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Abstract—Android phones come with a host of hardware
components embedded in them, such as Camera, Media Player
and Sensor. Most of these components are exclusive resources
or resources consuming more memory/energy than general. And
they should be explicitly released by developers. Missing release
operations of these resources might cause serious problems such
as performance degradation or system crash. These kinds of
defects are called resource leaks. This paper focuses on resource
leak problems in Android apps, and presents our lightweight
static analysis tool called Relda, which can automatically analyze
an application’s resource operations and locate the resource leaks.
We propose an automatic method for detecting resource leaks
based on a modified Function Call Graph, which handles the
features of event-driven mobile programming by analyzing the
callbacks defined in Android framework. Our experimental data
shows that Relda is effective in detecting resource leaks in real
Android apps.

Index Terms—Android apps; resource leak; static analysis;

I. INTRODUCTION

To enrich the user experience, Android phones come with a
host of hardware I/O components embedded in them, such as
Media Player, Camera and Sensor, most of which are exclusive
resources or resources consuming more memory or energy
than general. These resources require explicit management.
Absence of their release operations results in resource leaks,
which may lead to performance degradation (e.g., huge energy
or memory consumption), or even system crash.

Unfortunately, resource management bugs are common in
Android programs, for which a number of reasons should be
responsible. Firstly, unlike traditional programming languages,
the Android framework transfers the burden of resource man-
agement to the developers, but the developers might omit
a call to release a resource, on the assumption that An-
droid framework would release the resource automatically.
Secondly, developers tend to focus on the functionalities,
the performance-related problems will not be their concerns.
And they often don’t conduct performance testing before
they release the applications. Thirdly, programmers need to
understand all relevant API contracts, on which they could
easily make incorrect assumptions. Finally, even a scrupulous

programmer can easily fail to release all resources along all
possible invocation sequences of event handlers.

In this paper, we focus on resource leak problems in An-
droid applications. We have built a lightweight static analysis
tool Relda, which can automatically analyze an application’s
resource operations and detect the missing release operations
to help programmers identify their root causes. Klocwork [21]
and FindBugs [14] are static code analysis tools, which provide
analysis of Java source code or Java bytecode respectively.
Klocwork is a commercial software that delivers comprehen-
sive source code analysis solution and complete codebase
inspection for C++, C, C# and Java. It hasn’t provided analysis
of bytecode so far. It inspects a few Android-related re-
sources [22], which are not properly released after use, such as
Media player and Camera. FindBugs is a defect detection tool
for Java that uses static analysis to look for bug patterns, such
as null pointer dereferences, infinite recursive loops, bad uses
of the Java libraries and deadlocks. It also adds detectors for
Android specific coding, but the detectors FindBugs provides
only inspect unclosed Cursor instance and unclosed stream of
Android [15]. Compared with these works, our work provides
a strategy that focuses on Android-platform-related resources,
with Android platform and language features considered. Our
target-specific tool is more comprehensive and precise.

Our analysis focuses on three kinds of resources: ex-
clusive resources, memory-consuming resources and energy-
consuming resources. Their common characteristic is that they
should be released explicitly as specified in the Android API
Reference 1. We propose an automatic solution to detecting
resource leaks based on a modified Function Call Graph (FCG)
analysis, which handles the features of event-driven mobile
programming by analyzing the callbacks defined in Android
framework. We first collect a near-complete resource table
after examining through the relevant 313 classes extracted
from all the 1944 classes in the Android API Reference. The
table includes all the resources that the reference requires
manual release. And then we describe how we automatically

1http://developer.android.com/reference/packages.html
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detect resource leaks in Android apps by analyzing their
bytecode. Finally, we provide experimental data showing the
effectiveness of our tool in detecting various resource leaks in
real apps.

The rest of this paper is organized as follows: In Section II,
we present our resource leak analysis and detection technique
and illustrate how it works. Experimental results are shown
in Section III. Section IV discusses the related works. In
Section V, we give the conclusions and discuss the future
work.

II. METHODOLOGY

Before making further discussions, we first give the defini-
tions of three terms used in this paper:

• isolated/entry points: Functions that are not invoked by
any other function in the program.

• callbacks/handlers: Methods invoked when a user event
is triggered or a certain system state arrives, which is a
feature of event-based programs.

• children: Functions which are invoked by a certain
function.

