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Abstract
Computation offloading is a promising way to improve the
performance as well as reducing the battery power consump-
tion of a smartphone application by executing some parts of
the application on a remote server. Supporting such capabil-
ity is not easy for smartphone application developers due to
(1) correctness: some code, e.g., that for GPS, gravity, and
other sensors, can run only on the smartphone so that devel-
opers have to identify which parts of the application cannot
be offloaded; (2) effectiveness: the reduced execution time
must be greater than the network delay caused by compu-
tation offloading so that developers need to calculate which
parts are worth offloading; (3) adaptability: smartphone ap-
plications often face changes of user requirements and run-
time environments so that developers need to implement the
adaptation on offloading. More importantly, considering the
large number of today’s smartphone applications, solutions
applicable for legacy applications will be much more valu-
able. In this paper, we present a tool, named DPartner, that
automatically refactors Android applications to be the ones
with computation offloading capability. For a given Android
application, DPartner first analyzes its bytecode for discov-
ering the parts worth offloading, then rewrites the bytecode
to implement a special program structure supporting on-
demand offloading, and finally generates two artifacts to be
deployed onto an Android phone and the server, respectively.
We evaluated DPartner on three real-world Android appli-
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cations, demonstrating the reduction of execution time by
46%-97% and battery power consumption by 27%-83%.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques – Object-oriented
programming; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement – Enhancement; C.2.4
[Computer-Communication Networks]: Distributed Systems
– Client/server, Distributed applications

General Terms Experimentation, Languages, Performance

Keywords computation offloading; bytecode refactoring;
energy; Android

1. Introduction
Android [1] is an open source mobile platform for smart-
phones, and it has gained more than 59% of smartphone
market share in the first quarter of 2012 [2]. Hundreds of
thousands of developers have produced more than 490 thou-
sands Android apps (a special kind of Java applications, app
is short for application) since the platform was first released
by Google in 2008 [3] [4]. Following the fast improvement
of smartphone hardware and increased user experience, An-
droid apps try to provide more and more functionality and
then they inevitably become so complex as to make the two
most critical limits of smartphones worse.

The first limit is the battery power. Complex Android
apps usually have intensive computations and consume a
great deal of energy. For instance, the top 10 downloaded
Android apps such as Fruit Ninja and Angry Birds on the
Google Play [3] (formerly known as the Android Market) are
all the complex ones that can drain the battery power in about
30 minutes if running on HTC G13 [5]. Although the battery
capacity keeps growing continuously, it still cannot keep
pace with the growing requirements of Android apps [6].

The second limit is the diversity of hardware configura-
tions, which gives smartphone users very different experi-
ences even running the same app. For example, among the
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best-selling HTC smartphones in 2011, G13 has a 600 MHz
CPU, G11 and G12 have a 1GHz CPU, and G14 has a 1.2
GHz CPU. The same Fruit Ninja app runs very slowly on
G13, faster on G11 and G12, and the fastest on G14. Gener-
ally speaking, the lower hardware configuration of a phone
implies the lower performance of the apps running on the
phone. Users usually stop using the slow apps even if the root
cause of the poor user experience is due to the low hardware
configuration of the phone. Such factor can lead to a big loss
of the app market for developers and vendors.

Computation offloading is a popular technique to help im-
prove the performance of an Android-like smartphone app
and meanwhile reduce its power consumption. Offloading,
also referred to as remote execution, is to have some compu-
tation intensive code of an app executed on a nearby server
(the so-called surrogate, e.g., a PC), so that the app can take
advantage of the powerful hardware and the sufficient power
supply of the server for increasing its responsiveness and de-
creasing its battery power consumption.

Computation offloading is usually implemented by a spe-
cial program structure, or a design pattern, that enables a
piece of code to execute locally or remotely and handles the
interactions between the local and the remote code without
impact on the correctness of the functionality. With respect
to features of smartphones, three advanced issues have to be
dealt with:

• Correctness: some code, e.g., that for GPS, gravity, and
other sensors, can run only on the smartphone. Therefore
developers have to identify which parts of the app cannot
be offloaded;

• Effectiveness: the reduced execution time must be greater
than the network delay caused by computation offload-
ing. Therefore, developers have to calculate which parts
are worth offloading;

• Adaptability: one of the most important natures of mobile
computing is the diverse, frequent, and rapid changes of
user requirements and runtime environments, which may
lead to changes of computation offloading. For example,
if the remote server becomes unavailable due to unstable
network connection, the computation executed on the
server should come back to the smartphone or go to
another available server on the fly. Developers have to
consider such changes in computation offloading.

The preceding issues are not easy to deal with and, more
importantly in practice, a solution should be applied to
legacy apps in a cost effective way considering the huge
number of today’s Android apps.

In this paper, we present an automatic approach to real-
izing computation offloading of an Android app. Our paper
makes three major contributions:

• A well-designed pattern to enable an Android app to be
computation offloaded on-demand. All Java classes of

the app are able to interact with each other locally or
remotely. The computations of a class can be offloaded
dynamically and only the interactions between the smart-
phone and the server go through the network stack.

• A refactoring tool, named DPartner, to automatically
transform the bytecode of an Android app to implement
the proposed design pattern. DPartner first analyzes the
bytecode for discovering the parts of an app that are
worth offloading, then rewrites the bytecode to imple-
ment the design pattern, and finally generates two arti-
facts to be deployed onto the Android smartphone and
the server, respectively. Refactoring is transparent to app
developers and supports legacy apps without source code.

• A thorough evaluation on three real-world Android apps.
The evaluation results show that our approach is effec-
tive. The offloaded apps execute much faster (reducing
execution time by 46%-97%) and consume much less
battery energy (reducing power consumption by 27%-
83%) than the original ones.

We organize the rest of this paper as follows. Section 2
presents the design pattern for computation offloading. Sec-
tion 3 gives the implementation of DPartner. Section 4 re-
ports the evaluation on Android apps. Section 5 discusses
related work and we conclude the paper in Section 6.

2. Design Pattern for Computation Offloading
An Android app is a Java program, whose building blocks
are classes. Any meaningful computation is implemented as
a method of a class, which uses the data and methods in-
ternal of the same class or invokes some methods of other
classes. As a result, offloading computations can be imple-
mented as remotely deploying and invoking a single class or
a set of classes performing the computation. The goal of our
approach is to automatically refactor Android apps into the
ones implementing the design pattern for such deployment
and invocation.

The principle of refactoring is to restructure the given
code without altering the external functionality [9]. Gen-
erally speaking, refactoring is characterized by three as-
pects [9]: (1) the structure of the original code, i.e., source
structure; (2) the structure of the target code, i.e., target
structure; (3) a sequence of code refactoring steps that trans-
form the original code to the functionally equivalent target
code, so that the target code are finally able to take on the
desired program structure. Thus, we introduce these aspects
one by one in detail as follows.

