
SIF: A Selective Instrumentation Framework for Mobile
Applications∗

Shuai Hao, Ding Li, William G.J. Halfond, Ramesh Govindan
Computer Science Department, University of Southern California

{shuaihao, dingli, halfond, ramesh}@usc.edu

ABSTRACT
Mobile app ecosystems have experienced tremendous growth in the
last five years. As researchers and developers turn their attention to
understanding the ecosystem and its different apps, instrumentation
of mobile apps is a much needed emerging capability. In this pa-
per, we explore a selective instrumentation capability that allows
users to express instrumentation specifications at a high level of
abstraction; these specifications are then used to automatically in-
sert instrumentation into binaries. The challenge in our work is to
develop expressive abstractions for instrumentation that can also
be implemented efficiently. Designed using requirements derived
from recent research that has used instrumented apps, our selec-
tive instrumentation framework, SIF, contains abstractions that al-
low users to compactly express precisely which parts of the app
need to be instrumented. It also contains a novel path inspection
capability, and provides users feedback on the approximate over-
head of the instrumentation specification. Using experiments on
our SIF implementation for Android, we show that SIF can be used
to compactly (in 20-30 lines of code in most cases) specify instru-
mentation tasks previously reported in the literature. SIF’s overhead
is under 2% in most cases, and its instrumentation overhead feed-
back is within 15% in many cases. As such, we expect that SIF can
accelerate studies of the mobile app ecosystem.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Frameworks

General Terms
Design, Experimentation, Languages, Performance

∗The first author, Shuai Hao, was supported by Annenberg Graduate Fel-
lowship. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-905596 and a Zumberge Research
Award from the University of Southern California. Any opinions, findings
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’13, June 25–28, 2013, Taipei, Taiwan
Copyright 2013 ACM 978-1-4503-1672-9/13/06 ...$15.00.

Keywords
App Instrumentation; Programming Framework; Smartphone; Sep-
aration of Concerns

1. INTRODUCTION
Mobile app ecosystems, such as the iPhone App Store and Goo-

gle Play, have experienced tremendous growth in the last five years.
Relative to ecosystems for desktop applications, mobile device app
ecosystems are fast growing and have a large number of users, an
evolving base of smartphone and tablet platforms, a large number
of contributors and developers, as well as a wide range of function-
ality made possible by ubiquitous Internet access and the availabil-
ity of various kinds of sensors (GPS, cameras etc.).

These factors, together with rapid growth in the use of mobile
devices, have sparked an interest in understanding the properties
of mobile apps. Recent research has developed methods to study
performance properties [25, 29] and security properties [15, 30,
22, 26] of mobile apps. A common thread through this line of
research is instrumentation: each work has developed customized
ways to insert instrumentation for studying app behavior. More
generally, app instrumentation is a crucial emerging capability that
will facilitate future studies of the mobile app ecosystem.

Traditionally, instrumentation frameworks for programming lan-
guages have permitted some degree of flexibility in instrumenting
software (Section 5). However, these are insufficient for mobile
apps which rely on concurrency, event handling, access to sen-
sors, and (on some mobile platforms) resource usage permissions
integrated with the app. These differences, together with the con-
straints of mobile devices, motivate the need for an instrumentation
framework with qualitatively different requirements from that con-
sidered in prior work.

A careful analysis of prior research that has used custom instru-
mentation reveals several interesting requirements of an instrumen-
tation framework for mobile apps (Section 2). We find that the
framework must permit selective instrumentation since the process-
ing constraints on mobile devices preclude pervasive instrumenta-
tion. Furthermore, this capability must permit arbitrary user-level
instrumentation that can alter the functionality of the app and not
just measure performance. Moreover, the instrumentation frame-
work must permit path inspection between specified codepoints, a
capability motivated by device access control capabilities in some
mobile OSs. Finally, because user-level instrumentation can add
significant overhead, the framework must be able to accurately es-
timate the overhead of the specified instrumentation.

The paper describes the design and implementation of a Selec-
tive Instrumentation Framework (SIF) for mobile apps that satisfies
these novel requirements (Section 3). Our first contribution is iden-
tifying the smallest set of instrumentation primitives that permit

expressivity while admitting efficient implementation. SIF allows
users to specify instrumentation locations using codepoint sets (col-
lections of locations in the code) that can be selected at various lev-
els of granularity from class hierarchy specifications down to indi-
vidual bytecodes, and then specify user-defined instrumentation for
each set. It also defines a path set abstraction, which allows users
to dynamically trace inter-procedural paths between two arbitrary
codepoints in the app. This capability is novel in an instrumenta-
tion framework, and can be used to explore privacy leakage and
permissions violations in mobile apps. Taken together, these two
abstractions can be used to express all instrumentation tasks con-
sidered in the literature. A second contribution is SIF’s use of static
and dynamic program analysis to derive instrumentation locations,
minimize instrumentation overhead, and estimate instrumentation
cost. In particular, implementing the path set abstraction requires
sophisticated stitching of intra-procedural path segments to derive
inter-procedural paths.

SIF’s abstractions and implementation methods are, for the most
part, independent of the underlying mobile app ecosystem, but we
have implemented SIF for the Android platform. Using this im-
plementation, we have evaluated SIF’s expressivity and efficiency
(Section 4). We demonstrate that SIF’s abstractions can express
many of the instrumentation tasks previously proposed in the liter-
ature, as well as other common tasks. Moreover, the SIF specifica-
tions are compact, requiring fewer than 100 lines of code even for
the most complicated instrumentation tasks. Finally, SIF can often
reduce instrumentation cost significantly, requires less than half a
minute to instrument binaries, and provides accurate (within 15%)
overhead feedback in many cases.

