
'lrustDroid™'': Preventing the use of SmartPhones for information leaking in

corporate networks through the used of static analysis taint tracking

Zhibo Zhao and Fernando C. Colon Osorio
Wireless Systems Security Research Laboratory and Brandeis University

zhaozb@brandeis.edu, fcco@brandeis.edu

Abstract

Over the last 12 years three important dates have
marked the beginning of a major paradigm shift
in computing and the security models applied to
protect an emerging computing environment -
March 1999, January 9th, 2007, and July 2007.
These dates roughly correspond to the birth of
SalesForce. com, the most successful Software as
a Service (SaS) provider to date, Steve Jobs
introduction of the Iphone" and the discovery of
the Zeus Botnet. These innovations have been
instrumental in enabling a paradigm shift in
computing, away from a corporate network
centric model with Windows end-point devices to
what we called in this manuscript the Circa 2020
Computing Model. In the circa 2020 Computing
model applications and data reside in the Cloud,
the concept of an extended Trust Domain
(network) disappears - there is no corporate
network, and finally the end-point device is a
SmartPhone owned and operated by employees -
Bring Your Own Device (BYOD). In such an
environment, the end-point device is not
"Trusted", and there is a high likelihood that the
BYOD can be used as a channel to leak sensitive
data. In this manuscript, we present a new
mechanism to prevent such a situation. We called
this mechanism ''TrustDroid™ ". TrustDroid™ is a
static analyzer based on taint tracking that can be
used to prevent leakage of sensitive information
by an un-trusted Android SmartPhone.

1. Introduction

Over the last 12 years three important dates have
marked the beginnings of a major paradigm shift
in computing and the security models applied to
protect an emerging computing environment -
March 1999, January 9th, 2007, and July

978-1-4673-4879-9/12/$31.00 ©2012 IEEE 135

2007.These dates roughly correspond to the birth
of SalesForce.com, the most successful Software
as a Service (SaS) provider to date, Steve Jobs
introduction of the Iphone" and the discovery of
the Zeus Botnet. These innovations have been
instrumental in enabling a paradigm shift in
computing, away from a corporate network
centric model with Windows end-point devices to
what we called in this manuscript the Circa 2020
Computing Model. In the circa 202 Computing
model applications and data reside in the Cloud,
the concept of an extended Trust Domain
(network) disappears - there are no barriers to
protect when your data and applications reside
with your vendors, and the end-point device is a
SmartPhone owned and operated by your
employees- Bring Your Own Device (BYOD).

In this paper we describe TrustDroid™, a static
analyzer based on taint tracking, as a solution to
the security concerns created by the paradigm
shift described above. In our model, we assume
that the Android device (BYOD) may run un
trusted applications while accessing corporate
private information, and therefore sensitive
information may be leaked. TrustDroid™

statically performs semantic analysis of a
compiled Android application (APK file). Having
perform such static analysis, it will then determine
if leakage of sensitive information is possible. If
such a possibility exists a warning of information
leakage is delivered to the user of the device.

TrustDroid™ can operate in two modes - off-line
and real time. In offline mode, corporate
resources are brought to bear to the static analysis
problem, and hence performance is not a problem.
However, if we want TrustDroid™ to operate
real-time, then, performance of the algorithms,
both in term of speed and battery/resource

consumption become paramount. Unfortunately,
see [14], traditional taint-checking methodology
incurs unacceptable CPU and memory utilization
overheads that will make such approach
infeasible. Instead TrustDroid™ takes advantage
of the Dalvik virtual machine present in the
Android environment to significantly reduce this
taint tracking overhead. In section 4, we described
how this is accomplished. This manuscript makes
the following contributions. First, a solution to
corporate sensitive information leakage (ex
filtration), called TrustDroid™, is presented.
TrustDroid™ works in standalone mode, and it
requires neither OS support nor source code
modifications, and it is therefore easier to
implement for real-world usage than previously
known solutions.

The reminder of this manuscript is organized as
follows. Section 2 presents a brief introduction of
the Android platform, and provides the necessary
background to the reader in order to understand
the technical underpinnings of TrustDroid™.
Section 3 presents an overview of the
TrustDroid™ approach. Section 4 presents a
detailed design and implementation of the system.
Section 5 demonstrates how TrustDroid™ works,
and finally Section 6 describes future work.

