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Abstract—Optimizing the energy efficiency of mobile applica-
tions can greatly increase user satisfaction. However, developers
lack viable techniques for estimating the energy consumption
of their applications. This paper proposes a new approach that
is both lightweight in terms of its developer requirements and
provides fine-grained estimates of energy consumption at the
code level. It achieves this using a novel combination of program
analysis and per-instruction energy modeling. In evaluation, our
approach is able to estimate energy consumption to within 10%
of the ground truth for a set of mobile applications from the
Google Play store. Additionally, it provides useful and meaningful
feedback to developers that helps them to understand application
energy consumption behavior.

Index Terms—Mobile app, fine-grained energy estimation,
program analysis.

I. INTRODUCTION

Smartphones and tablets allow people to carry around more
computational power in their hands than most had on their
desktops just a few years ago. However, the usability of these
devices is strongly defined by the energy consumption of
mobile applications, and user reviews of applications reveal
many customer complaints related to energy usage.

Research in estimating the energy usage of mobile devices
has explored a wide variety of techniques, ranging from
specialized hardware, cycle-accurate simulators and operating
system level instrumentation, to carefully calibrated software-
based energy profilers that provide coarse-grained energy
estimates. From the perspective of a developer wishing to
optimize energy consumption of an application, each of these
approaches has one or more shortcomings: specialized hard-
ware can be expensive, cycle-accurate simulators and oper-
ating system level instrumentation can slow down a mobile
app beyond the point of usability, and coarse-grained energy
estimates may not be able to pinpoint hotspots within an app.

To address these shortcomings, we explore a novel ap-
proach, called eLens, that combines two ideas that have
not previously been explored together: program analysis to
determine paths traversed and track energy-related information
during an execution, and per-instruction energy modeling that
enables eLens to obtain fine-grained estimates of application
energy. eLens does not require the developer to possess
specialized hardware or to instrument the operating system,
does not impact the usability of applications, and can measure
energy-usage at method, path or line-of-source granularity.

These two ideas work in concert as follows. When a
developer wishes to obtain an energy estimate for specific use
cases of a mobile app, eLens uses instrumentation to identify
the corresponding paths of an application that will be executed

and record runtime information that is needed by the energy
models (Section III). To compute the energy estimate, eLens
analyzes the recorded paths and runtime information to extract
the energy relevant information, and uses this information to
drive the energy models and estimate the energy consumption
of each bytecode or API call for the hardware components
of the system (e.g., CPU, memory, network and GPS). The
energy models are provided by a software environment energy
profile (SEEP), whose design and development enables the
per instruction energy modeling (Section IV). eLens energy
consumption estimates can be computed at different levels
of granularity, application, method, path, and line of source
code and integrated into a development environment, such as
Eclipse, so that developers can visualize the energy usage of
their application during development.

eLens has several desirable properties that distinguish it
from prior work. By design, it is lightweight; eLens does
not require modifications to the mobile operating system
or require expensive power monitoring hardware. Moreover,
eLens provides fine-grained visibility into the energy con-
sumption of an application at multiple levels of granularity
down to an individual line of source code. Using experiments
on popular mobile applications obtained from the Android
marketplace, we demonstrate two other important properties
(Section V). eLens is accurate; it is able to estimate the power
consumption of real marketplace applications to within 10% of
ground-truth measurements. Competing methods that are path-
insensitive, or use coarse-grained energy models can be an
order of magnitude more inaccurate. Finally, it is fast, allowing
developers to easily analyze the energy behavior of multiple
combinations of hardware and operating systems.

II. RELATED WORK

Power modeling is a broad area of research that encom-
passes several sub-fields, including architecture, operating
systems, and software engineering. Given space limitations,
we present representative pieces of work from each area to
place eLens in the context of prior work.

Closely related to eLens is the body of prior work on
architectural power modeling, which has attempted to model
or profile the power consumption of individual instructions.
Tiwari and colleagues [28][29] model the energy of an in-
struction using a base energy as well as a transition energy
for each pair of instructions. Steinke [24] discusses a more
detailed power model that takes architectural features, such as
pipeline stalls, into account. Sinha and colleagues [23] show
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that ARM instructions all consume comparable energy. Finally,
Mehta and colleagues [13] profile energy usage at the level of
architectural functional units. In contrast to this body of work,
eLens estimates bytecode energy costs; energy of bytecodes
shows considerably higher variation and may be less affected
by architectural effects at the instruction-level.

Cycle-accurate simulators have also been developed to
estimate software energy consumption of software (such as
Sim-Panalyzer [15] and Wattch [5]). These approaches can
simulate the actions of a processor at an architecture-level
and estimate energy consumption in each cycle. Compared
to eLens, these methods can be highly inefficient (e.g. Sim-
Panalyzer needs 4300 instructions to simulate the execution
of a single instruction) impeding their usability for complex
mobile applications that involve user interaction.

Novel hardware designs have been proposed to estimate
energy consumption. The LEAP platform [18], which we use
in this work, provides fine-grained measurements of energy.
Others have designed an FPGA-based embedded device to
perform component-wise energy profiling and empirically
measured the energy impact of using different software de-
sign patterns [19]. By contrast, eLens requires no specialized
hardware to obtain fine-grained estimates of app energy usage.

Other works focus on the energy consumption of the operat-
ing system at routine or system-call level ([6], [12], [26], [31]).
They all build power models at the system or routine call level,
which describe the power consumed as a function of some
feature of the system or routine call (e.g., the CPU utilization
or the input parameters). These power models are then used to
estimate system-level energy consumption. eLens is inspired
by this work, but builds models at the instruction granularity,
and so is able to estimate power down to the granularity of a
line of source code.

A complementary approach [16], [17] explicitly models the
state transitions between hardware power states of smartphone
hardware components (CPU, WiFi, GPS etc.). This approach
then estimates the power states of each component during
a system call, based on the call input parameters. Using
this and measured values of hardware power states, it is
possible to compute the approximate energy consumption of
applications and functions that invoke system calls. However,
unlike eLens, this requires manual instrumentation of the
application framework and may not work for applications with
energy-intensive application level code.