2.1 The Source Structure and the Target Structure
In Java, the object reference determines whether two classes
interact with each other locally or remotely. The source
structure of the given code in any standalone Android app
all take on the “local reference” program structure, i.e., the
so-called “in-VM reference” program structure as shown in
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Figure 1. Local invocation (source structure)
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Figure 2. Remote invocation (source structure)
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Figure 3. On-Demand remote invocation (target structure)

Figure 1. Class X first gets the in-VM reference of class N
and then invokes the methods of N. Such a structure does
not support offloading any computation in class N because if
N is offloaded to a remote server, N’s in-VM reference held
by X becomes invalid, i.e., it cannot help the VM pass the
method invocations to N, and X will fail to obtain the new
in-VM reference of N.

Figure 2 presents the typical code structure that enables
class X to invoke the methods of a remote class N. That
is, X gets a remote reference to N from a remote commu-
nication service, then uses the reference to interact with N
remotely. The remote communication service is responsible
to associate N’s reference with N across the network. Take
Android AIDL [39] as an example, its ServiceConnection
can be seen as the main part of the remote communication
service. X gets a reference to N in the onServiceConnected
method of ServiceConnection, then uses the reference to in-
voke the methods of N. Such a structure can have the compu-
tations in N offloaded to a remote server, but suffer serious
performance penalty if N and X are both in the same VM.
As mentioned above, whether N is offloaded or not is de-
termined dynamically and may change time to time. If N is
not offloaded, all the interactions between X and N in such
a structure will still go through the time-consuming network
stack, which is contrary to the goal of computation offload-
ing, i.e., improving performance and save energy. We have
done an experiment on the standard Android SDK sample:

net.learn2develop.Services [40]. X (MainActivity) uses the
ServiceConnection to get the reference to N (MyService).
After that it uses the reference to call N’s methods. Com-
pared with local interactions, such remote interactions in
the same VM increase execution time by 680% and battery
power consumption by 287%.

Figure 3 presents the target structure we propose for on-
demand computation offloading, i.e., allowing X to effec-
tively invoke N no matter the two are running in the same
VM or in different VMs across the network. The core of the
structure is composed of two elements: proxy and endpoint.

A proxy, NProxy in Figure 3, acts the same as the proxied
class N except that it does not do any computation itself, but
forwards the method invocations to the latter. If the location
of the proxied class N is changed from local to remote, or
from one remote server to another, NProxy keeps unchanged
so that the caller, class X, will not get noticed.

The endpoint is responsible for determining the current
location of N and for the truly crossing network communi-
cation from X to N. When N is running in a remote VM, the
endpoint will take advantage of a given remote communica-
tion service to get a reference to N and pass it back to X,
then X can use the reference to invoke N remotely. When X
and N both run in the same VM, the endpoint will directly
obtain the in-VM reference of N, so that X can invoke N
without going through the network stack. The endpoint de-
couples the caller and the remote communication service. A
smartphone can dynamically change its network connection
with the same server among multiple protocols, e.g., Wi-Fi,
and 3G. The endpoint automatically adapts to such changes
so that the interacted app classes are unaware of them.

2.2 Refactoring Steps Overview
A sequence of refactoring steps will be performed on the
Java bytecode of a given standalone Android app, so that
the source structure of the code shown in Figures 1 and 2
can be transformed to the target structure shown in Figure 3.
We implement a tool, called DPartner [8], to automatically
execute the refactoring steps, as shown in Figure 4.

Step 1: detect which classes are movable. For a given app,
DPartner automatically classifies the Java classes (i.e., byte-
code files) into two categories: Anchored and Movable. The
anchored classes must stay on the smartphone because they
directly use some special resources available only on the
phone, e.g., the GUI (Graphic User Interface) displaying, the
gravity sensor, the acceleration sensor, and other sensors. If
being offloaded to the server, these anchored classes cannot
work because the required resources become unavailable.
Besides those anchored classes, all other classes are mov-
able, i.e., can execute either on the phone or on the server.

Step 2: make movable classes be able to offload. When
a class is offloaded, the local invocation structure between
this class and its interacted classes should be transformed to
the on-demand remote invocation structure, e.g., generating
the proxy of the callee class and rewriting the caller class to
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Figure 4. Refactoring steps

Figure 5. The runtime architecture of an offloaded Android app

equip the proxy. Note that, if an anchored class is invoked by
an offloaded class, the latter needs the former’s proxy. Since
which movable classes are offloaded is determined at run-
time, we have to generate the proxies for all callee classes
and rewrite the corresponding caller classes except that the
caller and callee are both anchored. In our approach, a proxy
class will be made to act exactly like its proxied app class.
That is to say, these two classes will extend the same inher-
itance chain, implement the same interfaces, have the same
method signatures, etc. In this way, class X will feel no dif-
ference when using the proxy of class N instead of N itself.
The specific features of Java have to be considered when
generating the proxies, which include the static methods, fi-
nal methods/classes, public fields, inner classes, arrays, etc.
The details of proxy generation and class transformation will
be presented in Section 3.

Step 3: detect which classes should be offloaded as a
whole. There are numerous rules and algorithms to deter-
mine which movable classes should be offloaded [7]. As
mentioned before, such a decision has to be made and
changed at runtime due to the mobility of smartphones.
Meanwhile, making decision at runtime inevitably consumes
resources and therefore it is valuable to have done some
pre-processing to simplify runtime decision. DPartner em-
ploys a well-known rationale for pre-processing based on
class clustering [24], i.e., the frequently interacted classes
should be offloaded as a whole. In this way, it cannot only
avoid the time-consuming network communication between
these classes, but also help accelerate runtime decision. For
instance, if class X and class N interact with each other fre-
quently, the endpoint only needs to profile the execution
trace of X to determine offloading at runtime. When X is
about to offload, N will then be profiled to decide whether it

should be offloaded together. It is unnecessary to continuous
profile N for reducing runtime overhead.

Step 4: package deployable files. The input of DPartner
is the Java bytecode files of an Android app as well as the
referenced resource files, e.g., images, xml files, and jar libs.
After going through the above three steps, DPartner will
package the files and then generate two artifacts. The first is
the refactored Android app, i.e., an .apk file, which is ready
to be installed on a phone. The second is an executable jar
file, which contains the movable Java bytecode files cloned
from the refactored app. Both artifacts include the code of
the endpoint and the communication service.

2.3 An Illustrative Example
Figure 5 shows an example of the runtime architecture of an
offloaded Android app. This app is composed of six classes,
with their names from a to i, respectively. In Step 1, DPartner
finds that class b and g are both anchored classes, so that they
should always run on the phone. All the other classes are
movable. In Step 2, each app class is transformed and gotten
its corresponding proxy class. In Step 3, DPartner finds that
class a, c, d, e, and f are closely related to each other, and
then clusters them for offloading as a whole. In Step 4,
DPartner packages all the movable classes, the proxies, and
the endpoint classes in to a jar file that will be deployed and
executed on the server, and packages all the app classes, the
proxies, and the endpoint classes as an Android apk file that
will be deployed and executed on the phone.