While much work remains (Section 6), we believe that SIF can
accelerate studies of the mobile app ecosystem and lead to an im-
proved understanding of app behavior and usage.

2. BACKGROUND AND MOTIVATION
In this section, we motivate the need for an instrumentation frame-

work for mobile apps, and articulate the unique requirements posed
by these apps. We then describe the challenges associated with sat-
isfying these requirements; this discussion lays the groundwork for
the design of SIF, described Section 3.
Instrumentation Frameworks. Instrumentation refers to the pro-
cess of inserting code into an application, often by an entity (soft-
ware or user) other than the original developer. An instrumentation
framework is a software system that allows an entity to insert instru-
mentation at specific points in a program. In traditional software
systems, instrumentation frameworks are widely used for a variety
of tasks [18, 16], but, as we discuss in Section 5, these do not sat-
isfy one or more of the requirements of mobile app instrumentation
that we identify below.

Instrumentation frameworks are generally based on one of three
different mechanisms. The first mechanism is to instrument the
source code, an approach which requires source to be available to
the instrumentor. A more general mechanism instruments the run-
time system responsible for program execution; for example, an
instrumented operating system or virtual machine can record ev-
ery executed method. The drawback to this is that a customized
runtime system must be developed for every platform on which
an entity will want to perform instrumentation. Furthermore, once
developed, it can be very difficult to modify the runtime system
instrumentation.

The third mechanism, and the one we choose, is binary instru-
mentation, in which instrumentation code is directly inserted into
the compiled binary or bytecodes. This does not require source

code and is more portable and flexible than customized runtime
systems. More broadly, the use of binary instrumentation also en-
ables users to instrument and analyze apps after they have been re-
leased. This is an especially important capability in the mobile app
ecosystem because its growth has spurred a number of independent
efforts in understanding the performance and behavior of mobile
apps. For example, AppInsight [25] developed a way to instrument
apps for a specific purpose, namely, critical path monitoring. The
code for doing this instrumentation was done manually, and was
targeted for the purpose of critical path monitoring. In our work,
we seek to provide a programming framework that can specify, at
a high-level, the instrumentation required for AppInsight and other
tasks, leaving the task of generating the low-level instrumentation
to a compiler.
Framework Requirements. We conducted a survey of recent re-
search work that has developed customized instrumentation, and
have used these to develop a set of requirements for a binary in-
strumentation framework. We discuss three specific examples; Sec-
tion 4 presents a more comprehensive discussion of these pieces of
research.

• Many mobile apps, in response to a user action, perform
multiple concurrent operations, and the user-perceived la-
tency is dominated by the critical path (the concurrent op-
eration which takes the most time) through the code. Ap-
pInsight [25] has attempted to develop general methods to
instrument apps for critical path analysis.

• Some existing mobile operating systems provide coarse-grain
access control to sensors and other system facilities: e.g., An-
droid requires app developers to explicitly require permission
to access the network or GPS. Researchers [22] have devel-
oped methods to instrument apps to enable more fine-grained
permissions checking: e.g., preventing third-party libraries,
often used to develop applications, from using the permitted
resources.

• We have been developing a sensor auditing capability to in-
strument an app to understand what processing it performs
on the sensor (e.g., GPS or camera), and whether, after ac-
quiring location sensor readings, the app uploads the sensor
readings to a website.

Many of these studies are motivated by novel features of mobile
app platforms: concurrent execution and event handling, per-app
restrictions on resource usage, and the availability of novel sensors
on mobile devices.

These studies drive the requirements for our binary instrumen-
tation framework. A strawman approach to solving these prob-
lems is to instrument every method call or execution path. How-
ever, this can incur significant overhead on modern smartphones,
to the point where app usability can be impacted. In some prelimi-
nary experiments, we have observed up to 2.5x greater CPU usage
when using Android’s Traceview [5] to instrument every method
and system API invocation. Accordingly, the first requirement of
a binary instrumentation framework for mobile apps is selectivity:
users should be able to instrument only the code of interest to their
study.

To support AppInsight and the fine-grained permissions study,
our framework needs to provide selectivity by allowing users to
flexibly specify locations for inserting instrumentation. Specifically,
in these studies, the authors inserted instrumentation at specific
points in the program: event handlers, API calls with certain per-
mission capabilities, etc.

Many instrumentation frameworks permit selectivity of method
calls or APIs. Our sensor auditing study motivates another require-
ment for a binary instrumentation framework that prior work lacks
(Section 5), the ability to inspect dynamic execution paths. This
capability would allow a user to determine which code paths were
traversed between two points in the code, and examine what trans-
formations might have been done on data along these paths.

Instrumentation frameworks differ in the kinds of instrumen-
tation they allow a user to insert. To support AppInsight, a bi-
nary instrumentation framework that provides basic instrumenta-
tion primitives (such as timing or counting procedure invocations)
would suffice. However, the fine-grained permissions study alters
the functionality of an app. To support instrumentation for func-
tional modifications, a binary instrumentation framework must al-
low arbitrary user-specified instrumentation, since it cannot antici-
pate the kinds of instrumentation that might be needed.