In preparation for our study, we collected some leak prob-
lems in Android apps from mobile app forums and discussion
groups, and we found that many users complained about
problems of memory shortage, energy drain and application
crashes, most of which are relevant to the use of Camera [8] [9]
or Sensor components [29] [30] [31]. Then we checked the An-
droid API Reference about these components, and categorized
the resources into three classes:

• If a resource is an exclusive resource, a missing release
operation will cause other applications’ endless waiting
for it. For the Camera component, the manual says [7]:
“Call release() to release the camera for use by other
applications. Applications should release the camera im-
mediately in onPause() (and re-open() it in onResume()).”

• As for the Media Player component, the reference
says [24]: “It is recommended that once a MediaPlayer
object is no longer being used, call release() immediately
so that resources used by the internal player engine
associated with the MediaPlayer object can be released
immediately.” This is a memory-consuming resource,
which consumes more memory than general resources.

• Another kind of resources are energy-related resources.
For example, SensorManager lets you access the device’s
sensors through registering it to the SENSOR SERVICE.
We should cancel the registration for the SensorManager
object when we don’t need it. As the manual says about
the Sensor [32]: “Always make sure to disable sensors
you don’t need, especially when your activity is paused.
Failing to do so can drain the battery in just a few
hours. Note that the system will not disable sensors
automatically when the screen turns off.”

In this paper, we aim to detect resource leaks, i.e., situations
where resources should be released manually by the developer
but he/she failed to do so. Figure 1 provides a high-level

Fig. 1. High-level Overview of Our System

overview of our approach. It consists of several key parts. We
first disassemble an application to get the dalvik bytecode [11]
using reverse engineering technique. Then we traverse the
bytecode in sequential order to construct the FCG, which
contains analysis of resource operations and callbacks defined
in the Android framework. Finally we use depth-first search on
the FCG and analyze the class hierarchy to identify unreleased
resources.

A. Key Resource Operations

1) Extract Relevant Classes: We downloaded the Android
developer reference manual, and searched the summary section
of methods of all the 1944 classes in reference folder with
the modification of the keywords (Table I), e.g., the keyword
“unregister” is modified to the style “unregister*(”, which
means matching any member method whose name starts with
the word “unregister”. For example, “unregisterListener(” in
SensorManager is one such case.

TABLE I
KEYWORDS TO MATCH RESOURCE RELEASE METHODS OF CLASSES

abandon cancel clear close end
disable finish recycle release remove

stop unload unlock unmount unregister

2) Check Relevant Method Descriptions: For all the 313
classes which contain a member method whose name starts
with one of these keywords, we manually check the detailed
description of all these methods to figure out if the requested
resource should be released manually. After that, we read
through the training section of relevant classes manually, and
figure out the appropriate event routine (e.g., onPause())
of activities to release these resources. And we finally got 65
resource operations which involve resources that need to be
released manually. These frequently used are summarized in
Table II.

B. Event Handlers

The features of event-driven mobile programming make
our task complicated. In particular, due to the large number
of callbacks used by the Android framework, Android apps
essentially expose a set of callbacks to the system instead of a
single “main method”. Our approach leverages the knowledge
of how these callbacks are defined in Android to identify them.
We divide them into two categories:
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TABLE II
SUMMARY OF FREQUENTLY-USED RESOURCE REQUEST AND RELEASE OPERATIONS

Resource package Resource name Resource operations Suggested place to release

android/media

AudioManager requestAudioFocus/abandonAudioFocus; onPause()
AudioRecord new/release; onPause()/onStop()

MediaPlayer new/release; create/release;
onPause()/onStop()start/stop;

android/hardware Camera
lock/unlock; open/release;

onPause()startFaceDetection/stopFaceDetection;
startPreview/stopPreview;

SensorManager registerListener/unregisterListener; onPause()
android/location LocationManager requestLocationUpdates/removeUpdates; onPause()

android/os PowerManager.WakeLock acquire/release; onPause()
Vibrator vibrate/cancel; onDestroy()

android/net/wifi WifiManager.WifiLock acquire/release; onPause()
WifiManager enableNetwork/disableNetwork; onDestroy()

1) Callbacks triggered automatically when a certain system
state occurs according to Android framework’s defini-
tion. We call them system handlers (system callbacks)
for short.

2) Callbacks triggered by user events. We call them user
handlers (user callbacks).