At runtime, the endpoint predicts that offloading class d
can improve the whole app performance, and then deacti-
vates the d running on the phone and activates the d deployed
on the server. The d’s proxy on the phone will forward the
incoming method invocations to the d on the server. Since
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class d is clustered with class a, c, e, and f in Step 3, these
classes will also be offloaded to the server when necessary
by going through the deactivating, state synchronizing and
activating procedures as class d. Any invocations to these
app classes will be forwarded to the server by the endpoint.
When the offloading-related conditions become unfavorable,
e.g., the phone gets far away from the server which leads to
a high network latency, the computations of a, c, d, e, and
f can get back to the phone by automatically deactivating
them on the server and reactivating them on the phone. All
invocations to these classes will be redirected to the phone
by the endpoint.

3. Implementation of DPartner
3.1 Detect Movable Classes
DPartner classifies a Java class into anchored or movable
via bytecode analysis. In an Android app, an anchored class
must have one of the following features: (1) there are the
“native” keyword existing in the class methods; (2) the class
extends/implements/uses the Android system classes that are
already regarded to be anchored by DPartner. For instance,
the “android.view.View” class is used as the parent class
for drawing the GUI of an Android app, so that it is clas-
sified to be the anchored class by DPartner. If a class is
found to extend this class, it will also be anchored by DPart-
ner. For another instance, the “android.hardware.*” classes
are responsible for handling the camera and sensors of an
Android smartphone. Therefore, they and the classes using
them will be automatically anchored by DPartner. The rest
of the classes will be classified as movable classes.

The above classification procedure may cause false posi-
tives and false negatives. A false positive means that a class
is classified as a movable one, but the developer is unwill-
ing to do this. For instance, the developer does not want
the “cn.edu.pku.password” class be offloaded due to pri-
vacy concerns, although this class is classified as a mov-
able one. A false negative means that a class is classified
as an anchored one although it can actually be offloaded.
For instance, as there are “native” keywords in its meth-
ods, the “cn.edu.pku.nativeCall” class will be classified as
anchored automatically. However, such methods may never
be invoked, so that this class can be offloaded. By analyzing
the bytecode of an app, DPartner is able to tell whether an
anchored class is invoked by the other classes of the same
app. However, it cannot tell whether the class (acting as an
Android service [38]) will be used by other apps, which may
lead to false negatives of classification.

Therefore, we can see that DPartner takes a conservative
approach to detecting movable classes, which can at least
guarantee that a refactored app work correctly no matter be-
ing offloaded or not. To refine the classification results of
anchored classes, DPartner provides a configuration file in
which the naming patterns of anchored classes such as “an-
droid.hardware.usb.*” can be listed. In fact, the automatic

classification procedure is carried out based on a predefined
naming pattern list that takes effect just like the configura-
tion file. At present, we have predefined 63 and 72 nam-
ing patterns for Android 2.1 and 2.2, respectively. Compared
with Android 2.1, Android 2.2 has 96% naming patterns un-
changed, 1% deleted, 1% revised, and 2% added. Developers
can edit the configuration file to make the classification step
adapt to the specific structures of each unique Android app
and the platform. Of course, DPartner can force a movable
class to be anchored by indicating it in the configuration file.
For instance, developers can write “cn.edu.pku.password” in
the file so that DPartner will automatically classify this class
to be an anchored one.

3.2 Generate Proxies
One of the biggest challenge when generating proxies is to
make a proxy act exactly like its proxied class. For instance,
the app class X invokes the methods of another app class
N. In the original code of X, a casting operation is done on
N to N’s parent NParent. If we just change N to NProxy in
X’s code, but not let NProxy extend class NParent, the cast-
ing operation will fail. Therefore, the proxy generated by
DPartner will have the same program structure as the prox-
ied class. Especially, the proxies themselves will maintain
the same hierarchical structure as the proxied classes. For in-
stance, N extends NParent, NProxy should also extend NPar-
ent’s proxy, so that any invocations to the inherited methods
and constructors in N from NParent, can be forwarded first
from NProxy to NParent’s proxy, and finally to NParent.

Java interface is used to separate the external represen-
tation and the internal implementation of a class. From the
view of an interface, the proxy class and the proxied class
are the same if they implement the same interface. There-
fore, DPartner will automatically extract the interfaces to
represent an app class and its proxy. For instance, there is
an app class N, DPartner will (1) extract all the method sig-
natures of N to form an NIntf interface; (2) make NIntf “ex-
tend” the NParentIntf interface of N’s parent NParent, so
as to maintain the inheritance hierarchy; (3) make N imple-
ment NIntf ; and (4) make NProxy also implement NIntf. Af-
ter that, DPartner will rewrite all the other classes (e.g., the
class X) from using N to NIntf. However, to the static meth-
ods of N, as they are not allowed in Java interfaces, DPartner
will directly use the corresponding static methods of NProxy
to forward the method invocations.

3.3 Transform App Classes
The app classes should also be rewritten to adapt to the
offloading requirements. Given an app class, DPartner will
automatically transform it using the following transformers:

1. Field2Method transformer: The non-private fields of a
class, i.e., with the public, protected, or null modifier, can be
used by other classes outside of its class scope. However, if
the class is offloaded, its callers can never get the reference to
these fields. To solve this problem, the transformer will au-
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Figure 6. The treatment to (Integer) array type

tomatically generate the public getter/setter methods for the
non-private fields of a given class X, and then change their
modifier to private. After that, the transformer will change
all the classes that get/set the fields of X to use the corre-
sponding getter/setter methods. In addition, to help state syn-
chronization, the transformer also generates the getter/setter
methods for the private fields. In this way, the inner states of
a class instance can be collected and injected to enable state
synchronization when the computations of a class instance
are offloaded on-demand.

2. Array transformer: Given a class N that has an array
type field being used by another class X, if X changes the el-
ement value of the array, N will see the changed value. That
is because, in Java, an array is passed by reference. However,
if X and N are running in different VMs, the array has to be
passed by value between X and N, so that it can be trans-
ferred over the network. Under such a circumstance, X and
N each have a copy of the array. If X changes the value of
its copied array, but does not pass the array back, N will still
use the old array, which makes the array value inconsistent.
Therefore, the pass-by-reference feature of arrays should be
kept. The array transformer wraps an array by using a func-
tional equivalent class shown in Figure 6, which encapsu-
lates the get/set operations of an array.

For example, class N has a field intArray with the Integer
array type. Class X changes the value of intArray as the
following code:
n.intArray[5]=3;

Then the above code will be replaced by the following
code:
Integer Array Dimension1 Intf arrayIntf =

n.getInteger Array Dimension1();

arrayIntf.aastore(5, new Integer(3));

//where n is an NProxy object represented by NIntf.

//arrayIntf is an Integer Array Dimension1 Proxy

object represented by Integer Array Dimension1 Intf.

In this way, the get/set operations in X on the intArray
will be intercepted by the corresponding proxy class, and
finally be forwarded to N. Otherwise, these operations will
be done directly by using the aastore/aaload bytecode in-
structions that cannot be intercepted, which will lead to the
value inconsistency of intArray in X and N. Transforming
multi dimensional array is similar to single dimensional

A

P

B

I

CD

<<use>>
call‐value=10

<<use>>
call‐value=6<<use>>

call‐value=3

<<extend>>
call‐value=10

<<implement>>
call‐value=10

Figure 7. The classes relationships in a call graph

array. For example, Integer[][] will be wrapped as an In-
teger Array Dimension2 object. The type of the “ array”
field will be changed to Integer Array Dimension1. The
get/set operations on the one-dimensional elements will
also be changed to the aaload/aastore methods of the In-
teger Array Dimension1.