Finally, efficiency is an important requirement of instrumentation
frameworks; the instrumentation overhead must be minimal and
must preserve the usability of the mobile app. This is particularly
difficult to achieve in a framework which permits user-specified
instrumentation, since the framework has no control over the com-
plexity of that instrumentation. Accordingly, we add one additional
requirement for binary app instrumentation, overhead feedback. If
the instrumentation framework can estimate the overhead of user-
specified instrumentation, users can quickly adapt the instrumenta-
tion (e.g., by being more selective) in order to reduce the overhead,
without actually needing to run the instrumented binary.

These requirements raise significant research questions and chal-
lenges. What are the appropriate abstractions for specifying where
instrumentation should be inserted? This is particularly challenging
for path inspection since some apps are highly complex and contain
several million distinct paths (a static analysis of the code paths in-
volved in composing email using the Gmail app reveals nearly 0.15
million path segments). Additionally, how do we provide a flexible
mechanism for allowing the user to provide any instrumentation
without introducing extra overhead and complications? Finally,
how do we minimize and report guidance on overhead in a way
that can help users? In particular, how do we accurately predict the
overheard of arbitrary instrumentation?

Our SIF instrumentation framework provides functionality to meet
all of these challenges. SIF provides a domain-specific program-
ming language and support libraries that allow users to selectively
instrument an app with arbitrary user-specified code along any path
or codepoint based location. The framework uses sophisticated pro-
gram analysis techniques to introduce minimal overhead during in-
strumentation and provide overhead feedback for the user-specified
instrumentation. We describe how SIF provides all of this function-
ality in the next section.

3. A SELECTIVE INSTRUMENTATION FR-
AMEWORK

In this section, we describe SIF, our binary instrumentation frame-
work for mobile apps that satisfies the requirements listed in the
previous section. We begin with an overview that describes how
a user interacts with SIF and the instrumentation workflow within
SIF. We then discuss the instrumentation specification language ab-
stractions, and describe how we overcome some of the challenges
listed in Section 2. We conclude the section by describing our im-
plementation of SIF for Android.

3.1 Overview of SIF
Figure 1 describes the overall workflow for SIF. A user provides

Figure 1: Overview of SIF

three pieces of information as input to SIF. The first is the original
app binary to be instrumented. The second is the user-specified in-
strumentation code, written in a language called SIFScript1. We say
that a SIFScript codifies an instrumentation task. The third input to
SIF is a workload description. Intuitively, a workload description
captures the app use-cases that the user is interested in instrument-
ing. For example, in the critical path analysis example above, the
user may be interested in knowing the user-perceived latency for
posting to Facebook. This use-case (posting to Facebook) is encap-
sulated in a workload description obtained from a workload gener-
ator (Figure 1). We describe later how a user provides a workload
descriptor. The workload description is used by SIF to provide ac-
curate overhead feedback, as described in Section 3.3.

In the first step of SIF’s workflow, the instrumenter component
interprets the SIFScript specification and generates an instrumented
version of the app. This instrumenter realizes the user-level specifi-
cation and path inspection capabilities in SIF by inserting the user-
specified instrumentation code at the appropriate locations. The
instrumenter also outputs some additional metadata used in later
stages. In our current instantiation of SIF, all instrumentation out-
put is stored locally on the mobile device, then extracted for post-
processing. In future work, we plan to explore automatic export
of instrumentation output to a cloud server, a capability that can
enable large-scale debugging and app analytics in the wild.

The metadata generated by the instrumenter, together with the
workload information input by the user, is fed to an overhead es-
timator. That component calculates the impact of the instrumenta-
tion for the given workload description. Impact may be measured
in terms of the extra execution time or additional resource usage
(e.g., CPU cycles, memory, energy) incurred as a result of the in-
strumentation. If the estimated impact is unacceptable, users can
refine their instrumentation specifications.

When the instrumented application is run, the instrumentation
outputs either log data generated by SIF defaults or the data col-
lected by the user-specified instrumentation. An example of the
latter is execution timings generated by user-specified instrumenta-
tion. In addition, SIF produces output whenever the user employs
its path inspection capability. This output is an intermediate de-
scription of paths traversed; a SIF module called the path stitcher
component is automatically invoked on this output to generate user
readable path information. In the remainder of this section, we de-
scribe the components of SIF.

Before we do so, a word about the potential users of SIF. In our

1In what follows, we will use SIFScript to denote both the language
and the specification program; the usage will be clear from the con-
text.

Figure 2: Operations on SIF abstractions

view, SIF is an instrumentation tool at an intermediate level of ab-
straction. It is intended for an expert user, such as a researcher
or a software engineer, who understands the app code and/or the
mobile OS API well, and who might, without SIF, have manually
instrumented apps for whatever task he/she is interested in (or de-
veloping custom software for this instrumentation). It can be made
more broadly available to other users by adding front-end code that
provides a higher-level of abstraction: for example, a security re-
searcher can make available a web page which takes a binary and
instruments it for some purpose (say to block ads), and users wish-
ing an ad-free version of their app can upload a binary, retrieve the
instrumented binary and run it. Finally, it is not unreasonable to ex-
pect developers to use SIF even when they have access to app source
code: instrumentation is a programming concern that is separable
from application logic, and a tool like SIF, which allows developers
to treat instrumentation as a separate concern rather than having to
weave instrumentation into application logic, might be helpful in
many cases.