1) System Handlers: Instead of a traditional “main method”
of some kind, Android apps contain one or more components
defined in its manifest file. Each component can potentially
define multiple entry points. Figure 2 shows the important
state paths of an Activity [1]. The colourless round rectangles
represent callback methods you can implement to perform
operations when the Activity moves between states. The
entire lifetime of an activity happens between the first call
to onCreate(Bundle) through to a single final call to
onDestroy(). The visible lifetime of an activity happens
between a call to onStart() until a corresponding call
to onStop(). The foreground lifetime of an activity hap-
pens between a call to onResume() until a correspond-
ing call to onPause(). The onCreate(), onStart()
and onResume() callbacks are defined entry points of an
activity, the exit points are onPause(), onStop() and
onDestroy().

Apart from them, there are a large number of callbacks
defined in the Android framework. App executions often
pass through the framework to emerge elsewhere in the app.
For a concrete example, consider the java.lang.Thread
class. The run() method is a common callback defined
in java.lang.Thread. A developer can simply extend
this class, implement the run() method, and then call the
start() method to schedule the thread. But when we
analyze the code within the app, the run() method does not
appear to be reachable from the start(), despite the fact
that after the start() method is called, control flow goes
eventually to the run() method during the runtime (Figure 3).
Permission examining tool Woodpecker [41] leverages these
well-defined semantics in the Android framework APIs to
link these two methods directly in the control flow graph
(CFG), resolving the discontinuity in the CFG construction.

Fig. 2. Activity Lifecycle Diagram

And it applies this strategy to a number of callbacks (e.g.,
message queues, GPS). According to our studies there are
lots of other callbacks defined in the Android framework.
For example, the camera service will initiate a series of
callbacks to the application as the image capture progresses.2
The shutter callback occurs after the image is captured.
This can be used to trigger a sound to let the user know that the
image has been captured. The raw callback occurs when the
raw image data is available. The postview callback occurs
when a scaled, fully processed postview image is available.
The jpeg callback occurs when the compressed image is
available. And a programmer can also define callbacks by

2They are passed as arguments within the takePicture method of the Camera
class.
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Fig. 3. A Discontinuity in the Control Flow Introduced by the Android
Framework

implementing user-defined interfaces. These callbacks will be
invoked automatically without user interactions, so we classify
them as system handlers too.

In our approach, we maintain a list to record the registration
of all callbacks (except for user callbacks, as described below),
then connect it to the callback itself when constructing FCG.

2) User Handlers: The other kind of events is usually an
UI event. Android provides two mechanisms handling them:
Mechanism based on registered callbacks and based on event
listeners (which are also a kind of callbacks). These events
contain click and touch events (e.g., onClick, onLongClick,
onTouch, onTouchevent), keyboard events (e.g., onkey), state
change events (e.g., onFocusChange, onItemSelected) and so
on. Their common characteristic is that whether it will be
called or not is determined by the user’s action. For example,
in function onCreate(), we register two listeners respec-
tively for button A and button B, and then request a resource
in the onClick() method which is triggered by a click on
button A, and the corresponding release operation is carried
out in another onClick(), which is controlled by button B.
This is a potential resource leak, because if the user just clicks
button A, and the app is interrupted by another activity started
by the user or system (like switching to the home screen, or
an incoming call), then the resource requested before is not
released. So in our scheme, we don’t connect the registration
of the user callback to the callback itself, which indicates a
normal case (the user clicks on Button A to request a resource,
then clicks on Button B to release the resource). So these user
event functions are still entry points in our FCG.

C. FCG Construction

Within an application, we inspect all the resource operations
to collect the potential resource leaks it contains. For a local
resource (resource declared in a function), we suppose the
developer will release it when the method finishes. For a global
resource (resource declared in a class outside all the functions),
it should be released on all the paths that can be reached
from its request point to the end of path, or in the exit point
function (for activity or service class or its inner class), or in at
least one callback of all interfaces implemented by the classes,
as described in Figure 4. UT represents user handlers, ST
represents system handlers and N represents normal functions.

Fig. 4. Feasible Invocation Orders of Event Handlers

The round rectangle in green represents a place to request a
resource, and the rectangle in orange represents a place to
release a resource.