Also complementary is recent work [14] that allows devel-
opers to estimate overall application energy usage using an
emulator. In contrast, eLens can be integrated into an IDE and
provides much finer-grained energy estimates, making it more
seamless for the developer to optimize applications for energy.

Beyond instruction-level and call-level energy modeling,
some work has also considered path energy profiling. Tan
and colleagues [27] model path energy costs using the Ball-
Larus profiling technique [3]. In comparison, eLens directly
estimates bytecode costs and environment invocations, so
it can be used to compute energy utilization at different
granularities.

Tangential to eLens is a body of work that has attempted to
estimate the energy consumption of Java on different virtual
machines ( [8], [30], [25], [11]). eLens provides fine-grained
estimates of energy usage within an application.

Like eLens, Seo and colleagues [20], [21], [22] built an
instruction-level model of Java bytecodes and linear model
of interfaces of the JVM and operating system-calls. Unlike
eLens, however, they require modifications to the JVM to
estimate bytecode costs online. Moreover, they do not perform
any path-sensitive analysis and so are able to provide energy
consumption estimates only at the system level.

Complementary methods for estimating the energy usage
of applications have relied on operating system level instru-
mentation [9], [4], together with hardware support for energy
measurement. eLens relies on power profiles and does not
require modifications to the operating system.

Finally, in a previously published workshop paper [10],
we described preliminary work that used execution traces
to estimate CPU energy consumption. This paper extends
that work by improving the underlying analyses, adding a
more sophisticated CPU model that accounts for frequency
scaling, and expanding the technique to include other hardware
components, such as RAM, WiFi, and GPS, via the SEEP.
Furthermore, eLens is able to handle real marketplace appli-
cations, whereas the previous work could only estimate energy
for instructions that were not invocations.

III. OUR APPROACH FOR ENERGY ESTIMATION

eLens analyzes the implementation of a mobile application
and provides code-level estimates of the energy that it will con-
sume at runtime. The results of this analysis are summarized at
the granularity of the whole program, path, method, and source
line to help the developer make informed implementation
decisions for reducing energy consumption. The inputs to
the approach (Figure 1) are: (1) the software artifact; (2)
the workload, which describes the way the software will
be used at runtime; and (3) system profiles, which use per-
instruction energy models to specify the power characteristics
of the platforms for which the developer is targeting the
implementation (Section IV). Within eLens, there are three
components: the Workload Generator (Section III-A) translates
the workload into sets of paths through the software artifact;
the Analyzer (Section III-B) uses the paths and system profiles
to compute an energy estimate; and, the Source Code Annota-
tor (Section III-C) combines the paths and energy estimate to
create an annotated version of the source code that is provided
to the developer. The output of eLens is a visualization that
shows the estimated energy consumption of the software at
the path, method, source line, and whole program granularity.

A. Generating the Workload
The Workload Generator is responsible for converting the

user-level actions, for which the developer wants an estima-
tion, to the path information used by the Analyzer and Source
Code Annotator. Trivially, this information could be provided
by assuming that every path in the artifact is executed n
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Fig. 1: Overview of eLens

number of times. However, this would not be an accurate
reflection of how the application would execute at runtime, and
since energy consumption is not uniform over different paths,
the resulting estimate would not be as helpful. For example,
in a video viewing application, the paths traversed to watch
a video will consume more power than the paths traversed to
start or exit the application.

The inputs to the Workload Generator are the workload
description, W , and the implementation of the application, S.
The workload description is a specification of the behavior
of the application for which the developer wants to estimate
energy consumption and can be represented as a sequence of
use cases hu1,u2, ...,uni. The Workload Generator instruments
S to create a version, S0, that will record the paths traversed
during an execution. Next, the Workload Generator runs each
ui 2W on S0. The paths traversed for ui are denoted as Pi. The
set of all Pi, P , is the output of the Workload Generator.

The workload description can be specified informally, where
the developer simply interacts with the instrumented applica-
tion, or formally, where the sequence of actions is explicitly
listed and can be executed by automated Android testing tools,
such as MonkeyRunner [1] and Robotium [2]. We only require
that the specification mechanism must be able to execute the
instrumented version of the application, so the paths traversed
by the application are recorded. There is no adequacy criterion
for the workload description except that it represents the set of
actions that are of interest to the developer. For example, an
informal workload description of a video player may specify
that the user perform the following actions: (a) start the
application, (b) search for a video using the term “eLens at
ICSE”, (c) play the first video found, (d) replay the video 100
times, and (e) exit the application.

The instrumentation inserted by the Workload Generator
records the path traversed through each method of the appli-
cation. This recording is based on an efficient path profiling
technique proposed by Ball and Larus [3]. The Ball-Larus
approach assigns weights to edges of a method’s control-flow
graph (CFG) such that the sum of the edge weights along
each unique path through the CFG results in a unique path ID;
a single instrumentation variable per method then suffices to
record the traversed path for one method invocation. Therefore,
each Pi is comprised of a sequence of sub-path tuples, each

denoted by hm, idi, where m is the method and id is the ID
of the path traversed. Our implementation extends the Ball-
Larus approach to handle nested method calls, concurrency,
and exceptions, as described in Section V-A.

To illustrate the output of Workload Generator, consider
a software artifact with three methods a, b and c. For this
artifact, a possible P is {hha,1i,hb,1i,ha,2ii,hha,2i,hc,3ii},
which contains two paths. The first corresponds to a use case
in which path 1 of method a is executed followed by path 1 of
method b and then path 2 of method a. The second corresponds
to a use case in which path 2 of method a is executed followed
by path 3 of method c.

Algorithm 1 Estimate Energy Consumption
Input: H: set of hardware components, l: source line,

m: method, and P: path
Output: Energy estimate in Joules

1: cost 0
2: hQ,M,Li  regenerate(P)
3: D propagateDT(Q)
4: for all h 2 H do
5: for all i 2 Q do
6: fh powerstate(i,h)
7: if L(i) = l^M(i) = m then
8: cost(h)+=C(i,h, fh,D(i))
9: return Âh2H cost(h)

B. Estimating Energy Consumption

The Analyzer computes energy estimates using the path
information provided by the Workload Generator and the
energy cost functions from a software environment energy
profile (SEEP) (Algorithm 1). As input, the Analyzer takes a
sequence of sub-paths P 2 P , method m, source line number
l, and set of hardware components H to be accounted for in
the estimation. For each instruction1 specified by l and m, the
Analyzer calculates the energy cost using the cost functions
defined in the SEEP. The output of the analysis is then the
energy estimate E, in Joules, of the path, method, or source
line. An energy estimate for the entire software artifact can be
calculated by summing the calls for each Pi 2P .