3.2 The SIFScript Language
Our first design choice for SIF was to either define a new domain-

specific language for SIFScript or to realize SIFScript as an extension
to an existing language. A new language is more general since it
can be compiled to run on multiple mobile platforms, but it also
incurs a higher learning curve. Instead, we chose to instantiate SIF-
Script as a Java extension. This design option has the advantage
of familiarity, but may limit SIF’s applicability to some mobile OS
platforms. However, we emphasize that the abstractions and the
underlying instrumentation methods based on program analysis are
independent of specific mobile app programming platforms, and
are extensible to multiple platforms.

The next design challenge for SIF was to identify abstractions
that provided sufficient expressivity and enabled a variety of in-
strumentation tasks. In addressing this challenge, we were guided
by the requirements identified in Section 2 and the instrumentation
tasks described in Section 4.

An instrumentation specification language should permit instru-
menting code according to different attributes, such as method in-
vocations, specific bytecodes, or classes. The language should also
allow for combining these attributes in different ways to build up
sophisticated instrumentation specifications. To permit maximum
flexibility and cover the use cases discussed in Section 2 and Sec-
tion 4, SIFScript incorporates two qualitatively different instrumen-
tation abstractions, codepoint sets and path sets. These abstractions

1 class TimingProfiler implements SIFTask {
2 public void run() {
3 CPFinder.setBytecode("invoke.*", ".* native .*");
4 UserCode code;
5 for (CP cp in CPFinder.apply()) {
6 code = new UserCode("Logger", "start", CPARG);
7 Instrumenter.place(code, BEFORE, cp);
8 code = new UserCode("Logger", "end", CPARG);
9 Instrumenter.place(code, AFTER, cp);

10 }
11 }
12 }
13 class Logger {
14 private static Map map = new HashMap();
15 public static void start(int mid, int pos) {
16 long id = Thread.currentThread().getId();
17 String k = mid + "," + pos + "," + id;
18 long start = System.nanoTime();
19 map.put(k, start);
20 }
21 public static void end(int mid, int pos) {
22 long end = System.nanoTime();
23 long id = Thread.currentThread().getId();
24 String k = mid + "," + pos + "," + id;
25 long start = map.get(k);
26 Log.v(TAG, k + "," + (end - start));
27 }
28 }

Listing 1: Timing profiler for native invokes

1 class LocationAuditor implements SIFTask {
2 public void run() {
3 CPFinder.setPermission(LOCATION);
4 Set<CP> X = CPFinder.apply();
5 CPFinder.setPermission(INTERNET);
6 Set<CP> Y = CPFinder.apply();
7 PathFinder.sequence(X, Y);
8 PathFinder.report();
9 }

10 }

Listing 2: Location auditor

specify where in a binary program the user wishes to insert instru-
mentation.

Codepoint Set This abstraction encapsulates a set of instructions
(e.g., bytecodes or invocations of arbitrary functions) in the
binary program that share one or more attributes. For exam-
ple, a user might define a codepoint set that consists of all
invocations to a specified library (we discuss other attributes
below).

Path Set This abstraction encapsulates the set of dynamically tra-
versed paths that satisfy a user-specified constraint. Cur-
rently, SIF supports two forms of constraints: paths traversing
any codepoint in a codepoint set or paths containing at least
one codepoint from each of two or more codepoint sets.

Figure 2 documents the operations on these abstractions; these op-
erations are discussed in greater detail below.

3.2.1 Codepoint Sets
We now discuss the semantics of SIFScript abstractions using a

simple example instrumentation task. Listing 1 shows the com-
plete SIFScript listing of a timing profiler, which selectively profiles
the execution time of native code invocations. Modern smartphone
OSs (e.g., iOS and Android) permit apps to implement part of their
functionality at a lower-level in native code (usually C) for perfor-
mance reasons. Native code is used in many apps such as browsers,
video display and gaming.

SIFScript allows users to specify instrumentation tasks by defin-
ing separate classes for each task; each instrumentation task inher-
its from a SIFTask base class. Users can select arbitrary code-
points, define user-specified instrumentation, and specify where to
place instrumentation. Line 3 of Listing 1 is an example of a SIF-
Script construct for selecting codepoints. CPFinder is a class that
provides methods to specify codepoint attributes and iterate on the
identified codepoint sets. In line 3, the setBytecode() method
selects all points in the binary that are invocations to native meth-
ods. More generally, setBytecode() takes as its first argument
a regular expression that specifies the kind of bytecode (in this ex-
ample, invocations), followed by an optional argument that speci-
fies a regular expression matching the name (in this example, native
invocations).

Although not shown in our example, SIFScript contains a hier-
archy of attribute specifications, which users may use to progres-
sively narrow codepoint selections. The setClass() method
of CPFinder selects classes whose name or whose class hierar-
chy matches specified regular expressions. If this method is in-
voked, only codepoints within matching classes are considered for
inclusion in a codepoint set. Within these classes, users may nar-
row down the scope of codepoint selection by using setMethod,
which takes, as an argument, a regular expression for the method
names. Only codepoints within the matching methods are consid-
ered. Thereafter, users may invoke setBytecode() to specify
codepoints inside the relevant classes and methods. Users may also
use setPermissions() to refine the selection to those code-
points that require resource access permissions (e.g., network or
location access) and setLoops(), which allows users to instru-
ment loop edges.