We use a free reverse engineering tool androguard [3]
to generate standard dalvik bytecode of an app. Then we
traverse the bytecode in sequential order. In the bytecode, it
is very easy to know the function calling relationships within
an app according to the “invoke” instructions, especially for
methods with parameters. The definition and the invocation
of a method have the same parameter declaration, while, in
the source code, the formal parameter in method definition
is not the same as the actual parameter in method invocation.
And for each resource request and release operation, we check
instructions starting with “iget-object” and “iput-object” to
find the resource object’s reference, then we use the method
described in Section II-B to handle event-driven calls in
Android applications, which adds links for system callbacks.
Finally, we obtain an entire FCG.

Figure 5 is a code snippet of an activity, and figure 6
shows an example FCG of the activity. In figure 6, the
round rectangles in orange represent functions of the activity.
The solid arrows represent calling relationship between
calling functions and called functions. Camera.open()
and mCamera.release() are resource request and
resource release operation respectively. onCreate(),
onPause(), onShutter() and onPictureTaken()
are system callbacks, onClick() is a user callback
and setOnClickListener(), takePicture() and
mCamera.takePicture() are normal functions, as we
described in Figure 4.

D. Resource Leak Summary and Report
Through the above process, we build the FCG of an

app. And we obtain the entry_points_list (whose
items are functions which are not invoked by any other
function), each function’s op_list (whose items are either
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1.public class myCamera extends Activity{
2. public void onCreate(Bundle savedInstanceState){
3. mButton.setOnClickListener(

new Button.OnClickListener()
4. { public void onClick(View v){
5. mCamera = Camera.open();
6. takePicture();
7. }
8. });
9. }
10. private void takePicture(){
11. mCamera.takePicture(shutterCallback,
12. rawCallback,jpegCallback);
13. }
14. private ShutterCallback shutterCallback=new
15. ShutterCallback(){
16. public void onShutter(){
17. }
18. };
19. private PictureCallback rawCallback=new
20. PictureCallback(){
21. public void onPictureTaken(){
22. }
23. };
24. private PictureCallback jpegCallback=new
25. PictureCallback(){
26. public void onPictureTaken(){
27. }
28. };
29. protected void onPause(){
30. mCamera.release()
31. }
32.}

Fig. 5. Code Snippet of a Sample App

resource operations or child function calls) and each function’s
children_list (whose items are functions which are
invoked by this function). The resource summary algorithm
(summarized by Algorithm 1) takes them as the input. It
uses depth-first search to analyze the resource operations
and child function calls in all the entry points. During the
searching process, we use a few extra structures to mark
functions that have been analyzed before to avoid endless

Algorithm 1 Resource summary of all entry points
Input: entry points list, all functions’ op list and children list

Output: all entry points’ res list

for each entry point 2 entry points list do
if entry point.children list = ; then

entry point.res list = entry point.op list

else
stack = reverse(entry point.op list)
while stack 6= ; do

op item = stack.pop()
if op item 2 entry point.children list then

child node = get obj(op item)
if child node.op list 6= ; then

stack.push all(reverse(child node.op list))

else
if is res request(op item) then

entry point.res list.append(op item)
else if is res release(op item) then

if request(op item) 2 entry point.res list

then
entry point.res list.delete(

request(op item))
else

entry point.res list.append(op item)

Fig. 6. An Example FCG of an Activity

loop when dealing with recursions and loops. We traverse
each recursive function or loop just once. The process will
eventually generate resource summaries of all entry points.
And we also provide a series of UI commands that can be
used to query extra information. You can input any function
you are concerned with (e.g., onCreate()) to check the
resource operations in this function and you can also query the
calling sequences between two functions by simply providing
the function’s label.

By observing the resource summaries of entry points, we
find lots of system and user handlers exiting in inner classes
of an activity or service. Inner classes are characterized by
‘$’ in dalvik bytecode, which can be easily identified. As
for resource operations in an activity or service or its inner
class, if they are not released as soon as they are not needed,
we extra check if a resource request is released in exit point
functions (e.g., onPause()) of its corresponding activities or
services. For resource requested in an ordinary class, we scan
all interfaces it implements. Then we check if the resource
is released in at least one callback of each of them. As
described in Figure 7, the programmer requests audio focus
in class AssistantTtsPlayer and abandons the focus
in system callbacks (onComplete() and onError()) of
all interfaces implemented by AssistantTtsPlayer. It is
the same situation when dealing with Camera, which usually
implements the surfaceHolder.Callback interface. We
can release the camera resource in its surfaceDestroyed
callback.