2. Overview of the Android environment

Android is a Linux-based operating system for
mobile devices. Android applications are
developed for and run on a Java Virtual Machine
customized for devices with limited memory and
CPU speed. The VM is named Dalvik, Android
applications are converted from Java Virtual
Machine-compatible .class files to Dalvik
compatible .dex (Dalvik Executable) files before
installation on an Android device.

Unlike most Java VMs, which are based on a
stack architecture, the Dalvik VM is a register-to
register ISP, and therefore all computation is
performed solely on registers. Values must be
loaded from and stored to class fields before use
and after use. Dalvik uses class fields for all long
term storage, unlike hardware register-based
machine which store values in arbitrary memory
locations. Every method of the Dalvik VM

exclusively owns a set of registers. Registers are
used to store local variables and argument
variables. Dalvik VM uses two naming schemes
for registers - the normal v-naming scheme and
the p-naming scheme for parameter registers. The
first register in the p-naming scheme is the first
parameter register in the method. So if a method
has 2 arguments and 4 total registers, then, the
naming schema is shown in the following table.

vO first local register I
vI second local register I
v2 pO first parameter register I
v3 pI second parameter register

In addition to Dalvik Virtual Machine, Android
also provides access to native libraries for
performance optimization and third-party
libraries. Android Native code is written in C/C++
,supported and exposed to Dalvik by the Linux
kernel and its services. Dalvik uses JNI interface
to call native code, while at the same time native
code can make calls back to the Dalvik domain.
Generally speaking there are two kinds of native
methods. These are: (1) system native library
methods, and (2) the user developed native
library.

3. Methodology and Approach

We are seeking a system-wide approach to
monitor the data flow of sensitive information
while delivering reasonable performance. The
approach is to basically use static semantic
analysis on compiled Android byte code to
perform data flow tracking. TrustDroid™

analyzes the byte code in search of entries that
manipUlate sensitive data as specified in the
sensitive information source set (see more details
in section 5). Any such sensitive data found will
be initially marked as tainted with a taint tag, and
this tag propagates when the data is manipulated
by the Bytecode, such as copying one variable to
another variable, or to another memory location
through a function call. Finally if tainted data
flows out through a pre-defined taint sinks (such

136 2012 7th International Conference on Malicious and Unwanted Software

as network interface), then, such operation will be
flagged as a potential leak activity by the
Bytecode.

The basic mechanism of taint checking is tracking
the flow of data transportation through every
instruction executed. However, in order for such
an approach to be feasible two basic challenges
must be overcome. The first challenge is the
classic problem of static versus run-time analysis,
meaning you need to correctly predict the
instruction sequence execution from the compiled
APK file. Thanks to the well-formed DEX file
format and the Dalvik instruction set, we have
been able to design and built an engine which is
able to restore DEX file to a text format that
contains not only instruction sequences but also
the directives of the program. We have challenged
the correctness of our approach by running a
large number of tests, and have been able to
verified that the text format produced by our
engine can always be compiled back to Dex
format. The second challenge is to correctly
understand the semantics of the instructions. The
situation is harder for x86 instructions set, but
much better if the Dalvik instructions set is used.
The Dalvik instruction set itself contains its
semantics [4]. Hence, strictly-formed Dalvik
instructions makes the job of extracting the
semantics a lot easier.

The final challenge to our approach is the run
time performance of taint checking. Traditional
taint checking causes severe performance
degradation. We alleviate this problem in the
following ways. First, our taint tracking is
implemented at different selectable levels of
granularity. For example, in certain scenarios, we
will choose a relatively coarse granular tracking
level to purse a balance between false-positive
and performance. Secondly, TrustDroid™

produces a well-formed intermediate file and
therefore accurately tracks the data flow without
the overhead of running it in a sandbox. Lastly,
thanks to Android's well-defined interface,
sensitive data sources and taint sinks are
abstracted to a simple high level interface, which
to a great extend reduces the workload associated
with traditional taint checking systems.

A word of caution. Currently, our designs works
only with the Dalvik interface. Hence, if other
programming interfaces present in the Android
platform are used, such as user-defined JNI, then
our work is no longer applicable. Having said this
and in theory, the approach taken here can be
replicated to accommodate such cases .. Further,
and according to real-world statistics, see Enck et.
al. [1], the number of applications that use non
Dalvik interface is rather small, hence, our
approach can be practically applied to the
majority of existing real life cases.