The SEEP defines energy cost functions C(·) for all in-
structions. Broadly speaking, there are two dimensions along
which energy costs may vary for instructions, power state and
path-dependent information. Most components, such as the
CPU, network and GPS, have multiple power states: modern
smartphone CPUs can operate at different frequencies, which
consume different amounts of energy; the GPS may be on
or off; and the network may be idle, transmitting/receiving,
or have selectively enabled multiple antennas. Thus, C(·) can
depend upon the power state of the corresponding component
when a bytecode or API component is executed. Furthermore,
some API invocations’ energy consumption is based on path-
dependent information. For example, sending data over the
network incurs energy costs (roughly) proportional to the size
of the data transfer. During the process of workload generation,

1We use instruction to denote both bytecodes and system API calls.
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eLens tracks the power states of hardware components, and
also certain types of path related data. This information is
included as one or more arguments to the cost functions
defined in the SEEP. Details and examples of path-dependent
information are provided below and in Section IV.

The first operation performed by the Analyzer is to re-
generate the instruction sequence represented by P (line 2 of
Algorithm 1). As defined by the Ball-Larus algorithm, given
a subpath hm, idi, it is possible to regenerate the sequence of
instructions that define each subpath. The regenerate combines
each subpath in P to define the complete path (entry to exit)
taken during the execution. For nested method calls, where
method A calls method B, regenerate calculates the sequence
of instructions a1,a2, ...,an traversed in A and b1,b2, ...,bm
traversed in B. If ak is an invocation to B, then the final
sequence would be a1,a2, ...,ak,b1,b2, ...,bm,ak+1, ...,an. Iden-
tifying which subpaths in P were called by other subpaths
is straightforward, since P is a sequence and each hm, idi is
appended to P after m exits. The final output of regenerate is
the tuple hQ,M,Li, where is Q is the complete path, M maps
each instruction in Q to its containing method, and L maps
each instruction in Q to its source code line number.

The energy cost of certain instructions is based on path-
dependent information. For example, the cost of a network
send instruction depends upon the amount of data sent and the
cost of opening an input stream will depend on the stream type.
Line 3 of the algorithm propagates argument and type data
along Q that can be used to identify this type of information
and initializes a function D that relates this information
to each instruction. The propagateDT function implements
this functionality by simulating data-flow along the path Q.
The instrumentation introduced by the Workload Generator
records information, such as the size of data operated on
by an instruction or the class implementing an API call at
specific points of the execution. propagateDT then simulates
the stack contents along Q to track the types and relevant data
attributes to the point where they are needed by the energy
cost functions. Stack simulation works well in this context
because it is operating on only one complete path (Q) and only
a subset of all instructions on the path need to be simulated.
In cases where values are manipulated by an uninstrumented
function (e.g., a library call), an average value is used for the
energy cost functions. More details on the specific types of
information tracked is discussed in Section IV.

Many path-dependent APIs require specialization of the
general approach described above. Due to space constraints,
we provide two representative examples of the analysis em-
ployed by the propagateDT function. (1) Precisely identifying
the class that extends InputStream is difficult because in
Android applications these often originate from a factory class.
To gather this information the Workload Generator inserts a
probe into S0 after calls to specific factory methods to record
the implementing class type. This information is then used to
annotate the data item in the stack simulation, so that when
the InputStream API is called, the implementing class on
the stack can be identified and the appropriate cost functions

Fig. 2: Source line visualization provided by eLens

used. (2) Allocation instructions set aside memory space for
an array. For example, network buffers may allocate a byte
array and define its size using a hard-coded constant of 1024.
The propagateDT function tracks loads of constants onto the
stack so that when they are popped and used as arguments, the
value of the constant can be identified. In the example above,
the Analyzer would be able to determine that 1024 is the value
of the constant on the stack used to supply the argument to
the allocation statement.

As described above, many components have multiple power
states. For example, modern CPUs conserve power by chang-
ing the CPU frequency in response to high or low utilization.
An instruction’s power consumption can therefore depend on
the frequency of the CPU when it is executed. The function
powerstate, used in line 6, maps each instruction i 2Q to the
power state fh of component h (where h may be the CPU,
WiFi, or other component with multiple power states) when i
was executed. eLens computes fh by tracking, during workload
generation, when component power state changes occur. The
cost functions for each instruction take fh and h as arguments.
For example, assuming a CPU has two frequency levels, high
and low, the CPU cost function for an ldc instruction would
return two different energy cost values ehigh or elow, depending
on whether fCPU reported the frequency as high or low for that
instance of the instruction.

Each instruction that satisfies the method and line number
constraints is added to the total energy cost (lines 7–8).
The Analyzer calculates an instruction’s energy cost for each
component of the platform as a function of its type, path-
dependent data, and component power state. The Analyzer can
be configured to explore different sets of hardware components
via the input H.

C. Energy Annotations

The Source Code Annotator converts the path information
and energy estimation numbers into a graphical representation
that allows developers to visualize the energy consumption
of their software. The representations connect the estimated
energy numbers to the implementation structure of the soft-
ware artifact. The ability to visualize energy usage at a source
code line level is a unique feature of eLens. Feedback at this
level allows developers to iteratively refine implementation
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details, such as statements and loops, to improve the overall
energy consumption of the software. We have implemented the
visualization as an Eclipse plugin, which can provide visual
representation of the energy consumption at four different
granularity levels: whole software, per-method, per line of
source code, and for each path. Note that, for each granularity
level, the energy consumption can be shown for some or all
use cases in the workload. The mechanism for two of these
representations is discussed below; the mechanisms for path
and whole-software annotations follow from these.