3. ServerObject transformer: To make sure an invocation
received by a proxy is correctly forwarded to the correspond-
ing proxied class instance, this transformer will make an app
class implement a specific ServerObject interface, which has
two methods: getID and getProxyForSerializing. The getID
method will return an Integer value to identify the app class
instance, which is used to correlate this object with its proxy.
The getProxyForSerializing method is used to handle the ob-
ject serialization issue in the callback style method invoca-
tion described in Section 3.6.

4. Other transformers: They handle the specific features
of classes, including the anonymous constructor, inner class,
“abstract” keyword, “final” keyword, etc. Their details are
published on the website of DPartner [8].

3.4 Cluster App Classes
To improve the performance of runtime decision about
which movable classes to offload, DPartner will cluster the
frequently interacted classes and to offload them as a whole.
It treats each app class as a node in the call-graph [26] of
an Android app. The edge between two nodes means that
the classes have one of the three relationships: extend, im-
plement, and use. As shown in Figure 7, class A extends P,
implements I, and uses class B, C, and D. The call-value,
i.e., edge weight, from A to B is ten, which means that by
static bytecode analysis, it is found that A calls the methods
of B ten times in its code. The call-value from A to C is six,
which is less than that of A to B. It denotes that A depends
on B more than on C. Class P is the parent of A, however,
by code analysis, the method call from A to P may be less
than that of A to B. In order to highlight the importance of P,
DPartner will calculate the maximum call-value from A to
other nodes, then assign this value to the edge from A to P.
Thus in the following clustering procedure, A and its parent
P will more likely be clustered together. DPartner will do
the same thing on the edge of A to I.

DPartner treats the above call graph as G=(V, E), where
V is the set of nodes in the graph, and E is the set of edges.
A cluster is defined as a sub-graph G’ = (V’, E’), where
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V’ ⊆ V, and E’ ⊆ E. The nodes in V’ has a much higher
call-value with each other than with the nodes in V - V’.
DPartner employs the Girvan and Newman [22] (shorten
as G-N), a classical and often used clustering algorithm,
to reveal the clusters in a graph. In the G-N algorithm, the
“betweenness” of an edge is the number of shortest paths
between all pairs of nodes that pass through the edge in
graph G. The sum of the call-value of the edges on the
shortest path between two nodes is smaller than that of all
the other paths connecting the same nodes. The edges lying
between clusters are expected to be those with the highest
betweenness and the lowest call-value. Thus by removing
such edges recursively, G-N algorithm can find a candidate
cluster-separation of a graph.

DPartner uses static analysis to calculate the call-values.
Comparing with dynamic analysis, the static one does not
need extra auxiliary inputs such as test cases, thus can be
carried out automatically. However, the call-value calculated
by static code analysis may be imprecise because the number
of method-calls lying between the loop and the jump-like
instructions cannot be calculated precisely unless the code is
actually executed. For instance, the method call from A to D
in Figure 7 is put in a while loop. By static code analysis, it is
found that A calls D 3 times. When clustering, A and C will
more likely be clustered together because they have a higher
call-value than A to D. However, when the app is running, A
will call D 3n times (n is the loop number) . If A and D are
not clustered together and are offloaded into different VMs,
their in-between network communication will be very high.

Fortunately, some research projects show that the closely
related classes often have highly similarity in semantics [25].
Thus, DPartner leverages the semantic similarity informa-
tion to modify the call-value between each two classes for
making the value more accurate. DPartner analyzes the
names and contents of each two class files to decide their
semantic similarity. It will segment the class name and the
textual contents of a class file into a term vector: T = <t1, t2,
t3, ..., tm>. The textual contents include the names and types
of methods, local variables, etc. For simplicity, we use the
class name as an example. There are two classes, class1 with
name1: “insa.android.andgoid.strategy.Pattern”, class2 with
name2: “insa.android.andgoid.strategy.PatternStone”. name1

will be segmented as <insa, android, andgoid, strategy,
pattern>; while name2 will be segmented as <insa, an-
droid, andgoid, strategy, pattern, stone>. Then by using the
Jaccard Coefficient, a classic term-vector based text match-
ing algorithm [23], we can tell whether name1 and name2

have a high similarity in texts, which indicates the corre-
sponding classes may be highly related. To make it more
clear, the semantic similarity of these two classes is calcu-
lated as follows:

ijji

ij

jiji
NNN

N
TTJacSimclassclassSemSim

++

== ),(),(

Table 1. Class Clustering
1. c = inputApplicationClasses()
2. g = buildCallGraph(c)
3. callValue = computeCallValue(g)
4. semSim = computeSemSim(c)
5. callValue = updateCallValue(callValue, semSim)

6. bset = computeBetweenness(g, callValue)

7. while (clustersnumber < threshold)
8. bmaxSet = maxSet(bset)

9. eremovedSet = removeEdges(bmaxSet)

10. g = g - eremovedSet

11. bset = computeBetweenness(g, callValue)

12. clusters = disconnectedSubgraphs()

In the above equation, Nij represents the total number
of terms contained in both Ti and Tj . For instance, the
term “pattern” appears in both name1 and name2, so it
will be counted in N12. The term-containing check will be
performed at the etyma level. That is to say, if “patterns”
appears in Ti, and “patterned” appears in Tj , these two
will be considered as the same one. Ni represents the total
number of terms contained in Ti but not in Tj . Nj represents
the total number of terms contained in Tj but not in Ti.
DPartner will add such a SemSim value to the call-value of
each corresponding edge in an app’s call-graph as below, so
as to use the G-N algorithm to reveal the class clusters. The
new call-value is calculated as follows:

The whole clustering procedure is shown in Table 1.
The ranges of the threshold are [1, Nclass number], where
Nclass number is the number of classes in a given Android
app. Therefore, the extreme cases of clustering are: (1) all
the classes belong to a single cluster; (2) every single class
belongs to its single class cluster. DPartner will iterate the
values in [1, Nclass number] to get the clustering hierarchy
graph of a given Android app as shown in Figure 8.

For example, when threshold is 2, the given app classes
are clustered into two clusters. One cluster is composed of
class a, c, d, e and f. The other is composed of b, g, h and i.
As the second cluster contains anchored classes, i.e., b and
g, thus this cluster is considered as an anchored class cluster,
which means that the classes in such a cluster should never
be offloaded together to execute on the server.