4. TrustDroid™

In this section we will introduce the detailed
design and implementation of the TrustDroid™

system from the aspects of semantic analyzing,
taint propagation logic, and taint storage
management.

4.1 The Semantic Analyzer

Semantic analysis begins by processing raw Dex
file. Based on the file format of dex file [2], we
build a parser based on the open-sourced parser
generator ANTLR[3], to parse the structure of a
given Dex file. The token set used by the parser is
build based on the Dalvik byte codes [4]. As a
result, a given Dex file compiled from source
code as in Figure 1 will generate a tree structure
shown here in Figure 2.

Note that the sample source code in Figure 1
retrieves local phone number (sensitive data) and
sends it out through a wireless network. We will
use this code as our example for the remaining of
this section.

Apparently in figure 2, by manually adding
'virtual nodes' (nodes with name starting with I_
are virtual nodes that represent a structure of
source code but not corresponding to anything in
original Dex file), the tree structure contains not
only the executable byte code stream but also the
structure of Java source code.

Therefore we continuously build another tree
parser, which converts the tree structure in Figure
2 into text based descriptions as in Figure 3. The

2012 7th International Conference on Malicious and Unwanted Software 137

text is basically in Jasmin syntax format [5] and
we borrow tokens and directives from Smali[6].

V -retrieve local phone number· /
TelephonyManager phoneMgr;(TelephonyManager)

this.getSystemService(Context.TELEP HONY SERVICE);
String number=phoneMgr.getLInelNumber();

Trustdroid_test.sendin f o(nurnber);

class Trustdroid test

public static void send i nfo(String phoneNurnber) throws
UnknownHostException , IOException

{
Socket socket=new Socket(" 12 7 .0.0.1 ",123);
OutputStrearnWriter writer=new OutputStreamWriter

(socket . getOutputStream());
writer.write(phoneNumber);

Figure 1: source code segment of a sample program

Figure 2: tree structure generated by source code of
class TrustDroid test

The value of the text shown above IS that such
text will serve as the basis for static taint tracking.
The text exhibits the following properties: (1)
everything is strong typed, making taint tracking
easy (2) instructions strictly match Dalvik opcode
(3) it is so close to source code that it embeds the
program call graph in it. Note that all branch
instructions have a label rather than a variable as
operand, making the text itself a good
representation of the call graph of the program.
This call graph forms the basis for our taint
tracking system.

4.2 Taint Propagation Rule
4.2.1 Primitive data taint propagation rule
Syntactically there are three types of operands in
the Dalvik instruction set: register (V), immediate

16, 32 bit, and double-width (64-bit) constants
(#), and type index (index@type). Semantically
however they can represent four distinct types of
data: local variable as V, argument variable as V,
class field as v->index@type, and static
field(index@type). See more details at [4].

. cla�� Ldema/ zhibo/ zhao/Tru�tdroid te.5t;
.:!IIuper Ljava/lang/Object;

-

. !lource "Tru!ltdroid_demoActivity. java"

f direct method!l
.method public !Ita tic !lendinfo (Ljava/lang/String;) V

· regi!lter!l 5
.parameter "phoneNwnber"
· annotation !lY!ltem L da!vik/ annotation/Throw!I;

value = {

}

Ljava/net/UnknownHo!ltException; ,
Ljava/ io/ I OException;

· end annotation

. prologue

.line 42
new-in!ltance vO, Ljava/net/Socket;

con!lt-!ltring v2, "127.0.0. 1"

con!lt/16 v3, Ox7b

invoke-direct I vO, v2, v3}, Ljava/net/Socket; -><init>
(Ljava/lang/String; I) V

.line 43

.local vO, !locket: Ljava/net/Socket;
new-in !Ita nee v1, Lj ava/ iO/OutputStreamwri ter;

invoke-virtual {vO}, Ljava/net/Socket; ->getOutputStream()
Lj ava/ iO/OutputStream;

move-re!lult-object v2

invoke-direct I v1, v2}, Ljava/io/OutputStreamWriter; -><init>
(Ljava/io/OutputStream;) V

.line 44

.local v1, writer: Ljava/io/OutputStreamWriter;
invoke-virtual {v1, pO}, Ljava/io/OutputStreamWriter; ->write