III. EVALUATION

We now present experimental results of resource leak de-
tection using our tool Relda. We first present a summary of

TABLE III
RESOURCE LEAKS IN 55 DEMO APPS

App Unreleased Resource Request Method
myWifi WifiManager enableNetwork

myCamera Camera open
myAudioManager MediaPlayer create

mySeekPlayer MediaPlayer create
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TABLE IV
SUMMARY OF EXPERIMENTED APPS WITH RESOURCE LEAK

Apps Bug Description Ref
Agenda Widget 1.6.17 PowerManager.Wakelock is not released in several classes in package widget [2]

k9mail 4.006 PowerManager.Wakelock is not released in MessagingControllerPushReceiver [20]
Osmdroid r751 OpenStreetMapActivity should enable/disable location updates in onResume()/onPause() [25]

Baidu Map 1.2 * The listener for SensorManager is not released in package ar [5]It is also not released in all cases of received messages in onCreate()
Baidu Voice Assistant 2.1 * Audio focus is not released in MusicService [6]

Baidu IME 3.5.1.4 * Camera requested in CaptureActivity is not released [4]
Google Email 2.3.4.1 * In several activities in package gm, ContentProviderClient is not released [18]

1.public class AssistantTtsPlayer implements
2. TTSPlayerCompleteListener, TTSPlayerErrorListener
3.{
4. mAudioManager = ((AudioManager)mContext.

getSystemService("audio"));
5. mAudioManager.requestAudioFocus();
6. public void onComplete()
7. {
8. mAudioManager.abandonAudioFocus();
9. }

10. public void onError(int paramInt)
11. {
12. mAudioManager.abandonAudioFocus()
13. }
14.}

Fig. 7. Release Resource in One Callback of Each Interface

the detection results on 98 Android apps, and then discuss the
causes for the reported leaks and overhead of the scheme.

A. Experiment Setup
We conduct our experiments in the following steps:
• First, we collected the source code of 55 apps from an

Android application development book [36] and 80 real
app installers (.apk files) from Google Play3 or from
individual official app sites.

• For the .apk installers, we decompile the apps from the
installers to Java source code using Dare [12] [39], and
successfully got 43 decompiled source code4 (decom-
pilation failed for the remaining apps). Thus we got
55+43 = 98 apps with source code or decompiled source
code.

B. Resource Leak Reports
Our experimental subjects are the 98 .apk installers. Relda

takes them as input. After it finishes running, each app’s
resource leak items are reported, as well as log files that
record where each resource is requested and released. For 55
apps in the development book, all the 4 leaks reported by our
tool have been confirmed manually by checking their source
code directly. These resource leaks are about different kinds
of resources, but the patterns are similar. The developer tries
to release resources in user handlers which are not necessarily
invoked before the app exits. The resource leak report is shown
in Table III.

3https://play.google.com/store
All of them are top free apps, and most are used daily.

4Not all app installers could be transformed into (meaningful) source code,
especially the ones that have been obfuscated during compilation (using tools
like proguard [27]).

For the 43 apps that we successfully get decompiled source
code, 25 of them have one or more resource leaks, and
there are 92 reported leaks in total. Table IV presents typical
resource leaks we found in several popular apps, including
confirmed instances of resource leaks in Osmdroid [26],
Agenda Widget and k9mail [37], as well as some instances
that are not confirmed (Entries with *), e.g., resource leaks
in Google Email [16] [17] and Baidu Maps [29] [30] [31].5
The whole resource leaks summary are listed in Table V. We
use a standalone graphical utility JD-GUI [19] to display Java
source codes of these “.class” files obtained by Dare. For these
relatively large apps, it is not possible to manually enumerate
all possible paths to verify the correctness of the tool due
to exponential explosion. In our evaluation, for each of the
resource leaks reported by Relda, we check the decompiled
Java source code manually if it’s a real leak. By analyzing
some relatively small apps and possible shortages of our
methodology, we infer certain patterns (e.g., if-else, cases of
received messages) that may incur false negative (a resource
leak Relda doesn’t report but it really is). So we check these
points of decompiled Java source code additionally.

TABLE V
SUMMARY OF 10 MOST COMMON RESOURCES UNRELEASED IN APPS

Unreleased Resource Request Method App Count
MediaPlayer new/create 11 24
MediaPlayer start 8 15

VelocityTracker obtain 7 11
PowerManager.WakeLock acquire 6 12

WifiManager enableNetwork 2 8
Vibrator vibrate 5 10

ContentResolver acquireContentProviderClient 2 2
AndroidHttpClient newInstance 2 2

SensorManager registerListener 2 4
AudioManager requestAudioFocus 1 4

1 The third column represents the number of apps containing unreleased resources.
2 The fourth column represents total number of the unreleased resources.