Per Line of Source Code: For a given source file, the
annotator ranks each source line according to its energy cost
over all P 2P . Then the rankings are mapped to a color
spectrum, such as blue to red, and each line of source code
is colored based on its position on the spectrum. This results
in a SeeSoft like visualization [7] of the power consumption
of the software. Figure 2 shows a screenshot of a Java source
file with the energy based colorings.

Method Representation: For a given source file, the Source
Code Annotator generates the call graph (CG) of the software
artifact. The methods in the CG are ranked according to their
energy consumption over all P 2P and then assigned a color
in a spectrum based on their relative use of energy. A method’s
assigned color and energy value are then used to annotate the
corresponding node in the CG.

IV. SOFTWARE ENVIRONMENT ENERGY PROFILE

The Software Environment Energy Profile (SEEP) provides
per-instruction energy cost functions for each component of
the target platform. The use of the SEEP allows eLens to
analyze energy consumption on multiple platforms by sim-
ply providing different SEEPs as input to the Analyzer. We
anticipate that a SEEP will be developed and distributed by
a platform’s manufacturers as part of the platform’s software
development kit. This method of distribution makes it unnec-
essary for developers to use complicated or expensive energy
monitoring equipment. Currently, it is not common practice
for manufacturers to provide SEEPs, so we discuss below the
steps required to develop a SEEP.

For each distinct hardware component, the SEEP contains
a function that estimates the energy cost of each instruction
at each distinct power state of the hardware component. Thus,
CCPU (i, f ) denotes the CPU energy cost of instruction i at
frequency f and CWiFi(i) the WiFi cost2.

To estimate these cost functions, we used the LEAP power
measurement device [18]. LEAP reports energy-consumption
measurements at a fine-granularity, for each hardware com-
ponent in the system; its analog-to-digital converter (DAQ)
samples each component’s current draw at 10 KHz. It contains
an ATOM processor that runs Android version 3.2, so we
can measure the energy consumption of Android applications.
In addition, the LEAP provides Android applications with
the ability to trigger a pulse that can be used to correlate

2The latest WiFi standard, 802.11n, supports multiple power states. We
have left cost functions for 802.11n as future work.

application activity with DAQ readings. This capability allows
us to time specific sections of profiling code by generating
pulses at the beginning and end of sections of code whose
energy consumption we wish to measure. The DAQ readings
are stored in a log and post-processed in order to estimate
the total energy consumed between a pair of pulses. These
measurements are performed by hardware external to the
components.

The energy cost functions for instructions can be broadly
grouped into two categories: those with a path-dependent
energy cost and those with a path-independent energy cost.
The cost functions for the latter can be approximated for each
hardware component by knowing only information local to
the instructions. The path-dependent instructions require addi-
tional information that can only be identified by incorporating
information from prior instructions in the executed path. The
profiling for both types is explained in more detail below.

A. Path-Independent Cost Functions
Cost functions for instructions with path-independent costs

can be calculated for each hardware component using the
type of instruction and power state (e.g., CPU frequency)
of the hardware component at which the instruction was
executed. We identified these instructions by analyzing the im-
plementation of the Dalvik Virtual Machine and confirmed our
analysis through empirical measurements. To profile individual
instructions, we created a set of test scripts, each of which
profiles an individual instruction by placing that instruction
in a loop that executes 20 million times. This ensures a
measurement of a sufficiently long duration that exceeds the
DAQ sampling interval and reduces variance. Each loop is then
run ten times on a quiescent system to minimize the impact
of cold starts, cache effects or background processes (such as
garbage collection). We subtract the cost of the loop setup and
LEAP pulse instructions from the measured cost.

Some instructions require the results of executing other
instructions. For example, an add instruction requires that
two operands be pushed on to the stack. To handle this, a
dependency is identified between the test scripts. For instance,
if the ldc instruction is used to push operands on the stack,
then the test script for the add instruction includes these
bytecodes. When profiling the add instruction, we subtract
the cost of the two ldc instructions. We repeated this process
for all of the Dalvik bytecodes we identified as having a
local cost. Details for different categories of bytecodes are
provided below. This list is not intended to be exhaustive, but
to illustrate how different categories were handled:

Invocations and returns from application function: When
the target of an invocation is an application function, the
target method will already be instrumented by the Workload
Generator, so only the overhead of the invocation and return
needs to be profiled. In the profiling scripts, it was not possible
to isolate an invoke from a return; both are required to
execute in pairs. Therefore, we measured all combinations of
invoke and return types and then calculated the cost of each
instruction. Values for these instructions varied according to
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the type of invoke (e.g., virtual or static) and the type of value
returned (e.g., void, integer, or float).

Invocations to fixed-cost APIs: Many invocations to system
APIs performed operations, such as setting a property, that
could be described with a fixed cost. These were profiled
differently than regular instructions because of their relatively
high execution time, both in terms of the functionality they
implemented and argument initialization. We profiled those
APIs that had a fixed cost over all hardware components
and were called from within one of the applications used
in our evaluation. This set included approximately 1,500
unique APIs. For these, we instrumented our application to
obtain energy consumption incurred by each API, and ran
our applications several times to obtain a sufficient number of
energy consumption samples for each API call. The average
of these samples for each API was used as its fixed cost.

Other instructions: The energy costs for loads and stores
varied according to the basic type on which they operated
(e.g., integer or float). For arithmetic and logic instructions,
the energy cost varied based on the operation performed
and the basic type on which the operations were performed.
Stack management instructions had a fixed cost. Finally, jumps
and branches incurred a fixed cost regardless of the type of
condition they check.

B. Path-Dependent Instruction Costs
The energy cost for path-dependent instructions is based

not only on hardware power state and instruction type, but
also on information that is provided by other instructions in
the path, such as the size of the arguments to a network send
instruction. In general, we found four categories of path depen-
dent instructions: allocation instructions, invocations of system
APIs whose cost depends on the argument data, invocations of
system APIs whose cost depends on the implementing class,
and invocations whose cost depends on external data. These
types are discussed in more depth below.