(Ljava/lang/String;) V

.line 45
return-void

.end method

Figure 3.1 Jasmin syntax of class TrustDroid_test

const-stri�g v3, " phone "

invoke-virtual {pO, v3},
Lderno/zhibo/zhao/Trustdroid dernoActivity;->getSysternService
(Ljava/lang/string;)Ljava/l�ng/object;

rnove-result-object v2

check-cast v2, Landroid/telephony/TelephonyManager;

.line 24

.local v2, phoneMgr : Landroid/telephony/TelephonyManager;
invoke-virtual {v2}, Landroid/telephony/TelephonyManager;->

getLinelNurnber () Ljava/lang/String;

rnove-result-object vl

. line 26

.local vl, number : Ljava/lang/String;
invoke-static {vl}, Lderno/z hibo/zhao/Trustdroid test;->

sendinfo(Ljava/lang/String;) V
-

Figure 3.2 Jasmin syntax of source code segment
depicted in Figure 1

As we said before, Dalvik instructions are so well
semantically categorized that it is rather
straightforward to define the taint propagation
rules for instructions that move data across the

138 2012 7th International Conference on Malicious and Unwanted Software

four five types described above. For example,
consider the Dalvik instruction below:

iput vA, vB,jield@CCCC

The semantics of this instruction specify that the
value of instance field identified by field@CCCC
of the object identified by vB should be moved to
register v A. In this case the taint propagation rule
will read: if the value of vB->field@CCCC IS

tainted, then taint v A after the input operation.

The propagation rule for method invoke
instructions is also straightforward. Take one
instruction that invokes a virtual methods in
Figure 3 as example:

invoke-virtual {pO, v3},

tainted as well. Since the called method is not
static, the first argument variable pO is always the
reference of the current object. Then the register
pI in the context of the called method should also
be tainted. On the other hand, whether the result
of the function call v2 should be tainted also is
undetermined at this juncture. Tainting in this
case will depend on the content of the method, a
potential problem. However, based on the
"Reference Taint Propagation Rule" described in
the next section, we will be able to determine
unambiguously if v2 is tainted or not.

The rules that can be applied to cover the Dalvik
instruction set are similar to those just described
in the examples above, hence, we will not list the
complete semantic table for all instructions here.

Ldemo/zhibo/zhao/Trustdroid demoActivity;->getSystemService
(Ljava/lang/String;)Ljava/l;ng/object; 4.2.2 Reference Taint Propagation Rule

move-result-object v2

3: Virtual Method Invocation and Tainting

Semantically, the index of called method in this
instance is present as

Ldemo/Zhibo/zhao/TrustDroid _ demoActivity;
> getSystemService,

meaning the instruction is calling

getSystemSerive of an instance of type
demo/Zhibo/zhao/Trustdroid _ demoActivity.

The beginning L represents the starting of a class
type and the semicolon its end. The reference of
the object instance is stored in pO. Note pO is
actually an alias of vN while N depends on the
context. The argument of the call is stored in v3.
The method prototype
(Lj ava/lang/String;) Lj ava/lang/Object;

implies that there is only one argument of String
type. The move-result-object instruction is an
exception as it is always combined with the
previous instruction. (See more detail of Jasmine
syntax in [5][6]).

Based on the semantics above, we can assert that
if v3 was tainted, then the first argument variable
in the context of the called methods should be

Designing the taint propagation rule for object
references is somewhat different. A typical
scenario in this case will look like the following:

aget v AA, vBB, vCC

The semantics of the instruction above are as
follows: get value in array referenced by vBB at
index vCC, and store in the value register at v AA.
If vCC is tainted, we decide to taint v AA as well,
although the data moved into v AA was not
tainted. For our system to work, it is necessary to
taint a value if the value is retrieved making use
of a tainted index from a table that is. The
rationale for this rule is as follows. Consider an
instance of Malware who surreptitiously. may get
a name from the "Android Contacts". The field
name is of course tainted. Then, the same
Malware can use that name as an index to the
SMS database, retrieve a confidential SMS text
message, and send it out. Clearly, the system must
prevent such data ex-filtration. Therefore the
TrustDroid™ system must also taint the SMS text
retrieved by the tainted name; otherwise there will
be no warning when the SMS text is send out
disclosing confidential information.

