group. The energy consumption is shown as figure 9.

Fig 9. Result of App II (sdcard)

The result shows that in the table 3, app II saves almost 20%

energy.

We also rewrote the modules that responsible for downloading

resources from network, which is frequently used by kinds of apps,

such as News, Microblog and E-commerce app, to verify whether

the optimization category applies to network I/O. Both two

applications download 10 pictures by 3G.

App I download one pictures once, does computation 300ms, and

then downloads next picture. The energy consumption is shown as

figure 10.

Fig 10. Result of App I(3G)

App II, the optimized one downloads all 10 pictures once a time,

and do computation 3000ms, The energy consumption is shown

as figure 11.

Fig 11. Result of App II(3G)

The result shows that in the table 4, app II saves almost 44%

energy.

We can find that batching 3G/sdcard I/O operation can bring

much energy saving through above experiment result.

5. RELATED WORK
There are many researches related to energy profiling and

optimizing. Our work is to find specific I/O energy inefficiency

pattern by static analysis. Characterizing and detecting no-sleep

bugs [6] also use static program analysis method to find no-sleep

code pattern, the problem they solved is different from us.

PowerTutor[7], and Sesame[8] can get every application’s energy

consumption by dynamic profiling, but they cannot get intra-

application energy cost info, therefore they cannot offer

developers energy-aware optimization.

6. CONLUSION
In this paper, we offered a light-weight approach to help

developers to locate energy wasting pattern and provide suggested

optimizations.

However, Java object reference and intent resolution, the indirect

control transfer mechanism, pose challenge for static analysis to

get complete control information [6]. In future work, we will add

dynamic analysis to our work to analyze all routines reference.

7. REFERENCES

[1] Abhinav Pathak, Y. C. H., Ming Zhang (2011). Fine-Grained

Power Modeling for Smartphones Using System Call Tracing.

EuroSys.

[2] Abhinav Pathak, Y. C. H., Ming Zhang (2012). "Where is

the energy spent inside my app? Fine grained Energy

Accounting on Smartphones with Eprof." EuroSys.

[3] Feng Qian, Z. W., Alexandre Gerber (2011). "Profiling

Resource Usage for Mobile Applications: A Cross-layer

Approach." MobiSys.

[4] “Transferring Data Without Draining the Battery” URL:

http://developer.android.com/training/efficient-

downloads/index.html

[5] Arni Einarsson, Janus Dam Nielsen. A Survivor's Guide to

Java Program Analysis with Soot

[6] Abhinav Pathak, A. J., Y.Charlie Hu (2012). "What is

keeping my phone awake? Characterizing and Detecting No-

Sleep Energy Bugs in Smartphone Apps." MobiSys.

[7] Lide Zhang, B. T., Zhiyun Qian, Zhaoguang Wange (2010).

"Accurate Online Power Estimation and Automatic Battery

Behavior Based Power Model Generation for Smartphones."

CODES+ISSS.

[8] Mian Dong, L. Z. (2011). "Self-Constructive High-Rate

System Energy Modeling for Battery-Powered Mobile

Systems." MobiSys.

[9] Eduardo Cuervo, A. B. (2010). "MAUI: Making

Smartphones Last Longer with Code Offload." MobiSys.

[10] “Monsoon Power Monitor.” URL:

http://www.msoon.com/LabEquipment/PowerMonitor/

[11] dex2jar URL:

http://code.google.com/p/dex2jar/downloads/list

[12] jd-gui URL: http://java.decompiler.free.fr/

 Description
Average energy

consumption

App I
Load 20 pics
from sdcard

Load one picture
once

2023uAH

App II
Load a group(five)
pictures once

1614uAH

Table 3. Results of sdcard I/O experiment

 Description
Average energy

consumption

App I Download 10
pics from
network

Load one
picture once

3107uAH

App II
Load all
pictures once

1740uAH

Table 4.Results of 3G I/O experiment

http://www.msoon.com/LabEquipment/PowerMonitor/
http://code.google.com/p/dex2jar/downloads/list
http://java.decompiler.free.fr/