If any of these attributes are not defined, the effect is equiva-
lent to specifying no refinement. For example, if setClass()
is omitted, all classes are considered when selecting codepoints.
Thus, in Listing 1, line 3 selects native methods in all classes.

The CPFinder class also contains two other methods. init()
resets a selection, since a SIFScript might contain multiple instru-
mentation steps, with each step instrumenting a different selection
of codepoints. apply() (line 5) analyzes the specified attribute
and computes the resulting codepoint set.

Once a codepoint set has been defined (as in line 3), the next
step in writing a SIFScript is to specify what instrumentation to in-
sert, and where to insert instrumentation. For the former, SIFScript
defines a UserCode type which declares a code block; a new code
block can be specified in the constructor to UserCodewhich takes
as arguments a class name, a method name, and arguments to the
method. Thus, an instance of UserCode effectively specifies ar-
bitrary user-specified instrumentation. For example, in line 6, the
SIFScript defines code to be the start method of the Logger
class, and in line 8, the end method. Lines 13-27 provide the defi-
nitions of these methods. The start method generates and stores
a timestamp along with a thread specific key. The end method
computes the invocation time and writes it out to a log.

To specify where to insert instrumentation, SIF provides an Ins-
trumenter.place() method. This method takes three argu-
ments: a UserCode instance, a location specification, and a code-
point. The semantics of place() are as follows: it places the
UserCode code block instance at the specified codepoint. SIF
currently supports three location specifications: BEFORE inserts
the code block before a codepoint, AFTER inserts it after the code-
point, and AT replaces the codepoint. In Listing 1, line 7 shows the
start method of Logger being inserted before the codepoint,
and line 9 shows the end method being inserted after the code-
point. The Instrumenter also supports a placeLoops()

method to instrument loop back-edges; this is discussed in Sec-
tion 3.3.

3.2.2 Path Sets
In Section 2, we motivated the need for a path inspection ca-

pability in a mobile app instrumentation framework. To illustrate
SIF’s abstraction for path inspection, consider the context-aware
app aroundme, which searches for points of interest near a mobile
device’s current location. To achieve this, the app requests access
permissions for both location data and the Internet. But, since it
displays advertisements in the free version, privacy-conscious users
may be interested in knowing whether the app leaks their location
information. To audit how their location information is used, users
can write a location auditor instrumentation task in SIF using the
path inspection abstraction, as shown in Listing 2. This auditor
provides the user with a listing of all sub-paths that access location
data and then access the Internet.

The basic abstraction for path inspection in SIF is the path set
provided by the PathFinder class. Conceptually, a path set con-
sists of a collection of paths traversed by the app when it is exe-
cuted. Thus, unlike the codepoint set abstraction, the set of paths
belonging to a path set cannot be enumerated statically (i.e., before
execution).

As with codepoint sets, path sets are specified by describing at-
tributes of paths for interest. SIF currently supports two forms of
attribute specifications. The contains(C) method of PathF-
inder takes as an argument a codepoint set, and returns all intra-
procedural paths (i.e., paths that begin and terminate within the
same procedure) that contain at least one of the codepoints in the ar-
gument. sequence(C1,C2,. . .,Cn) specifies all inter-procedural
paths that contain, in sequence, a member of each of the n code-
point sets. Thus, a path in this set contains a codepoint ci ∈ C1

followed by a cj ∈ C2, and eventually ck ∈ Cn. The path starts in
the method containing ci and ends in the method containing ck.

SIF supports one action on path sets, report(), which logs all
paths in a path set, so a human can inspect them. This log con-
tains every instruction in the path, so a user can understand what
operations are performed along a path.

In the location auditor (Listing 2), the user defines two codepoint
sets, the first is all invocations (e.g., API calls) with permission
to access location data and the second is all invocations with per-
mission to perform network operations. At runtime, the location
auditor logs all paths between an invocation in the first codepoint
set and an invocation in the second codepoint set. If the output is
empty, the user knows that there is no direct leakage of location in-
formation, for the tested use cases. If the output is non-empty, the
user can examine the processing done on the location data before
a network operation occurs, for example, to determine whether the
location granularity was coarsened to the zip code level.

3.3 SIF Component Design
In this section, we describe how various components of SIF are

designed and how they collectively realize the abstractions described
above. SIF’s design borrows from program analysis techniques and
abstractions. Before we discuss the SIF design, we introduce some
of these techniques and abstractions.

3.3.1 Preliminaries
A control flow graph (CFG) represents the flow of control (branch-

ing, looping, procedure calls) in a program or within a method.
Nodes in the graph represent basic blocks of code and edges rep-
resents jumps or branches. CFGs are often used in many static
analysis applications.

A call graph captures the invocation relationship among methods
within a program. A static call graph can be constructed by analyz-
ing a program and constructing relationships between callers and
callees. A dynamic call graph depicts the sub-graph of the static
call graph that is encountered during an execution and can be con-
structed by instrumenting and logging invocations.

SIF uses a technique called efficient path profiling [8] proposed
by Ball and Larus. This technique instruments programs to accu-
rately, but with minimal overhead, measure path execution statis-
tics. The Ball-Larus profiler assigns weights to edges of a method’s
control-flow graph (CFG) such that the sum of the edge weights
along each unique path through the CFG results in a unique path
identifier; a single instrumentation counter per method then suffices
to record the path traversed during each invocation of the method.
When a program instrumented with these counters is executed, the
output is a count, for each path, of the number of times the path is
executed.