We classify the leaks into three categories: (a) True Positive
(TP): Resource leaks reported by the tool are also found
manually by checking the source code; (b) False Positive (FP):
Leaks reported by the tool but we do not find manually; (c)
False Negative (FN): Leaks we found manually but the tool
did not report, as we mentioned above. Table VI summarizes
the results. Explanations of each entry will be discussed in
Section III-C. We found 81 leaks in the TP set, 11 in the

5We have reported the relevant bugs to Google and Baidu, but have not yet
received any feedback.
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FP set and 8 in FN set. So the observed analysis precision is
88.0%, and the recall is about 91.0%.

TABLE VI
SUMMARY OF LEAKS BREAKDOWN

Causes of Leaks Total 92
Released resources in user handlers 27

Forgot to release a resource 19
Didn’t release in callbacks of all interfaces 14

Released in improper event routine (e.g.,onDestroy) 13
False negatives 8
False positives 11

C. Resource Leak Classification by Causes
1) Released Resources in User Handlers Which May Not

Be Invoked (27): The largest category of leaks are of this
kind. In this case, the developer tries to release resources in
user handlers which are not necessarily invoked before the app
exits. In addition to the 4 leaks found in the development book,
this kind of leaks also appears in real apps we downloaded
from Android market. For example, in Baidu Map 5.0.0, the
programmer tries to release LocationManager and AudioMan-
ager resources only in user handlers (e.g., onKey, onClick). A
good suggestion is to release them in their corresponding exit
point function, as we point out in Table II.

2) Forgot to Release a Resource (19): The cause of these
leaks is that the programmer simply forgot to release a re-
quested resource throughout the code. Although it seems like a
simple mistake, this does happen in real apps. For example, in
Google Email 2.3.4, ContentProviderClient [10] is not released
in several activities in package gm. But all the resource leaks
about ContentProviderClient have been repaired in Google
Email 4.3.1. In Baidu Map 1.2 and Baidu Map 4.3, the
programmer forgot to release the listener for SensorManager
in package ar (Augmented Reality). The resource leak has
been repaired in Baidu Map 5.0.0.

3) Failed to Release a Resource in Callbacks of All the
Implemented Interfaces (14): There are many different exe-
cutable paths invoked by different user actions and hardware
states which depend on the external environment. Even a
careful programmer can easily fail to release all resources
along all possible invocations of event handlers. For resource
requested in an ordinary class, we extra check if it’s released
in at least one callback of all interfaces implemented by
the classes. As we described in Section II-D. In youku
3.0 [35], the programmer only tries to close PowerManag-
er.WakeLock resource object in callback onFinished()
of class DownloadListenerImpl. This is not enough.
The suggested modification is to close the resource in
onCancel() and onException() too.

4) Didn’t Properly Understand the Lifecycle of Android
Apps (13): In this case, programmers release resources only
when the app finally exits, in onDestroy() of the activity.
In Android, an app activity once started is always alive. When
the user exits any app, Android saves the state of the app
and passes it back to the app if the user returns to it. The

1.public class MapActivity extends Activity{
2. protected LocationListener mListener;
3. protected LocationManager mManager;
4. public void onCreate(){
5. //get a reference to system location manager
6. mManager = getSystemService(LOCATION_SERVICE);
7. mListener = new LocationListener() {
8. public void onLocationChanged(Location loc) {
9. ...
10. }
11. }
12. //GPS listener registration
13. mManager.requestLocationUpdates(GPS,...,mListener);
14. }
15. public void onDestroy(){
16. //GPS listener unregistration
17. mManager.removeUpdates(mListener);
18. }
19.}