Allocation instructions, such as anewarray, cause mem-
ory to be set aside for an array of basic types. Our mea-
surements indicate that the cost of allocation statements is
linearly proportional to the amount of memory allocated.
Therefore, the cost of an allocation instruction is a linear
function with respect to the size of the array and the size
of the basic type allocated. The size of a basic type (e.g.,
char, int and object reference) is known ahead of time and the
runtime instrumentation can record an estimate of the array
dimension at runtime, which is then propagated along the
path by the propagateDT function described in Section III.
For allocation of objects, the new command has a simpler
fixed cost function, as it only initializes a pointer, which is
followed by an invocation of the object’s constructor, which
is handled as an invoke to function.

The energy cost of data-dependent invocations is based on
the size of the arguments to the invocation. This type of
invocation is often used to access hardware components, such
as the network, or perform data manipulations, such as data
sorting. For modeling invocations to hardware components,

our profiling was informed by research work that investigated
and modeled power consumption of various Android hardware
components. We identified salient features of these models
whose values could be provided via program analysis, and
used empirical evaluation of the LEAP node to determine
values for hardware-specific constants. Hardware component
models were built for the CPU, RAM, WiFi, and GPS. It was
not possible to model additional components because they
required hardware modification to the LEAP to wire them
into the DAQ, a necessary step to verify the accuracy of the
models. As we show in Section V, we were able to achieve
high accuracy and believe that the process is straightforward
to extend to other hardware components as the ability to
measure them within the LEAP framework becomes available.
To provide the argument data size to the energy cost model, the
propagateDT function propagates the size of data structures
to data-dependent invocations.

The cost incurred by some invocations relies on data or
conditions external to the application that cannot be identified
using analysis of the path. For example, for an invocation
that retrieves a web page or queries a database, there are
two associated energy costs: the invocation that makes the
request for data and the processing of the response. In our
experimentation, we found that the former could be modeled
accurately as a function of the response time of the external
source of data and the latter as a function of the size of
the response. To build the energy cost functions for these
invocations, we instrumented all invocations that made exter-
nal data requests to record the name of the data requested
(e.g., URL, database query, or filename), response time, and
response size. We used this information to build a map from
the data name to its response attributes. Then, when computing
the cost of an invocation that depends on external data, we
used the map to look up the name of the requested data and
provided the response time as an argument to the invocation’s
energy cost function. When a subsequent invocation occurs
that processes or iterates over the returned data, the size of
the response is supplied as an argument to this invocation’s
cost function. As with the previous types of invocations, the
response attributes were propagated to the invocation using the
propagateDT function. We used this methodology to estimate
the cost of database calls to the Android SQLite database and
invocations to the HttpMessage interface.

Invocations of some methods can vary significantly based
on the class that provides the method implementation. For
example, the cost of accessing the member functions of the
abstract class InputStream will depend on whether its
implementation is provided by a network-based class, such
as ChunkedInputStream, or a file-based class, such as
FileInputStream. To handle this type of invocation, we
used manual analysis and empirical measurements to identify
the methods whose energy varied due to differences in their
implementing class. We analyzed each such method and its
implementation to determine whether a model could be built
based on simply profiling the method or whether a more com-
plex model, based on argument size or external data, needed
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to be constructed. The energy cost function for these methods
could therefore depend on data tracked by the propagateDT
function, argument data and implementing class information.

V. EVALUATION

In this section, we empirically evaluate eLens by measuring
the accuracy of its energy estimates, illustrating the useful-
ness of our approach by evaluating whether time profiling
would have been an effective substitute for energy profiling,
and demonstrating the usability of eLens in an interactive
development setting by measuring its run time. We conclude
with a case study that demonstrates how eLens can be used to
understand how applications consume energy.

A. Methodology
Our evaluation is based on an implementation of eLens

which is able to estimate the energy usage of unmodified
Android applications from the Google Play store. As input,
eLens takes the implementation of an application in Dalvik
bytecode and uses the dex2jar tool3 to convert it into Java
bytecode. The Java bytecode version is then provided as input
to the Workload Generator and Source Code Annotator. The
output of eLens is a visualization and reports on the estimated
energy consumption of the application.

The Workload Generator uses the BCEL instrumentation
library4 to add path profiling instrumentation (as discussed
in Section III) and to collect the data and type information
as needed for the SEEP. In our implementation, we identify
and discard paths that result in exceptions, since their catch
blocks may cause control-flow to jump outside of the method,
a behavior for which the Ball-Larus algorithm is undefined.
Overall, this only resulted in less than 0.01% of paths being
discarded. Concurrency is handled by using the thread’s ID to
identify the counter that must be updated to track the path ID.
After instrumenting the application, it is compiled from Java
bytecode back to Dalvik bytecode using the standard Android
dx tool and deployed to the LEAP platform. The use cases
were run manually by interacting with the application while
it was deployed on the LEAP platform.

The algorithms for the Analyzer and Source Code Annotator
were implemented as discussed in Sections III-B and III-C.
The Analyzer uses the SEEP that we built as specified in
Section IV. The Source Code Annotator was built as an Eclipse
plugin and can display energy consumption at the level of
granularity of the whole application, method, path, or source
line. Screenshots for the plugin are shown in Section III-C.

Subject Applications: Table I shows the set of subject
applications that we used in our empirical evaluation. For each
application, the table shows the number of classes defined in
the implementation (C), the total number of methods across
all of those classes (M), number of total bytecodes (BC),
and a brief description of the functionality of the application.
We used total bytecode count instead of source lines because

3http://code.google.com/p/dex2jar/
4http://commons.apache.org/bcel/

the apps were downloaded from the Google Play market and
source code was not provided as part of the distribution.

We selected the applications based on three criteria: (1)
diversity of provided functionality, (2) ability to convert the
Dalvik bytecode to Java bytecode, and (3) ability of the
application to run on the LEAP platform. The last two
criteria curtailed the number of applications available for us
to experiment with. dex2jar is not yet fully mature and
is sometimes unable to completely translate Dalvik to Java
bytecode. Furthermore, many applications use native libraries
that are not available for the LEAP’s x86 processor.