More precisely, the Ball-Larus profiler instruments path segments.
For example, in methods with two branches, there are two path seg-
ments, the then and else branches. In methods with a single loop,
there are four acyclic path segments: one that runs through the
method without executing the loop body, a second that starts at the
beginning and terminates at the end of the loop body, a third con-
taining the execution of the loop body to the end of the method, and
a fourth containing only the loop body. Intuitively, any loop execu-
tion can be described using a linear combination of these path seg-
ments. An execution that does not execute the loop body will result
in a count vector 〈1, 0, 0, 0〉; one iteration will result in 〈0, 1, 1, 0〉
and k iterations in 〈0, 1, 1, k − 1〉. The complete path can be re-
constructed post facto by correlating the outputs of the Ball-Larus
profiler with the CFG.

We extend the Ball-Larus profiler to handle nested method calls,
exceptions, and concurrency. We identify and discard paths that
result in exceptions, since their catch blocks may cause control-
flow to jump outside of the method, a behavior for which the Ball-
Larus profiler is undefined. Concurrency is handled by using the
thread’s ID to identify the counter that must be updated to track the
path ID.

3.3.2 Realizing the Codepoint Set Abstraction
There are three distinct parts to realizing the codepoint set ab-

straction: finding target instrumentation positions, enabling access
to local data variables, and inserting user-defined action code.

Finding the target instrumentation positions is performed by the
method CPFinder.apply(). This method first combines the
regular expression based attribute specifications for class hierar-
chy, classes, methods, bytecodes and permissions into a set of con-
straints. Then, the method hierarchically applies these constraints
during successive scans of the code, ultimately identifying the set
of instructions that need to be instrumented.

A challenge for SIF is to provide user-defined instrumentation
with access to program state that is available at each instrumen-
tation codepoint. For example, consider a codepoint invoke-
bar(x,y) inside method foo(a,b). User-specified instrumen-
tation code should be able to access the method signature (foo(i-
nt,int)), method arguments (a,b), and operands of the in-
struction (i.e., the method reference to bar, invocation arguments
(x,y), and the return value, if any). This type of access to the pro-
gram state is necessary, for example, in code that tracks the values
of arguments supplied to bar.

For method signatures, SIF scans the binary to extract these sig-
natures, then inserts instructions to load at runtime the correspond-
ing signature at the appropriate locations, so that they will be ac-

cessible to user-specified instrumentation code. SIF also provides
users with access to other information discussed above. To access
this information, SIF makes special symbols available to users that
notify SIF to instrument in such a way so that this data is provided to
the inserted instrumentation code as arguments. When SIF encoun-
ters these special symbols, it inserts additional instrumentation to
make this data available to the user-specified instrumentation code.

SIF inserts the user-specified instrumentation at all of the identi-
fied codepoints via the Instrumenter.apply()method. There
are two approaches to this: one is to inline the instrumentation code
at each codepoint, and the other is to insert an invocation to the in-
strumentation code. SIF employs the latter approach, which results
in more compact instrumentation if there is more than one code-
point that must be instrumented with the same code.

As an aside, we note that code obfuscation frameworks, which
obfuscate binaries without affecting functionality, can limit the ap-
plicability of SIF’s codepoint abstraction. These frameworks cannot
obfuscate invocations to system APIs and methods, so SIF will still
be able to instrument those codepoints.
Supporting Distinguished Codepoints. Apps contain distinguished
codepoints that correspond to higher-level program constructs of
interest to users. These codepoints are method entry and exit, CFG
branch edges, exception entry points, and loop back-edges. Our
current instantiation of SIF supports only the subset required to
achieve the instrumentation tasks discussed in Section 4, but the
remainder are straightforward to support using CFG analysis. To
instrument method entry and exit, a user would first identify code-
points that define a method using the CPFinder then use the
Instrumenter.place() method with the location specifica-
tion of either ENTRY or EXIT. To identify codepoints related to
loop “back-edges” (jumps back to the beginning of the loop), SIF
provides the CPFinder.setLoops() method. This method
uses a depth-first search of the CFG to identify back-edges. Then
the Instrumenter’s placeLoops() function inserts instru-
mentation before a back-edge (at the loop exit), after a back-
edge (at the loop entry), and at a back-edge.

3.3.3 Realizing the Path Set Abstraction
In SIF, path sets support path inspection capabilities. The meth-

ods to support path inspection take codepoint sets as arguments;
the techniques discussed above can be used for identifying the rel-
evant codepoints. The remainder of this section discusses how SIF
realizes path inspection. In general, SIF provides path inspection
capabilities by appropriately adapting the Ball-Larus path profil-
ing method discussed above, and using a path stitcher as a post-
processing step to aggregate the path segments produced by path
profiling into method-level or inter-procedural paths. SIF’s adapta-
tions reduce the overhead of path profiling.

Implementing the contains(C) method of PathFinder is
conceptually straightforward. One could simply instrument all path
segments of all methods in an app using the Ball-Larus profiler,
then report only those path segments containing the specified
codepoints (these can be identified in a post-processing step). In-
stead, in SIF, we use each c ∈ C to identify the methods that contain
c, and only instrument those methods.

Implementing sequence() is a little bit more involved. Ex-
tending Ball-Larus profiling to inter-procedural paths is known to
be a hard problem, and it is not one we solve in this paper. Our ap-
proach relies on the observation that we know which inter-procedural
paths are of interest, namely, the ones that traverse specified code-
point sets. We can use the Ball-Larus profiler, together with addi-
tional instrumentation, to find these inter-procedural paths.