DPartner will store the above clustering information into
the refactored Android app. Such information will be lever-
aged by the endpoint to decide which classes should be of-
floaded as a whole at runtime. To reduce the overhead of
runtime decision, the endpoint leverages a selective moni-
toring strategy, i.e., it monitors only the execution trace of
some of the most computation-intensive movable classes. If
one monitored classes is predicted to be suitable for offload-
ing, the other classes that are closely related to it will also be
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Figure 8. The clustering hierarchy graph

offloaded when necessary. For example, the most computa-
tion intensive class of an Android app is a. If the endpoint
predicts that a should be offloaded, then it will search the
clustering hierarchy graph from the top down to find the first
movable cluster that contains a and meanwhile with all its
classes being suitable for offloading. At first, the endpoint
examines Level-1 in Figure 8, and finds that the cluster at
Level-1 is anchored. Therefore, the endpoint goes on to ex-
amine Level-2. The movable cluster at Level-2, i.e., the clus-
ter {a, c, d, e, f}, happens to contain a. At this time, the end-
point will use the prediction algorithm presented in the next
section to check whether the classes in the cluster are all
suitable for offloading. Otherwise, it will go on to search the
next level to find a cluster that can be offloaded as a whole.
The extreme case of the end of searching is at Level-9, where
the endpoint will surely find a cluster being suitable for of-
floading, i.e., the single class cluster with only class a.

3.5 Determine the Computations to be Offloaded
As shown in [27], a class that has more bytecode instructions
is usually the one that costs more computing resources to
run, e.g., CPU and memory. Therefore, DPartner calculates
the instruction numbers of each movable app class to find
the top n (e.g., n=3) computation intensive classes. Then
it will store these information into the refactored app. The
endpoint will monitor only these top n classes to decide
whether offloading is necessary by executing the following
prediction algorithms at regular intervals (e.g., 1 second).
The monitoring of the other classes is carried out as required,
which helps reduce the runtime overhead on the smartphone.

A class instance must satisfy both the following two for-
mulas when it is predicted to be suitable for offloading:

(a) ∀method m of class c, tm phone/tm offload = tm phone

/(dm input/r + tm phone/i + dm output/r) ≥ α, where α ≥
1.5. tm phone is the execution time when m is running on
the phone, while tm offload is the total execution time when

public class NProxy extends NParentProxy

implements NIntf {

public SIntf methodM(SIntf s, TIntf t){

return (SIntf)

ProxyFacade.getEndpoint().invokeMethod(

"foo.bar.N", //offloaded class

this.serverobjID,//class instance ID

//bytecode-level method signature

"methodM(Lfoo/bar/intf/SIntf;➥

Lfoo/bar/intf/TIntf;)➥

Lfoo/bar/intf/SIntf;",

new Object[] {s, t} //parameters

);

}//end methodM

}//end NProxy

Figure 9. The method forwarding chain from a proxy to the
endpoint

m is executed on the server; dm input is the method’s input
parameters in bytes; dm output is the method’s return values
in bytes; r is the data transmission rate over the network;
i = cpuserver/cpuphone is the CPU cycle ratio between the
server and the phone.

(b) (Ecpu offload + Ewifi or 3G) ≤ Ecpu local. E is the
Android app’s power consumption per time unit, e.g., 1
second. The inequality means that if class instance c is
offloaded, the app’s power consumption should never be
greater than that when c is running on the phone. Ewifi or 3G

can be calculated by monitoring the Wi-Fi/3G config files of
the phone [29] [30]. Ecpu offload and Ecpu local can be cal-
culated by using the mapping algorithm between the byte-
code instructions and energy consumption proposed in [27].

3.6 Offload Computations at Runtime
As shown in Figure 5, its up to the endpoint to handle the ac-
tual crossing network communication between app classes.
A method invocation from class X to class N is passed first
from X to NProxy (which is represented as NIntf ), then to
the endpoint, and finally to N. An example of such method
forwarding chain is shown in Figure 9. In a method body of
NProxy, the “invokeMethod” method of the endpoint is used
to forward the method invocation to the may-be-offloaded
class N. The parameters of “invokeMethod” are: (1) the class
N’s full qualified class name; (2) the instance ID of class
N. Each NProxy holds an ID of a class instance N. The ID
is initialized when this proxy is created for the correspond-
ing app class instance. Therefore, the endpoint can use the
class name and ID to locate the N instance uniquely; (3) the
bytecode-level method signature. Java bytecode uses “inter-
nal name” [41] to represent a class type as shown in Figure 9.
By using such internal names, DPartner can easily locate the
method being invoked on N; (4) the parameters required for
the “methodM” of N being actually executed.

With the endpoint, the communication between two
classes can be easily optimized. For instance, when class
A and B are located in different VMs, the endpoint has to
pass method invocations through the network stack (e.g.,
TCP/IP). When A and B are both located in the same VM,
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Figure 10. Handling callback-style remote invocation

the endpoint will use the in-VM local object reference to
forward method invocations from A to B. In this way, the
time-consuming network message transmission is avoided.

When invoking methods through the network stack, the
method parameters have to be serialized. We should pay at-
tention to the de/serialization mechanism of the caller object
in the callback-style method invocation. For instance, the
class instances of X run on the phone, and the class instance
of N run on the server. An X instance calls the “handle-
Caller(XIntf)” method of NIntf (which represents an NProxy
instance when the method is called) by passing itself as the
method parameter. The invocation will cause the X instance
be serialized on the phone side and then be deserialized on
the server side. What should be noted is that after deserial-
ization, there will be two X instances, one is the original X
instance on the phone, and the other is the copied X instance
on the server. If N processes the copied X on the server, the
operations cannot be forwarded back to the X on the phone,
which will make these two X inconsistent. Additionally, if
X is anchored, it cannot run on the server natively. To solve
the above problems, the serialization of X should make an
XProxy instance being serialized instead of the X instance
itself. Any invocations on the XProxy instance will be called
back to the X instance on the phone.

The serialization of the caller X to XProxy should not im-
pact the normal serialization operation of X. For instance,
when X is normally serialized, it may be designed to store
its fields into the file system. To differentiate these two kinds
of serialization operations, DPartner (1) first makes X imple-
ment a unique interface: ServerObject as described in Sec-
tion 3.3; (2) then creates a unique method “getProxyForSe-
rializing” in X through bytecode rewriting. In this method,
an XProxy will be created and associated with the X object
through instance ID. This proxy object will be used as the re-
turn value of the method; (3) the endpoint uses a specific Ob-
jectStream for object serialization. If an object is an instance
of ServerObject, the “getProxyForSerializing” method of the
object will be invoked. The returned proxy object will finally
be serialized and sent to the server. The procedure of such
callback-style method invocation is shown in Figure 10.

In addition to forwarding method invocations, the end-
point is also responsible for the context synchronization
of class instances being offloaded. As described in Sec-
tion 2.3, the general offloading procedure is to activate an
object on the server/phone, deactivate its counterpart on the
phone/server, and synchronize the object state from one side
(e.g., phone) to another (e.g., server). The getter/setter meth-
ods of the offloaded object are used to collect and inject its
states as described in Section 3.3. Dpartner collects class
relationships using proxies, and tracks newly created ob-
jects using the “reflection” mechanism [42] together with
a hashtable-like data structure. Additionally, the specific
“SmartObjectInput/SmartOutputStream” are used to check
whether a referred object of the offloaded one is serializable.
If not, these streams will un/wrap the object using “NotSeri-
alizableObjWrapper”, which tries to de/serialize the object’s
fields recursively, and send the serialized data to the other
side to keep context synchronized.