Fig. 8. Resource Leak in Osmdroid Application (Issue 53)

app is only completely killed when the phone is critically low
on RAM or when the app kills itself. This methodology is
used to reduce the startup time of the app and to maintain its
state. This essentially means that the app may not actually be
destroyed for a very long period of time. OnDestroy() is
only called when the app component is about to be destroyed,
but many app developers try to release the requested resources
in the onDestroy() callback, instead of in onPause().
As a result, once an app with this leak is started, the phone will
finally exit when it is running critically low on memory (which
may take a long period of time). For a concrete example,
in open source project Osmdroid [25], our tool reported a
resource leak resulted from the delayed unregistration of the
location listener [26] [47]. Figure 8 gives a simplified version
of the concerned code. When MapActivity is launched, it
gets a reference mManager to system location manager and
registers a location listener mListener with the Android
system (Line 13), mListener is registered to listen to users
location changes (Lines 7-11). If the Android system plans to
destroy MapActivity (Lines 15-18), mListener would
be unregistered (Lines 17). If Osmdroid’s users switch their
Android phones to another application, MapActivity would
be put to the background (not destroyed), and the registered
mListener would still keep running for location sensing.
All location data would be used to refresh an invisible map.
Then, a huge amount of energy and memory would be wasted.

5) False Negatives (8): Without considering intra-
procedural flow analysis, certain patterns of program
statements incur false negatives, e.g., if-else, cases of received
messages. According to our case studies, false negatives
regularly occur when handling received message problems.
In this case, a resource should be released in all cases of
received messages. But our tool will not report a leak as
long as it’s released in one case of them. To solve this
problem, we modify our tool to present directly information
about the resource operations in all cases and whether a
resource is released in all cases. We find several real apps
having this kind of resource leaks. For example, Baidu
Map 1.2, the programmer tries to release a registerListener
for SensorManager in one case of the received message in
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1. public static void onCreate{
2. demoStart();
3. demoHandler = new Handler(){
4. public void handleMessage(Message message){
5. demoStop();
6. }
7. // call demoStart() here;
8. }
9. }

Fig. 9. False Positive Due to Registration Orders of Callbacks

handler AndroidJni.w. The leak is repaired in Baidu Map
4.3. We will consider using Soot [33] or WALA [34] to solve
the problem of intra-procedural flow analysis in our future
work.

6) False Positives (11): 11 of 92 leaks are reported to
contain a leak, but upon further manual analysis, they turn
out to be false positives. There are two major reasons for the
false positives in the 11 reported leaks.

One reason is useless isolated points that are not invoked by
any other functions. These functions are treated as entry points
in our previous analysis, but upon further manual analysis,
we find they are just useless functions. They may come from
programmers’ carelessness for not wiping out the useless code.

Another reason for false positives is the registration or-
ders of callbacks. As an example in Figure 9, program-
mers usually write the resource operations in the follow-
ing order: Request a resource in method demoStart(),
then release it in demoStop(). When using our method
described in Section II-B1, i.e., connect the registration of
a system callback to the callback itself, the requested re-
source in demoStart() will be analyzed to be released in
demoStop() during the depth-first search. But if a program-
mer places the demoStart() (Line 2) to the new place (Line
7), the modification will incur a reported resource leak. From
this example, it seems that we can solve the problem by simply
postponing the analysis of the registered handler, e.g., put it
to the end of onCreate(). We do not repair this for two
reasons: It may occur that a resource request rather than a
resource leak in Handler() is invoked; There may be a lot
of other callbacks, that also need to postpone the analysis. In
fact, with detailed resource operations information provided,
we easily locate the suspicious statement and figure out the
false positives with a bit of manual work.

D. Overhead of the Scheme

Our tool conducts light-weight static analysis without se-
mantic parsing of the program, and focuses only on our
interested resource operations, thus the analysis overhead
is considerably low. Table VII presents our tool’s analysis
overhead for seven popular apps. The table shows the number
of classes and methods of each app and the time spent to
run the resource leak analysis. (The time does not include the

decompilation time of the .apk files.6) Our analysis finishes
within about 1 minute for each of the 7 apps.

TABLE VII
OVERHEAD OF RESOURCE LEAK ANALYSIS FOR 7 POPULAR APPS

Apps Classes Methods Analysis time
(seconds)

MyTrack 2.0.3 1037 5882 15
Agenda Widget 1.6.17 629 2624 7

k9mail 4.006 1025 7733 35
Baidu Map 1.2 345 1447 6

Baidu Voice Assistant 2.1 1195 8199 58
Baidu IME 3.5.1.4 420 3804 61

Google Email 2.3.4.1 1512 10800 43

IV. RELATED WORK

A. Resource Leak Detection in Java Programs

Resource leak detection is a classic problem in program
analysis. It is hard for developers to avoid all resource leaks.
There are two kinds of methods, dynamic and static analysis,
that provide inspection for them. QVM [42] suggests an
approach to detect defects by using a specialized runtime
environment, and it enables the checking of violations of
user-specified correctness properties. Static analysis tools like
FindBugs [14] and Klocwork [21] detect a wide range of
problems including a few Android-platform-related resource
leaks [15] [22]. Tracker [40] performs inter-procedural static
analysis to find resource leaks in Java programs, and ensures
that no resource safety policy is violated on any execution
path. Since Android applications update quickly, we adopt the
light-weight static analysis method, that can scan an industrial-
level Android package efficiently. Comparing to those works,
our work focuses on Android-platform-related programming
features and resources, and our target-specific tool is more
comprehensive.