4.2.3 Cross Process taint propagation rule

In the Android environment. Android processes
communicates with each via an Interprocess

2012 7th International Conference on Malicious and Unwanted Software 139

Communication Mechanism (IPC), therefore one
Android process could theoretically pass tainted
tag resources to other processes via this IPe. In
the Android environment, the IPC system is called
Binder, and has been designed as a transparent
system to the Dalvik Virtual Machine layer.
Therefore, a process running upon on the Dalvik
VM can call a remote method of another process
just as it was calling a local one. In order to
handle Android's IPC in Dalvik, we can extend
the taint tracking mechanisms described above to
handle the situation. Theoretically our basic
approaches described above can be used for IPC
taint propagation. A detail description of such
mechanisms will be presented in a future
manuscript together with our earlier research on
this topic.

4.2.4 Native Library taint propagation rule

In the Android environment there are two kinds of
libraries that TrustDroid™ is required to handle
properly. These are: (1) the system native library
which is an element of the Dalvik virtual machine
framework, and (2) user-imported libraries. These
libraries are handled differently by TrustDroid™.

We will consider first the system native library
that is part of Dalvik virtual machine framework.
This native library is open-sourced, and it is
distributed with the OS. Further, it does not
change unless the Android OS is externally
patched. In this case, all methods of the native
library can be pre-processed using the taint
tracking system previously described, and store
the results in what we called the "known
semantics library". Hence, when the TrustDroid™

executes a call the resulting execution of the
system native library could be semantically
processed without delay while guaranteeing taint
tracking. In this case, the accuracy of taint
tracking is always guaranteed but more
importantly, performance of the system does not
suffer. Optimizing the performance of
TrustDroid™ is one of our major goals for the
future. At this point, the proof of the TrustDroid™

methodology took precedence.

The second case to be considered is that of user
imported libraries. Although our general design

also works for C/C++ native code, the
implementation would be totally different
resulting from the fundamental difference
between the languages and execution
environments. According to statistics from [1],
less than 4% of Android applications use JNI
interfaces, and many of them are known as
SUSpICIOUS programs that deserve warning.
Therefore for the time being, and as a way to deal
with this issue, TrustDroid™ will raise a warning
flag when the system invokes a non-system 00 .

4.2.5 Secondary Storage taint propagation

rule

At this point in time, the mechanism that
TrustDroid™ utilizes to handle the case when
tainted data is stored in secondary storage, is
simply to taint the entire unit. For example we
taint an entire file if tainted data is written to that
file. The tainted storage unit should be treated as
one of the sensitive data sources in the future. We
lose some granularity in this process, however the
fact is that operations on files are often out of the
monitoring capability of TrustDroid™,
particularly when such files are accessible to other
processes. Therefore by lowering our granularity
we not only gain performance improvement but
also reduce the risk of miss tracking.

This solution is rather coarse, and we are
currently investigating other finer granularity
approaches that do not affect the performance of
TrustDroid™.

4.3 TrustDroid™ Taint Tracking Engine
4.3.1 Overview
The taint tracking engine of TrustDroid™ IS
composed of following four elements: (1) a
source/sink definition set, (2) a file scanner, (3) a
tag management system, and (4) the interface
between this components. The file scanner scans
the output file of the semantic analyzer. When it
finds out data from a sensitive source, it taints the
data and then tracks down through the call graph
till the end or upon reaching a taint sink. During
the tracking process, tainting/clear operations are
sent to the tag management element through the
interface. The file scanner could also scan from
the sink side and track back, until it reaches a
sensitive source.

140 2012 7th International Conference on Malicious and Unwanted Software

The key to our design is the tag management
system. The system must be able to emulate the
existence of all data during execution time (recall
TrustDroid™ performs static not run time
analysis), and maintain tag information.

4.3.2 TrustDroid™ Tag Management System

As discussed in section 4.2.1, there are four types
of data that need to be monitored: local variable,
argument variable, class field and static field.
Local and argument variables are temporary data
that exist in registers while the other two type
reside in memory. The monitor of Local and
argument variables are independent of each thread
while class fields and static field share the same
process memory.

In order to analyze how tainted tag flows,
TrustDroid™ must simulate an execution context
for each thread of every process. As shown in
section 2, Dalvik is a register based virtual
machine, whereas each execution of a method
declares a certain set of registers that it
exclusively owns. These registers are used to store
local variables and argument variables. This can
be shown in our previous example by inspecting
the jasmine text file below:

. method public onC reate (Landroid/os/ B undl

.registers 6

.parameter "savedI nstanc eState"

In this case, the method exclusively declares six
(6) registers, among which two are used to store
parameters (one explicit parameter and another
implicit). Hence, the context of a thread IS

essentially the set of registers it currently uses.