Other communication related code, e.g., call-try, dead-
lock remover [21], and distributed garbage collection [31]
are also implemented in the endpoint to form an interception
chain for method invocation, which can greatly help improve
the quality of the crossing network communication. The de-
tails can be found at the project website [8].

4. Evaluation
The goals of the evaluation are to (1) validate whether DPart-
ner is applicable to offload real-world apps with reasonable
costs; (2) compare the performance of offloaded apps with
the original ones; (3) compare the battery power consump-
tion of offloaded apps with the original ones; (4) test whether
on-demand offloading can really benefit the phone users.

4.1 Experiment Setup
Currently, Wi-Fi is widespread in China for regions like
schools, hospitals, malls, etc. For instance, The China Tele-
Com corp. has setup thousands of free Wi-Fi hotspots across
the city of Beijing [34]. Therefore, we evaluate DPartner
mainly with Wi-Fi connectivity. The tested smartphone is
an HTC tattoo [28] with 528MHz CPU, 256MB RAM and
Android 2.1. The server is a PC running Ubuntu 8.04 with
2.1GHz dual-core CPU and 1GB RAM. The phone and the
server are connected by Wi-Fi with 50ms RTT (Round Trip
Time). The server uses NDIS intermediate driver [32] to add
a controlled amount of queuing delay to the network path,
which helps simulate different RTTs between the phone and
the server for evaluating the offloading effects under differ-
ent network conditions. We measure the battery power con-
sumption of the phone by the PowerTutor Android app [29],
which gives the details of the power consumption for each
targeted Android app.

We evaluate DPartner on three real-world Android apps
shown in Table 2. As described in [7] and [10], the apps
worth offloading are usually the computation intensive ones
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Table 2. The Android apps for evaluation
Features Linpack Chess Game 3D Car Game
UI GUI GUI GUI
Interactive No Yes Yes
Computation-Intensive High High High
Data-Intensive Low Medium High
Multi-Thread No Yes Yes

such as the image/audio/text processing apps and games,
which fall into the following Android Market categories:
entertainment and games, media and video, music and au-
dio, books and texts, and photography. More than 50% of
487,601 apps on Android Market in July 2012 [33] belong
to these categories, and we selected three typical ones for
evaluation. Evaluations on other apps are available on the
project website [8].

Table 2 shows the features of the three apps that are im-
portant to offloading. The first app is the Linpack bench-
mark [35] that carries out numerical linear algebra compu-
tations. The second is a chess game called Andgoid [36],
an interactive app that allows a human player to place chess
pieces by using the touch screen of the phone. The human
and AI player each runs in a separate thread. It is more data-
intensive than the Linpack app because when it is the turn
of the AI player, all the chess piece positions on the chess
board will be transferred to the AI class to compute the po-
sition of the next piece. The third is a 3D car game called
XRace [37], a more interactive Android app. The car’s di-
rection and speed are controlled by the gravity sensor of the
phone. It is also a multi-thread program. Comparing with the
other two apps, the car game is the most data-intensive be-
cause it reads many data to form the 3D racing scenario, and
its collision detection logic has to take in many car position
data to check whether the car is running out of the road or
colliding with the boundary fence. All the above three apps
are computation-intensive, which means that they are much
more suitable to be offloaded to take advantage of the pow-
erful processing capability of the server.

4.2 Performance of Refactoring
Table 3 shows the refactoring performance of DPartner on
the three Android apps. The size of the app after refactoring
will be increased because DPartner rewrites each app class
and generates proxies and interfaces for them. The endpoint
code are also linked into the app. Since the size of smart-
phone’s memory keeps growing and Android supports the
“memory to SD card” app-installation feature, the increase
of app size is acceptable. The refactoring time increases with
the total number of bytecode instructions (just like the lines
of code) of the Android app, which is also acceptable in prac-
tice because refactoring is performed before runtime.

To some extent, the percentage of movable classes im-
plies the possibility and flexibility of computation offload-
ing. In our experiment, the Linpack app has only 1 movable

Table 3. The refactoring performance of DPartner
Measurements Linpack Chess Car
Original app size (KB) (.apk file) 75 233 12431
The app size after refactoring (KB) 107 306 13216
Size increased (KB) 32 73 785
# of classes in the original app (#: number) 36 43 72
# of classes after refactoring (excluding the
classes that make up the app endpoint)

101 152 246

# of generated proxies 36 43 72
# of generated interfaces and other classes 29 66 102
# of classes that make up the app endpoint
(using the TCP/IP communication service)

53 53 53

Total # of increased classes 118 162 227
Total # of methods in the original app 75 177 541
Total # of methods after refactoring 216 539 1642
Total # of bytecode instructions in the class
methods of the original app

8219 16911 86524

Total # of bytecode instructions in the class
methods of the refactored app

12982 28905 110538

# and % of movable classes
1 31 39

(2.8%) (72.1%) (42.2%)
Refactoring time (s) 20.2 43.7 219.8

class, i.e., the Linpack.class, which performs algebra compu-
tations. The chess game has 31 movable classes, which are
all used for different AI algorithms. The anchored classes
of the above two apps all deal with UI interactions. The
car game has 39 movable classes while its anchored classes
control the gravity sensor and draw images with Android
OpenGL ES library [46].

In the movable classes, the most computation intensive
one is com.greenecomputing.linpack.Linpack in Linpack,
insa.android.andgoid.strategy.MonteCarloAI in the chess
game, and com.sa.xrace.collision.Line2f in the car game.
These three classes will be monitored by the endpoint at
runtime as described in the last paragraph of Section 3.4. Ta-
ble 4 shows the movable clusters containing the monitored
classes. For each app, the movable clusters are arranged
in the hierarchical structure just like Figure 8. We manually
checked the clustering results and found that all these classes
were indeed closely related, which shows the correctness of
clustering. Take the 3D car game as a example, the classes
such as Line2f, AABBbox, and MathUtil are all used together
for collision detection.

4.3 Comparison of App Performance
We compared the performance of the above three apps by
running them in eight different scenarios. In the first sce-
nario, the original apps run entirely on the phone. In the next
scenario, the refactored apps run entirely on the phone. In
the following four scenarios, the clustered classes in Table 4
are offloaded to always execute on the server. The phone and
the server are connected using Wi-Fi with different RTT val-
ues (50ms, 100ms, 150ms, and 200ms). The exact clusters to
be offloaded are at Level-i, Level-j, and Level-k for the three
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Figure 11. The performance comparison of the Android apps running in different scenarios. Offload∗ is a special offloading
test: we force apps to offload only the class that is the most computation intensive, and the RTT value of the test is 50ms

Figure 12. The power consumption comparison of the Android apps running in different scenarios

Table 4. The movable cluster containing the monitored class
App Cluster Level The Classes in the Movable Cluster
Linpack Linpack Level-i (i≥1) {Linpack}

Chess AI
Level-j (j≥1) {MonteCarloAI, UCTNode}
Level-(j+1) {MonteCarloAI}

Car Collision

Level-k (k≥1) {Line2f, AABBbox, Rectangle, MathUtil,
Matrix4f, Point2f, Point3f, Plane3D, Colli-
sionHandler}

Level-(k+1) {Line2f, Rectangle, MathUtil, Matrix4f,
Point2f, Point3f, Plane3D}

Level-(k+2) {Line2f, Rectangle, MathUtil, Point2f}
Level-(k+3) {Line2f}

apps, respectively. In the seventh scenario, we force apps to
offload only the monitored class, i.e., Linpack, MonteCar-
loAI, and Line2f executed on the server during the test with
50ms RTT, so that we can test whether clustering can really
help avoid the high overhead of the crossing network com-
munication. The final scenario is for adapting the offloading
and will be discussed in Section 4.5.