B. Accuracy of eLens
We first compare the accuracy of the estimates produced by

eLens against the ground truth (GT) measured by the LEAP
platform. To do this, we provide each application as input to
eLens. This generates an instrumented version that is deployed
to the LEAP platform, where we interact with each application
to exercise its most prominent features. During the execution,
the LEAP platform measures power consumption across all of
the hardware components. After the execution, the Analyzer
computes energy estimates which are summarized and reported
by the Source Code Annotator. We compared the measured
GT against the eLens estimates at both the method and whole
software level. As explained below, it was not possible to
calculate GT at the line of source code level.

We also compare eLens to two other plausible strategies for
approximating the energy consumption of mobile applications.
The average-bytecode strategy does not, unlike eLens, use
per-instruction energy cost functions, but assumes that each
instruction has a uniform cost that can be calculated by
averaging the cost of all instructions over all runs of the
application. The no-path-sensitivity strategy does not, unlike
eLens, account for the specific paths traversed in a method but
estimates energy based on the number of times a method is
called multiplied by the cost of all of the method’s bytecodes
(using per-instruction energy costs). These strategies represent
the results that could be achieved by a developer with a method
profiler (e.g., gprof) and power measurement device, but each
lacks one important capability of eLens (per-instruction energy
modeling and program analysis, respectively).

The GT is calculated by taking hardware-level measure-
ments on the LEAP platform while the application is running.
However, there are three challenges that preclude a straight-
forward measurement and require a more complex process for
establishing GT. First, the applications can pause while waiting
for user input or a data response. Although the application is
not executing, the device will still consume energy that should
not be counted towards an application’s GT. Although this
idle time is imperceptible to humans, our measurements show
that it dominates the total execution time of an application
and must be excluded in order to not have a GT dominated
by times when the application is idle. Second, even when
measuring the application energy during periods when it is
not idle, the LEAP (or any power monitor) cannot distinguish
if the measured energy was expended by the application or
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TABLE I: Subject applications

Application Information Estimation Error (%) Time vs. Energy Timing (s)
App C M BC Description CPU RAM WiFi GPS r cos TInst TEst

BBC Reader 590 4923 293910 RSS reader for BBC news -6.2 5.9 -6.8 - 0 0.21 344 16
Bubble Blaster II 932 6060 398437 Game to blast bubbles -11.5 3.5 -11.6 - 0 0.01 450 17
Classic Alchemy 751 4434 467099 Game to combine chemical elements -7.9 -6.9 -4.4 - 0 0.13 886 17
Location 428 3179 232898 Provide location with PL2303 dirver -7.8 -8.4 - 8.1 0 0.17 274 10
Skyfire 684 3976 274196 Web-browser -7.9 0.9 -8.4 - 0 0.69 258 8
Textgram 632 5315 244940 Text editor 5.2 4.6 4.6 - 0 0.05 269 6

background processes. Third, the LEAP samples at 10 KHz,
so in theory it can only capture energy usage of methods whose
execution time exceeds 0.1ms. In practice, we found that
reliable energy estimates can only be obtained for functions
which run for at least 10 ms. This meant that GT for many
methods could not be measured and it was not possible to
measure energy consumed by a specific source line of code.

All three of these were addressed by our experiment’s
methodology. To address idle time we identified and times-
tamped APIs where the applications could block and idle.
Unless other threads in the application were executing during
the blocked time, we counted this as idle time and subtracted
it from the GT. To ensure that measured energy was accurately
attributed, we performed the GT measurements on a quiescent
system. As mentioned in Section IV, our technique does not
account for garbage collection or process switching, so we
identified points during the execution when these occurred and
excluded the energy consumed along the affected subpaths
from both the energy calculation and the GT total. This
represented only 0.05% of the total paths traversed in our
experiments. Lastly, to account for sampling frequency, we
only conducted accuracy experiments at the whole program
and method level. Only methods that ran for more than 10ms
at a time were included in the evaluation.

Note that this does not mean eLens cannot be used for
source line estimates, only that the LEAP platform could
not provide GT to evaluate the accuracy of these estimates.
eLens excludes waiting time energy because it counts only
instructions executed by the application, and is able to estimate
energy usage of arbitrarily small functions because it uses
profiled costs of bytecode energy usage. For the same reason,
eLens can isolate the energy usage of application code. These
are significant advantages of our approach.

Figure 3(a) shows the accuracy at the level of granularity
of the whole application. Our subject applications are shown
along the X-axis. Figure 3(b) shows accuracy at the method
level for those methods whose running time exceeded 10ms.
Note that for all methods, there were only six that executed
long enough to get an accurate GT measurement. For each
application or method, the bars show on a logarithmic scale
the average estimation error (compared against GT) of ten runs
reported by eLens and the two reference techniques, average
bytecode and no path sensitivity. Each bar also shows one
standard deviation above and below average estimation error.

The results show that eLens is able to calculate energy
estimates with high accuracy at both the whole program and
method level. For the subject applications, eLens’ estimation

error at the whole program level was below 10% across all
applications with an overall average of 8.8% (std. deviation of
3%), and from 7.2% to 10%, with an overall average of 7.1% at
the method level (std. deviation of 3.6%). Furthermore, eLens
is able to accurately break down application energy usage by
hardware component (Table I); its energy estimation errors for
all hardware components are within 12%. Note that Location
was the only app that used GPS. This is highly encouraging,
and suggests that eLens can be a viable approach for exploring
the energy usage of mobile applications.

In comparison, the two other plausible strategies are inaccu-
rate by several orders of magnitude. Specifically, the average
estimation error for average-bytecode at the whole program
level was 133%, and for no-path-sensitivity was 267%. To
understand why average-bytecode is inaccurate, we plotted
a distribution of bytecode energy costs. This distribution,
omitted for brevity, is highly skewed, with a small number
of instructions using more than an order of magnitude more
energy than the rest. Thus, an average bytecode cost can either
inflate the energy estimate for a program that does not use
these expensive instructions, or underestimate energy usage for
programs that do. Moreover, our results also indicate that path-
sensitivity is crucial for capturing energy usage of applications
and methods. This is because our subject applications are
significantly large, and have a large number of potential paths
that may be explored during an execution.

Overall, these results provide a compelling demonstration of
the accuracy of eLens, its ability to provide energy estimates
at granularity that is beyond the reach of hardware power
monitors, and of the importance of the two pillars of its design
(per-instruction energy modeling and path sensitivity).