We discuss the algorithm for the case when the input to sequen-

ce() contains two codepoint sets C1 and C2. The extension of this
algorithm to multiple codepoint sets follows in a straightforward
manner.

For sequence(C1, C2), we wish to record all paths at runtime
that execute a ci ∈ C1 followed by a cj ∈ C2. We could instru-
ment every method in the app using the Ball-Larus profiler, but
this approach adds unnecessary instrumentation and does not give
us enough information to determine inter-procedural paths between
each ci and cj .

Instead, we use a more sophisticated program analysis to stati-
cally determine an over-approximation of all the methods invoked
between the codepoints in C1 and C2. To identify these methods
that could be invoked between codepoints, we perform a standard
reachability analysis (with some additional inputs to specify con-
currency and event handling constraints) between all ci ∈ C1 and
cj ∈ C2. All intervening methods in the call graph are marked
for instrumentation. We then add additional instrumentation be-
yond that required by the Ball-Larus profiler, described below, to
instrument these methods. This approach trades off slightly higher
instrumentation costs for a much more compact instrumented bi-
nary.

The additional instrumentation identifies the identifier of the path
segments and ordering of the path segments, so that the path stitcher
can reconstruct the intra-procedural path. For example, suppose
that codepoint ci is invoked in procedure A along path pl,A (where
l is an identifier for the path). One approach to obtaining the inter-
procedural path is to record l, A and the timestamp at which that
path was executed. Then, when codepoint cj is invoked in proce-
dure B along path pm,B , m,B is also output by the instrumenta-
tion. If l, A and m,B occur successively in the output, then we can
infer that B was called by A and the corresponding inter-procedural
path consists of l followed by m. In SIF, a path stitcher performs
this analysis of paths.

Rather than output timestamps and path segment identifiers, we
note that it suffices to simply output the sequence of path segment
identifiers encountered during the execution. From this sequence,
and by logging all call sites encountered during execution2 and ev-
ery method entry and exit, it is possible to stitch together inter-
procedural paths. We optimize this logging by run-length encoding
the path identifier sequence and compactly encoding the call site
information.

Finally, the path stitcher performs a call stack simulation in or-
der to determine the calling sequence of the path segments from
the executed methods. To do this, it uses the logged records from
path profiling and simulates the call stack encountered during ex-
ecution. The output of this step is the set of all inter-procedural
paths between each ci ∈ C1 and cj ∈ C2.
Dealing with Exceptions and Concurrency. Mobile apps may throw
exceptions and contain concurrent threads. To handle exceptions,
we conservatively include every exception handler when perform-
ing the reachability analysis. To handle concurrency, we log thread
identifiers so the path stitcher can separate path segments executed
by different threads. Our path stitcher can also splice thread paths
when one thread creates another (by searching for a thread fork
call) and identify thread identifier reuse (by determining when the
thread has exited).

3.3.4 Overhead Feedback
The final component of SIF is the overhead feedback estimator.

In SIF, overhead can come from two sources: instructions inserted
2Within a given method, another method m may be invoked at sev-
eral points. Logging the call sites helps disambiguate these during
path stitching.

by SIF components (e.g., instructions to load method templates or
perform path logging) and user-specified instrumentation code. As
we show in Section 4, the former component is small. However, as
in any programming framework that provides flexibility, users can
insert instrumentation that adds significant processing overhead to
an app, making the app unusable. To give the user approximate
feedback on the overhead introduced by their instrumentation, SIF
provides an overhead feedback estimator.

The overhead of instrumentation is difficult to define statically
(i.e., without running the app) since, in many cases, execution time
is dependent on code structures that can execute a variable number
of times. So, SIF provides users with a way to provide a workload
as input. Intuitively, a workload captures the dynamic execution
statistics for a given use of the app (e.g., playing one instance of
a game or sending an email). To translate the workload into paths
that can be analyzed, SIF provides the user with a version of the
app instrumented only with the Ball-Larus profiler (i.e., the ver-
sion does not contain the user-specified instrumentation). The user
can execute the workload on this instrumented app and obtain the
frequency of execution of every path segment in the app. This con-
stitutes the workload.

Based on this information, the overhead estimator knows pre-
cisely which instructions inserted by SIF are executed and how many
times each is executed. In addition, the overhead estimator can de-
termine how many times user-specified instrumentation is invoked,
and can account for the overhead of this as well. This estimation
works well if user-specified instrumentation’s CFG is acyclic; ex-
tending overhead estimation to more complex user-specified instru-
mentation is left to future work.

The overhead estimator combines the instruction counts derived
from the workflow description and profiled estimates of execution
time for each instruction to provide an estimate of the total exe-
cution time incurred by instrumentation (feedback based on other
measures of overhead, such as energy, is left for future work). With
this estimate, users can refine their instrumentation specification in
order to reduce overhead.

We emphasize that, to determine overhead, the overhead esti-
mator runs a version of the app instrumented using the Ball-Larus
profiler (to generate the workload description), but does not need
to run a version of the app that includes user-specified instrumenta-
tion. In this sense, the feedback provided to the user is an estimate.
This is convenient because the user has to generate the workload
description once, but may iteratively refine instrumentation several
times.