The performance comparison results are shown in Fig-
ure 11. We can see that, running the refactored app entirely
on the phone will increase the execution duration slightly
compared with the original app. For instance, in the Linpack
test, one run of the original Linpack costs 3.734s, while the
refactored Linpack costs 3.792s, i.e., with an overhead of
0.058s. For another instance, the time cost for drawing 100
frames of the refactored 3D car game running entirely on the
phone is 0.367s slower than the original app. The slight in-

crease of execution time is due to that method invocations
between local classes will be forwarded by the proxies and
the endpoint.

However, offloading can really help improve the app per-
formance. For instance, when offloading the Linpack cluster
to the server, the execution time of the same test with 50ms
RTT is just 0.078s or reduced by 98%. The time for the AI to
calculate the chess piece position in the original chess game
is 13.63s on average, while the time for the refactored chess
game with the AI cluster being offloaded is just 1.681s or re-
duced by 88%. The execution time for drawing 100 frames
in the car game is reduced by 70%. The reason for the great
performance improvement is that the computation intensive
code is executed on a more powerful processor of the server
other than the phone’s own processor.

The quality of the network impacts the offloading effect
significantly. If the RTT value becomes larger, the perfor-
mance of the offloaded app will get decreased due to the fact
that more time will be spent on network communication. For
instance, when RTT is 50ms, drawing 100 graph-frames in
the 3D car game will cost 3.925s. However, when RTT is
200ms, this value is just 6.881s or is increased by 75%.

Offloading only the most computation intensive class but
not the class cluster it belonged to will often put a negative
impact on the app’s performance, and even make offloading
unworthy. For instance, in the “Offload*” test of the chess
game, the time cost for the AI player to calculate the chess
piece position is 8.211s; while offloading the AI cluster (i.e.,
the cluster containing the MonteCarloAI and the UCTNode
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classes) can cost only 1.681s to finish such a computation.
For another instance, in the “Offload*” test of the 3D car
game, drawing 100 frames will cost 15.679s, which is even
longer than that of the original app running on the phone.
The total time can be divided into three parts: (1) phone,
the time spent on the phone; (2) network, the time spent on
the network; (3) server, the time spent on the server. The
time spent on the network increases sharply in “Offload*”
(accounting for 63% of the total execution time of this test,
as shown in Figure 11). Thus we can see that offloading in
the cluster unit can greatly improve the performance of an
offloaded app, because it reduces the unnecessary network
communication between the parts on the phone and the parts
on the server.

4.4 Comparison of App Power Consumption
The power consumption results are shown in Figure 12.
When running the refactored app entirely on the phone, its
power consumption will increase slightly compared with the
original app, because the proxies and the endpoint in the
refactored app cost energy to run. We can also see that, as
offloading makes some computation intensive code be exe-
cuted on the server, the energy consumption of an offloaded
Android app is often reduced. For instance, in the Linpack
test, running the benchmark one time will cost 3.28 Joules,
while the result of the offloaded Linpack with 50ms RTT is
just 0.54 Joules or reduced by 83%. What should be noted
is that, the power of the Wi-Fi on the HTC smartphone we
used is about 0.78 watt [28], which may make the offloaded
app’s power consumption be greater than that of the original
app. However, we get very small energy consumption (e.g.,
0.54J) in the offloaded tests because: (1) when the Wi-Fi de-
vice is not working, it will enter a sleep phase for saving en-
ergy. The power consumption in such a phase is about 30mJ
on the tested smartphone [28]; (2) In the Linpack app, one
execution of the benchmark will run the Linpack class in-
stance 3 times to get the average test results. The number of
runs (i.e., 3) will be sent as a parameter to the Linpack class.
Therefore, in the offloaded app, the Wi-Fi channel will de-
liver the method request for linpack-calculation just once,
and the server will execute the Linpack class instance three
times before returning the average results. Thus the power
consumption of the Wi-Fi is further reduced; (3) the time for
sending one method request is very short, e.g., usually less
than 10ms. Therefore, the total power consumed by Wi-Fi
will not be much when the number of the crossing network
communication is relatively small. However, as shown by
the “Offload*” test in Figure 12, if the network communica-
tion becomes too frequent, the power consumption of Wi-Fi
will increase. Thus the whole power consumption of the of-
floaded app will also increase. For instance, when offload-
ing only the Line2f class of the 3D car game, the app will
consume 30.86 more Joules than offloading the whole Col-
lision class cluster. A lot of energy is wasted on the crossing
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Figure 13. The app performance during on-demand of-
floading

Table 5. The on-demand offloaded computations in detail
Time RTT Offloaded Computations

Description
(s) (ms) Linpack Chess Car
0 200 Level-i Level-j Level-k offloaded execution,

performance decreases
with the increase of RTT

15 250 Level-i Level-j Level-k
30 300 Level-i Level-j Level-k
45 350 Level-i Level-j Level-k network packet loss,

invocation retry, from
offloading only the
suitable computations to
offloading none

60 400 Level-i Level-(j+1) Level-(k+1)
75 450 Level-i Level-(j+1) Level-(k+2)
90 500 Level-i Level-(j+1) Level-(k+3)
105 550 None None None
120 600 None None None local execution

network communication between the closely-related but not-
together-offloaded classes.

4.5 The Effect of On-Demand Offloading
The last scenario in Figures 11 and 12 shows the perfor-
mance and power consumption of the three apps when of-
floading is adapted during the RTT value changing from
200ms to 600ms gradually in 120 seconds. The correspond-
ing details are presented in Figure 13 and Table 5. We can
see that the performance plot of the apps can be divided
into 3 regions. Region-1 is 0∼30s when RTT increases from
200 to 300ms gradually. During this period, the offloaded
computations are the Level-i cluster of Linpack, the Level-
j cluster of chess, and the Level-k cluster of car game (see
Table 4). The app performance decreases with the increase
of RTT. Region-2 is 30∼105s when RTT increases from
300 to 550ms. The app performances during this period fall
sharply. Network packet loss has happened in this period,
which causes the endpoint to retry method invocation several
times. When found that the offloaded computations fail to
satisfy the offloading requirements described in Section 3.5,
the endpoint will draw these computations back to execute
on the phone. For example, the endpoint of the car game
will first draw back the computations of the classes in cluster

244

ha
l-0

07
51

65
6,

 v
er

si
on

 1
 - 

14
 N

ov
 2

01
2



(Level-k) - cluster (Level-(k+1)), that is, the class instances
belonging to cluster (Level-k) but not to cluster (Level-(k+1)
will be drawn back to execute on the phone (see Table 4
and 5). At this point, the offloaded computations are just the
class instances of the cluster Level-(k+1). As RTT increases
continuously, the endpoint will change the contents of the
offloaded computations to maintain the performance as de-
scribed in Section 3.4. For example, the offloaded compu-
tations of the car game changes from Level-(k+1) to Level-
(k+2), then to Level-(k+3), and finally to none. In the 105th
seconds, all the computations of the tested apps have come
back to execute on the phone till the end of the test as shown
in Region-3 of the plot.