Among the studies of Smartphone resources, energy related
issues have received attentions for the past several years. Some
of them estimate energy consumption of an application or its
components. Pathak et al. proposed EProf [38], which is a fine-
grained energy profiler for smartphone apps. It breakdowns the
total energy consumed into per-component energy consump-
tion by tracking the activities of energy-consuming entities.
And it also gives insights into energy breakdown per thread
and per routine of the app. There are also some works that
analyze energy-related defects in Smartphone applications.
Yepang Liu et al. built a tool called GreenDroid [47] on top of
Java PathFinder to find energy inefficiency problems. Similar
to those works, our work focuses on detecting resource leak
problems including several energy-related resources, so it can
also be used to detect energy inefficiency problems caused by
incorrect release (or absence of release) of energy-consuming
resources.

6Androguard supports three decompilers (DAD, dex2jar + jad, ded), we
used its default decompiler DAD, which is very fast due to the fact that it
is a native decompiler, and the decompilation is done on the fly for each
class/method.
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B. Memory Usage Problem
Memory usage problem is a long studied topic. In traditional

programming languages (e.g., C), memory recycling task is
done by the program itself, the program allocates and frees
the memory occupied by variables explicitly. There are some
works on detecting memory leaks, e.g., we proposed a static
analysis tool Melton in our previous work [49]. While the
main part of Android application program is realized using
Java programming language, an outstanding feature of Ja-
va language is that most memory transactions are managed
through Java virtual machine (JVM) and garbage collection
(GC) mechanism. Java programmers allocate memory simply
by creating objects, and don’t need to care about how and
when the objects should be recycled. But leak may happen
when you maintain reference to an object that prevents GC.
So there are inevitable memory leak problems in Java program.

MAT [23] is an Eclipse Memory Analyzer, which is a fast
and feature-rich Java heap analyzer that analyzes productive
heap dumps with hundreds of millions of objects. It quickly
calculates the retained sizes of objects, sees who is preventing
the garbage collector from collecting objects, and generates
a report to automatically extract leak suspects. In paper [48],
the authors analyzed reasons of Android application memory
leaks and introduced how to avoid memory leaks when com-
piling application program using MAT. Other commercial leak
detectors such as [13] [28] enable visualization of heap objects
of different types. Existing academic tools use growing type-
s [45] [46] (i.e., types whose number of instances continues
to grow) or object staleness [43] [44] to identify suspicious
data structures that may contribute to a memory leak. But
all of them gather memory-related information using dynamic
analysis techniques. They don’t have an explicit definition of
resources, and don’t have the ability to pinpoint the cause of
a memory leak.

V. CONCLUSION AND FUTURE WORK

This paper makes a comprehensive analysis of resource
leak problems in Android apps, and describes how we au-
tomatically detect resource leaks in Android apps. We first
obtain a near-complete resource table which includes almost
all the resources that the reference manual requires to release
manually. The table can also be expanded to define other
concerned resources. Then we propose an automatic solution
to detecting resource leaks based on a modified Function
Call Graph (FCG), and it handles the features of event-driven
mobile programming by analyzing the callbacks defined in An-
droid framework. We build a light-weight static analysis tool
Relda, it focuses on Android-platform-related programming
features and resources, and incurs reasonable overhead and
false positives. Further more, with detailed resource operations
information provided by our tool, we can easily locate the
suspicious statements and figure out the root causes with a bit
of manual work. Our experimental data shows that our tool is
effective in detecting various resource leaks in Android apps.

Our current research focuses on system resources which
can lead to performance degradation and even system crash.

The next step of our work is to make quantitative analysis
of the performance. And for the features of event-driven
programming, there exist many UI-based events in Android
apps, extracting UI-based event sequences and using model
checking to do more precise analysis may be another direction
of future work.
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