Our tag management uses a similar mechanism to
that of a stack-based system, that is, it maintains a
stack for each thread and creates a frame for each
function call. What is put in the frame is the
register set that is exclusively used by that
particular function. Parameter passing is done
inside the stack: caller leaves parameters in the
stack so they contained the highest numbered
registers of the called function. Actually, this is
very similar to the way Dalvik maintains its
internal stack. Note that TrustDroid™,s tag
system does not need the value of the register but

instead it requires the mapping of register and tag.
Within this context, we will extend each register
by one bit, containing a Boolean value, called it
the bool bit.

As to track the tag of class field and static field,
our tag management system keeps a data structure
for each class instance. Within the each data
structure, there is a mapping of index and tags,
indicating tagging status of each field of the class.
Again, the value of field is not needed, hence, the
size of this data structure remains relatively small.
The reference of a class instance point to
somewhere in the stack while static class contains
no reference.

5. TrustDroid™ Implementations &

Deployment

In order to make TrustDroid™ work well, it
should be properly protected, deployed and
configured in an Android device.

Firstly, and in our current implementation the
problem of protecting the TrustDroid™ itself is not
addressed. We assume that an approach can be
found to handle this problem. Instead, our
approach relies on the integrity of both user space
files and system space libraries .

A key issue that needs to be addressed is where in
the process of running and Android application
should TrustDroid™ be deployed. In our
implementation, we have selected to deploy
TrustDroid™ at the point where an application is
loaded but not yet has begun execution. Such an
approach will imply patching the Android O/S.
Instead, and in order to facilitate the wide spread
deployment of TrustDroid™, we have selected to
have TrustDroid™ work as a common application
that has the ability to accesses the file system and
scan Apk files as scheduled.

Finally, TrustDroid™ success depends on the
correct definition and configuration of sensitive
data source and taint sink. In TrustDroid™ both
sets are configurable and serve as an input to the
system. Clearly, sensitive data sources usually
contains but are not limited to: (1) information

2012 7th International Conference on Malicious and Unwanted Software 141

rich databases, such as contacts; (2) device
identifiers; (3) sensors such as GPS and camera.

Process

Thread 1 ...

� I/O

vl Static Class
Index tag
OxAAAA 1 V2(pO)
OxBBBB 0

�
OxCCCC 0

v/1

IA
VI"

1\1
Class

V2' Index tag
OxAAAA 0
OxBBBB 1

\13'
OxCCCC 0

....

Figu;e 4 stack and class data structure. Dark grayed
block in stack is tainted.

6. Related Work

Previously, Enck, et. ai. describe a data flow
tracking system called TaintDroid [1], which
shares many similarities with TrustDroid™,
However, there exists fundamental differences. At
its core, TaintDroid uses dynamic taint checking
by hooking the Interpreter in Dalvik and patching
the memory system. This implies that in order for
TaintDroid to operate correctly, a patched version
of the Android O/S must be loaded, requiring a
unique customized Android release. Such an
approach creates a severe barrier for practical

™ k ' real-world deployment. TrustDroid wor s III a
standalone in such a way that no patching of the
Android O/S is required. Hence, TrustDroid™

could be deployed in real world situations
transparently. Similar data flow tint tracking
systems include ScanDroid, and A vik, see [9],
[10]. However, in both cases, the approach
requires the processing of source code which
makes it highly unlikely that it could be deployed
in a wide scale.

Researchers at several labs have taken a totally
different approaches that involve the extension of

Android's default permission system to prevent
data ex-filtration. In this category, Nauman, et. ai.
[11] and Zhou et. ai. [12], have extended the
Android permission system to prevent abnormal
access to sensitive data. However, due to the
permission system's coarse granularity, their
approach lacks the resolution needed to prevent
sensitive data ex-filtration. Other researches such