4.6 Experiments on 3G Network
As 3G has become a widely accepted way to connect a
smartphone and the servers in Cloud, we continue to test the
refactored apps with 3G connectivity.

We use a server in our Cloud platform [47], which can
be publicly accessed using 3G. The server is a Ubuntu 8.04
Xen VM [48] with 2.0GHz four-core CPU and 1GB RAM
running on IBM blade HS22. We use the Chess app in the
experiment with the experiment setup remained the same as
previously, except that the offloaded cluster is accessed using
3G. The remained parts of the app on the phone use HTTP
instead of TCP connections to interact with the offloaded
parts of the app running on the server. The RTT value of the
3G test is about 360 ms, the upload speed is 23.4kb/s, and
the download speed is 28.9kb/s.

Figures 14 and 15 present the performance and power
consumption results, respectively. We have three observa-
tions from the results. First, offloading can really help im-
prove the app performance a lot even if we connect the phone
with the server using a relatively slower network connection
of 3G instead of Wi-Fi. The average execution time of “one
round of Chess AI” is 2.426s or reduced by 82.2% in 3G
test compared with that of the original app running entirely
on the phone. Second, The performance of the server greatly
affects the offloading effects. The Cloud server we used in
the experiment is much more powerful than the PC we used
in the prior tests. Therefore, the time delay brought by the
slow network connection of 3G can be partly offset by the
high computing capability of the Cloud server, and the fi-
nally obtained offloading effects are still very good. Third,
3G costs more energy than Wi-Fi. The power consumption
of “one round of Chess AI” with Wi-Fi is 1.01 Joules on
average. The consumed energy increases to 2.56 Joules in
the 3G test. The above results indicate that offloading can
save energy and improve performance for smartphone apps.
However, this usually depends on the server’s performance
and the amounts of data exchanged through the network.
Therefore, computation offloading is more suitable to of-
fload computation-intensive apps with only a small amount
of data exchanged between the server and the client [7], es-
pecially on 3G network.

Figure 14. The chess’s performance in 3G test

Figure 15. The chess’s power consumption in 3G test

5. Related Work
The idea of using a strong server to enhance the process-
ing capabilities of a weak device (e.g., mobile phone) is not
new [7]. Many early research projects have tried to automat-
ically partition a standalone desktop app to have some parts
of it executed remotely on the server. The research on mobile
computing then leverage such an idea to realize computation
offloading on a smartphone.

Coign [12] is an early work on computation offloading.
It takes the binary code of a Windows .COM application,
then by using code interception and rewriting, it turns the
app into a DCOM application with some COM components
running on a common PC (i.e., a weak device) and the rest
running on a powerful server (i.e., a strong surrogate). In
this way, the performance of the original application can be
improved. J-Orchestra [13] and JavaParty [14] are the early
work on offloading standalone desktop Java applications. J-
Orchestra works on the Java bytecode level, while JavaParty
works on the source code level. They both require develop-
ers to manually tell the offloading tool about which class can
be offloaded. For instance, J-Orchestra provides a GUI to
ask developers to select the can-be-offloaded classes. Java-
Party asks developers to annotate the source code with the
“Remote” keyword. Then the compiler provided by these
tools will compile these selected classes to generate the RMI
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stubs/skeletons for them [45], so that the app is turned to
be a client/server one by using RMI as the communication
channel. The work of J-Orchestra and JavaParty cannot be
directly used for offloading Android apps. One reason is that
Android does not support RMI.

The research on mobile computing follows the above
early work to offload computations running on the phone
to run on the server. AIDE [15][16] can partition a mobile
Java application at runtime through JVM instrumentation. It
leverages a fuzzy control model to decide which class should
be transferred to the server. The code on the phone and the
code on the server can cooperate to work with the support
of the modified JVM. Similarly, CloneCloud [17] augments
the performance of Smartphone apps through clone cloud
execution. It modifies the Android Dalvik VM to provide an
application partitioner and an execution runtime to help apps
running on the VM offload tasks to execute on a cloned VM
hosted by a Cloud server. MAUI [11] requires developers
to annotate the can-be-offloaded methods of a .Net mobile
application by using the “Remoteable” annotation. Then the
MAUI analyzer will decide which method should really be
offloaded through runtime profiling. Cuckoo [10] is an of-
floading framework for Android apps. It requires developers
to follow a specific programming model to make some parts
of the app be offloaded. JDOP [18] mainly focuses on the
algorithm of how to distribute objects among the phone and
the server to achieve high app performance, and provides the
request resolver and dispatcher facilities to make objects be
able to offload. Spectra [19] requires developers to specify
movable classes and modify the application. It then performs
offloading at the granularity of methods. Puppeteer [20] tar-
gets at data adaptation via offloading when facing with lim-
ited bandwidth, and it is applicable for only COM/DCOM-
like component-based applications.

Our offloading approach and the DPartner tool are differ-
ent from the above work mainly in the aspects below. First,
our approach is transparent to developers. We neither re-
quire them to annotate the code of an Android app to decide
which class should be offloaded, nor require them to follow
a specific programming model to redesign the whole app.
Second, offloading at the granularity of class/object makes
our approach be more suitable for object-oriented programs.
Third, our approach can enable the on-demand offloading of
an given Android app, while few of the above existing work
can support such a feature. What should be noted is that, al-
though the research projects such as AIDE, CloneCloud, and
MAUI have tried to make offloading be on-demand. They all
have some obvious drawbacks that can make them be im-
practical. For instance, AIDE and CloneCloud require using
a modified JVM, and MAUI requires developers to anno-
tate source code methods. DPartner does not impose such
requirements. It can refactor any Android app into the one
supporting on-demand offloading, no matter the app is newly
designed or is already installed on a phone.

6. Conclusion and Future Work
In this paper, we presented DPartner for automatically refac-
toring an Android app into one implementing the on-demand
computation offloading design pattern, which can transfer
some computation-intensive tasks from a smartphone to a
server so that the task execution time and battery power
consumption of the app can be reduced significantly. DPart-
ner will be improved and further validated as follows. First,
more experiments with real-world Android apps will be
done, especially on 3G network. Second, to support refac-
toring and offloading obfuscated apps. DPartner leverages
Dexmaker [43] and ASM [44] for bytecode refactoring.
These libraries do not fully support obfuscated bytecode
currently. Third, better measuring tools will be used. For
example, we will use an external current meter to measure
the power consumption of a phone much more accurately,
and use routers to measure the amount of network packets
transmitted. Fourth, more rules and algorithms will be ex-
plored and evaluated for deciding which class should be of-
floaded. We will put further results on the website of DPart-
ner: https://code.google.com/p/dpartner/.
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