C. Why Do We Need Energy Profilers?
Traditionally, using execution times obtained from a method

profiler is a common way for developers to identify methods
they will focus on to improve the efficiency of their applica-
tion. In this section, we show that execution time may not be
a good proxy to identify energy-inefficient segments of code
and that specialized energy profilers like eLens are necessary.
To demonstrate this, we first calculated the execution time
and energy estimate of each method of each application. To
obtain the execution time we profiled each method using
timestamps and calculated the corresponding energy estimate
for the method using eLens. We then compared the information
in two different ways to evaluate whether time is, indeed, a
reasonable proxy for energy cost.

Correlation: We first determined whether there is a linear
correlation between the execution time of a method and its
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(c) Top five energy hotspots
Fig. 3: Plots of eLens accuracy comparison and top energy hotspots

estimated total energy (across all components). We do this
by calculating the Pearson correlation coefficient of the two
series. Values of the coefficient closer to 1 or -1 indicate
that the two series have a strong (positive or negative) linear
relationship and values closer to zero indicate that they are
uncorrelated. The Pearson coefficients (r in Table I) are nearly
zero across all applications, indicating that there is almost no
linear correlation between execution time and energy usage.

Ranking similarity: We then considered that even if energy
and time were not linearly related, the relative rankings by
the metric might provide useful guidance. So we measured the
similarity of the rankings by calculating their cosine similarity,
a technique used to measure similarity between two vectors
in n-dimensional space. In this case, we defined two vectors,
v0,v1, ...v|methods|, where each vi was defined for one vector as
method i’s energy rank and for the other, method i’s execution
time rank. The cosine similarity ranges from -1 to 1, with -1
denoting the exact opposite ranking, 0 denoting independent
rankings, and 1 denoting the same ranking. Table I shows
cosine similarity values closer to 0 than to -1 or 1 for all but
one application, Skyfire. This strongly suggests that, for most
applications, time and energy are almost independent.

There are at least two reasons why time and energy are
uncorrelated. The first is that many hardware components have
multiple power states. Two different methods can take the
same time to execute on a CPU, but when one of them is
executing, the CPU may be at frequency f1, while when the
other is executing it may be at f2. If f2 > f1, the energy
consumed by the latter will be more than that consumed by
the former. The second explanation lies in the asynchronous
design of system and API calls. When an application sends
data over the network, that data is buffered by the operating
system so the application may not be charged the time taken
to transmit the data. However, eLens will accurately account
for the energy cost of transmitting the data, since it profiles
the send API call.

These results demonstrate the importance of an approach
like eLens, which can guide energy optimizations more accu-
rately than method profilers based on execution time.

D. Analysis Time

In this section, we evaluate one aspect of usability of
eLens, namely whether it is fast enough to be used during
software development. We measured for each application, over
a series of executions, the time the Workload Generator took

to instrument (TInst ) and the time needed by the Analyzer to
calculate the energy estimate given the output of the Workload
Generator (Test ). Table I shows these two measures, for each
application. As the results show, the instrumentation time
ranged from about 4 to 14 minutes and the analysis time
ranged from 6 to 17 seconds. In practice, instrumentation time
would be much lower because after each developer iteration, it
would only be necessary to reinstrument the changed classes
as opposed to all classes (our numbers report the latter). The
analysis time is fairly low in comparison and would not hinder
usability during development.

We did not measure the overhead introduced at runtime by
our instrumentation because our method of executing use cases
was to manually interact with the application and we could not
control for normal human variations when interacting with the
instrumented and non-instrumented versions of the application.
Anecdotally, the runtime overhead was imperceptible to users
interacting with the instrumented application. Using the addi-
tional estimated energy consumed by our instrumentation as
a proxy, we estimate that the runtime overhead ranged from
0.2%-7.2% across the applications.

E. Using eLens to Compare Applications
We conclude by illustrating how eLens can be used to

compare application energy usage. We have left a more
complete study of application energy characteristics to future
work, but this section begins to explore how eLens can be used
to understand where energy is expended in an application, and
how that differs across applications.

To study application energy usage, we calculated, for each
application, the top 5 energy hotspots. The bar graph of
Figure 3(c) plots the subject applications on the x-axis, and,
for each application, the fraction of total application energy
consumed by the top 5 hotspots, in order from left to right.
As this figure shows, applications vary widely in how energy
usage is distributed. The fraction of total energy that can be
attributed to the top 5 hotspots varies from about 10% for
Bubble Blaster to an astounding 85% for Skyfire. Moreover,
as the figure shows, even among the top 5 hotspots, energy
consumption can be significantly skewed; in Skyfire, a single
hotspot uses over 80% of application energy!

Less evident from this figure is an understanding of the
causes of high energy usage, but an examination of the
top 5 hotspots (listing omitted for space reasons) reveals
interesting insights. In Skyfire, an Android library call for
HTTP downloads consumes the most energy, but in the BBC
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Reader, the top 5 hotspots include API calls for downloading
and rendering content as well as downloading advertisements.
In Textgram as well as in the two games, appropriately enough,
graphics computations dominate the top 5 hotspots. In these
cases, an included package or library consumed a significant
amount of energy; in response to this, an application developer
might either choose to optimize the library implementation or
re-implement the functionality provided by the library in a
more energy-efficient manner.

VI. CONCLUSION

This paper presents a new technique, eLens, for estimating
energy consumption of applications written for Android mo-
bile devices. eLens brings together two ideas, per-instruction
energy modeling, and program analysis, in order to accurately,
and without requiring power measurement hardware, estimate
application energy usage at the level of granularity of the
whole application, method, path, or source code line. An
evaluation of eLens on six marketplace applications shows
that its energy estimates are accurate to within 10%, and its
run time is acceptable. Moreover, eLens can reveal insights
about energy usage across different applications, and its energy
estimates are uncorrelated with execution time, suggesting that
method profilers may not help in optimizing applications for
energy use. Overall, the results of the evaluation were very
positive and indicate that eLens is an accurate, fast, and useful
technique for estimating energy consumption.