as Ongtang et. aI., see[13], have developed an
approach where as the security of an application is
analyzed based on the access policies of the
system. In this approach, just like in [11], the
main limitation is the granularity/resolution of the
protection provided. In addition researchers at the
Institute for Applied Information Processing and
Communications (IAIK), see Winter [8], have
exploited recent additions to the ARM
architecture implementing the Trusted Computing
environment in a mobile platform. The approach
is based on the idea of the simultaneous creation
of a Trusted and Un-trusted zone utilizing the
ARM architecture special memory management
registers and environment. In this approach, and
unlike previous attempts to build a secure kernel
in the Linux environment, the Zones are managed
by software rather than firmware leading to the
usual concerns while implementing a secure O/S.
Finally, Nauman et.aI., see [7] presents an
architecture to potentially create a remote
attestation service , called TC, that allows a
service provider or a device owner to determine
whether the device is in a trusted state before
releasing protected data to or storing private
information on the phone. The basic limitation of
this approach for real case applications is the fact
that it requires a trusted chain for the trusted
computing environment and remote attestation.
Given the current state of the Android platform
such an approach is not realistic. However, we
believe that a combination of the approaches
described in [7] and [8] can served as the basis for
the creation of a Trusted Mobile device.

7. TrustDroid™limitations and Future Work

As a static analyzer, a significant defect of the
approach presented here is the ability to deal with
the dynamic execution loaded code. As we know,
Java provides an interface to dynamically load
stream into memory and execute that stream. In

142 2012 7th International Conference on Malicious and Unwanted Software

particular, the stream could be encrypted before
being loaded. The ability to perform semantic
analysis on an encrypted stream is hard, however,
one can consider the action of loading encrypted
stream itself as suspicious. Such an approach is
limiting. Hence, in future implementations of
TrustDroid™, this issue will be addressed.

Finally, a key limitation of TrustDroid™ is
inability to support the JNI interface, as discussed
in 4.2.4. This is currently being addressed and
together with a detailed evaluation of our
TrustDroid™ implementation in a real
environment will appear in a future manuscript.

8. References

[1] William Enck, Peter Gilbert, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, Anmol N. Sheth. "TaintDroid: An
Information-Flow Tracking System for Real-time
Privacy Monitoring on Smart phones "To appear
at the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI' 10)

[2] DEX File Format
http://source.android.comltechiDalvikidex
format.html

[3] ANTLR http://www.antlr.org/

[4] Dalvik opcode
http://www.netmite.comlandroidlmydroid/Dalvikl
docslDalvik -bytecode.html

[S] Jasmin,
http://jasmin.sourceforge.net/guide.html

[6] Smali http://code.google.com/p/smali/

[7] Mohammad Nauman, Sohail Khan, Xinwen
Zhang and Jean-Pierre Seifert, "Beyond Kernel
level Integrity Measurement: Enabling Remote
Attestation for the Android Platform",TRUST' 10
Process Proceedings of the 3rd international
conference on Trust and trustworthy computing
Pages I -I S

[8] Johannes Winter, "Trusted Computing
Building Blocks for Embedded Linux-based ARM

TrustZone Platforms", STC '08: Proceedings of
the 3rd ACM workshop on Scalable

[9] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey
S. Foster, "SCanDroid: Automated Security
Certification of Android Applications", In: Sth

ACM Symposium on Information, Computer and
Communications Security. (2010)

[10] Avik Chaudhuri, "Language-Based Security
on Android PLAS", '09 Proceedings of the ACM
SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security

[11] Mohammad Nauman, Sohail Khan, Xinwen
Zhang, ''Apex: extending Android permission
model and enforcement with user-defined
runtime constraints", ASIACCS '10 Proceedings
of the Sth ACM Symposium on Information,
Computer and Communications Security

[12] Yajin Zhou, Xinwen Zhang, Xuxian Jiang,
Vincent W. Freeh, "Taming Information-Stealing
Smart phone Applications (on Android)",
TRUST'l1: Proceedings of the 4th international
conference on Trust and trustworthy computing

[13] Machigar Ongtang, Stephen McLaughlin,
William Enck, Patrick McDaniel,
"Semantically Rich Application-Centric Security",
in Android Security and Communication
Networks , Volume S Issue , John Wiley & Sons,
Inc.

[14] H Yin, D Song, M Egele, C Kruegel, E
Kirda, "Panorama: Capturing System-Wide
InformationFlow for Malware Detection and
Analysis". CCS '07 Proceedings of the 14th ACM
conference on Computer and communications
security
[I S] Trusted Computing Group,
http://www . trustedcomputinggroup.org/

2012 7th International Conference on Malicious and Unwanted Software 143