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion under Grant No. CNS-905596 and a Zumberge Research
Award from the University of Southern California. Any opin-
ions, findings, conclusions, or recommendations expressed in
this work are those of the authors and do not necessarily reflect
the views of the sponsors. The authors would like to thank
Nilesh Mishra for his help on the LEAP platform. The first
author was supported by Annenberg Graduate Fellowship.

REFERENCES

[1] MonkeyRunner. http://developer.android.com/guide/developing/tools/
monkeyrunner concepts.html.

[2] Robotium. http://code.google.com/p/robotium/.
[3] T. Ball and J. Larus. Efficient Path Profiling. In MICRO 29, pages

46–57. IEEE Computer Society, 1996.
[4] F. Bellosa. The Benefits of Event-Driven Energy Accounting in Power-

Sensitive Systems. In the 9th workshop on ACM SIGOPS European
Workshop, pages 37–42. ACM, 2000.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ACM SIGARCH
Computer Architecture News, volume 28, pages 83–94. ACM, 2000.

[6] M. Dong and L. Zhong. Sesame: Self-Constructive System Energy
Modeling for Battery-Powered Mobile Systems. In Proc. of MobiSys,
pages 335–348, 2011.

[7] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft-A Tool for
Visualizing Line Oriented Software Statistics. IEEE Trans. Softw. Eng.,
18(11):957–968, Nov. 1992.

[8] K. Farkas, J. Flinn, G. Back, D. Grunwald, and J. Anderson. Quantifying
the Energy Consumption of a Pocket Computer and a Java Virtual Ma-
chine. ACM SIGMETRICS Performance Evaluation Review, 28(1):252–
263, 2000.

[9] J. Flinn and M. Satyanarayanan. PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications. In Second IEEE Workshop on
Mobile Computing Systems and Applications, pages 2–10. IEEE, 1999.

[10] S. Hao, D. Li, W. G. Halfond, and R. Govindan. Estimating Android
Applications’ CPU Energy Usage via Bytecode Profiling. In First
International Workshop on Green and Sustainable Software (GREENS),
pages 1–7, 2012.

[11] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. Bhattacharya. Virtual
Machine Power Metering and Provisioning. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 39–50. ACM, 2010.

[12] T. Li and L. John. Run-time Modeling and Estimation of Operating Sys-
tem Power Consumption. ACM SIGMETRICS Performance Evaluation
Review, 31(1):160–171, 2003.

[13] H. Mehta, R. Owens, and M. Irwin. Instruction Level Power Profiling.
In Proc. of Acoustics, Speech, and Signal Processing (ICASSP-96),
volume 6, pages 3326–3329. IEEE, 1996.

[14] R. Mittal, A. Kansal, and R. Chandra. Empowering Developers to
Estimate App Energy Consumption. In Proc. of MobiCom, pages 317–
328. ACM, 2012.

[15] T. Mudge, T. Austin, and D. Grunwald. The reference manual for the
Sim-Panalyzer version 2.0. http://www.eecs.umich.edu/⇠panalyzer.

[16] A. Pathak, Y. Hu, M. Zhang, P. Bahl, and Y. Wang. Fine-Grained Power
Modeling for Smartphones Using System Call Tracing. In Proc. of
EuroSys, pages 153–168. ACM, 2011.

[17] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app? Fine Grained Energy Accounting on Smartphones with Eprof.
In Proc. of EuroSys, pages 29–42, 2012.

[18] P. Peterson, D. Singh, W. Kaiser, and P. Reiher. Investigating energy
and security trade-offs in the classroom with the atom LEAP testbed.
In 4th Workshop on Cyber Security Experimentation and Test (CSET),
pages 11–11. USENIX Association, 2011.

[19] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh. Initial Explorations on Design Pattern Energy Usage.
In First International Workshop on Green and Sustainable Software
(GREENS), pages 55–61, 2012.

[20] C. Seo, S. Malek, and N. Medvidovic. An Energy Consumption
Framework for Distributed Java-Based Systems. In Proc. IEEE/ACM
ASE, pages 421–424. ACM, 2007.

[21] C. Seo, S. Malek, and N. Medvidovic. Component-Level Energy
Consumption Estimation for Distributed Java-Based Software Systems.
In Proc. of 11th International Symposium on Component-Based Software
Engineering, pages 97–113. Springer, 2008.

[22] C. Seo, S. Malek, and N. Medvidovic. Estimating the Energy Con-
sumption in Pervasive Java-Based Systems. In Sixth Annual IEEE
International Conference on Pervasive Computing and Communications,
pages 243–247. IEEE, 2008.

[23] A. Sinha and A. Chandrakasan. Jouletrack-A Web Based Tool for
Software Energy Profiling. In Proc. of Design Automation Conference
(DAC), pages 220–225. IEEE, 2001.

[24] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate
and Fine Grain Instruction-Level Energy Model Supporting Software
Optimizations. In Proc. of PATMOS, 2001.

[25] J. Stoess, C. Lang, and F. Bellosa. Energy Management for Hypervisor-
Based Virtual Machines. In USENIX Annual Technical Conference
(ATC), page 1. USENIX Association, 2007.

[26] T. Tan, A. Raghunathan, and N. Jha. Energy Macromodeling of Em-
bedded Operating Systems. ACM Transactions on Embedded Computing
Systems (TECS), 4(1):231–254, 2005.

[27] T. Tan, A. Raghunathan, G. Lakshminarayana, and N. Jha. High-
level Software Energy Macro-modeling. In Proc. of Design Automation
Conference (DAC), pages 605–610. IEEE, 2001.

[28] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization. IEEE
Transactions on VLSI Systems, 2(4):437–445, 1994.

[29] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. Instruction
Level Power Analysis and Optimization of Software. The Journal of
VLSI Signal Processing, 13(2):223–238, 1996.

[30] N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam,
and M. Irwin. Energy Behavior of Java Applications from the Memory
Perspective. In Proceedings of the 2001 Symposium on Java TM Virtual
Machine Research and Technology Symposium-Volume 1, pages 23–23.
USENIX Association, 2001.

[31] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and
L. Yang. Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones. In Proc.
of IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pages 105–114. ACM, 2010.

99