3.4 Implementation of SIF for Android
We have designed SIF to be broadly applicable to different mo-

bile computing platforms. The abstractions on which SIF depends
are general in that they are based on standard programming con-
structs (instructions, invocations and paths). Furthermore, the com-
ponents use program analysis techniques common to imperative
programming, but not specific to a given programming language.
We have chosen to instantiate SIF for the Android platform because
of the platform’s popularity and active research targeting the plat-
form. That said, it should be conceptually straightforward to in-
stantiate SIF on other platforms like Windows, iOS and we have
left this to future work.

We made two exceptions to the generalizability goal of SIF. The
first is that, along with handling concurrent execution, we imple-
mented path set abstractions to handle Android-specific asynchronous
tasks that can be executed in the background. Second, permissions
support is closely modeled on Android’s permissions model. The
reason for this is that prior work [6] has identified, for a given per-

mission capability, a list of APIs which match that capability, for
example, the set of API calls that require INTERNET permission to
use the network. SIF uses this list to implement permissions-based
codepoint selection. We have left it to future work to identify the
permission mappings of other platforms.

Although Android uses a dialect of Java, our specification lan-
guage abstractions are implemented as an extension of Java. We do
this because there are robust tools for Java bytecode manipulation.
To manipulate Android programs, we first convert Dalvik bytecode
to Java. To achieve this translation, we use apktool [1] to un-
pack and extract app binaries and resource files, and dex2jar [3]
to convert Dalvik bytecode to Java bytecode. The BCEL [2] library
is used for reading and modifying Java bytecode. Finally, Android
SDK tools convert Java bytecode back to Dalvik and repack the in-
strumented app. We have implemented EPP [8] in Java. The total
implementation of SIF is about 5,000 lines of code.

Our implementation does not handle Java reflection and dynam-
ically loaded code instantiated by the Java class loader. Program
analysis techniques for handling reflection and dynamic class load-
ing have not progressed to the point where it is possible to accu-
rately analyze a broad range of code. Furthermore, SIF has no visi-
bility inside native code, which is used by several applications, but
can instrument invocations to native methods. We have left these is-
sues to future work. Finally, we note that SIF can also be used, with
minor modifications to instrument arbitrary Java programs, not just
mobile apps. We have left an exploration of this capability to future
work also.

4. EVALUATION
The primary research question with SIF is its applicability for

instrumentation. There are several aspects to this applicability: is
SIF expressive enough to express a variety of instrumentation tasks,
is its language compact enough to permit rapid instrumentation, is
its framework efficient enough to be usable, and is its overhead
feedback accurate enough for users to rely on its estimates. In this
section, we address these aspects using our Android instantiation
of SIF. All our experiments are conducted on Galaxy Nexus smart-
phones running Android 4.1.2.

4.1 Expressivity of SIF
To demonstrate the expressivity of SIF, we have implemented ten

different instrumentation tasks, shown in Table 1, which demon-
strate different facets of SIF. These tasks exhibit variety along sev-
eral dimensions. First, they range from a simple timing profiler task
that requires a single instrumentation step to sophisticated multi-
step tasks, such as injecting privacy leaks and performing critical
path analysis in the presence of concurrent events. Second, some
of these tasks illustrate traditional uses of instrumentation, such as
performance monitoring or dynamic tracing, while others are more
specific to mobile apps, focusing on sensor usage and sensor data
security. Third, while some of these instrumentation tasks are com-
mon, a majority of them have been motivated by recent research.
Finally, these tasks use different combinations of the SIF abstrac-
tions: path sets or codepoint sets specified at different granularities
(class hierarchy, method, bytecode); permissions; and the ability to
instrument loops.

As Table 2 shows, the SIFScript for each instrumentation task
is very compact. No SIFScript exceeds 100 lines; if we exclude
FreeMarket, AlgoProf and AppInsight, the remaining tasks require
less than 30 lines. This demonstrates the conciseness of the ab-
stractions; as we shall discuss later, the larger tasks, AlgoProf and
AppInsight, are approaches that use extensive instrumentation to
study application behavior.

Table 1: Implemented instrumentation tasks

LOC* (SIF) LOC (user) LOC (total)

Timing Profiler 12 16 28
Call Graph Profiler 30 22 52
Flurry-like Analytics 13 18 31
Fine-grained Permission 20 44 64
AdCleaner 10 4 14
Privacy Leakage 12 44 56
FreeMarket 22 - -
AlgoProf 61 - -
AppInsight 91 - -
Location Auditor 10 0 10

Table 2: Implemented SIF tasks (*Line Of Code)

Timing Profiler. The Timing Profiler shown in Listing 1 profiles
the timing of native method invocations. For space reasons, in-
stead of showing SIF code for subsequent instrumentation tasks, we
use a pictorial representation of these tasks. Figure 3 shows this
representation for the timing profiler. Attribute specifications for
codepoint sets (line 3 in Listing 1) are represented as boxes with
a gray background. User-specified instrumentation (lines 13-27 in
Listing 1) is represented as a blue box with a brief description of
the instrumentation code. The relative positioning of these boxes
indicates whether the user-specified instrumentation is inserted be-
fore (top left), after (bottom right), or replaces (middle) the corre-
sponding codepoints. Double arrows between filter boxes indicate
multiple instrumentation steps (the Timing Profiler has only one
step, but subsequent instrumentation tasks have more than one).

Figure 3: Timing profiler

To demonstrate the timing profiler, we have applied it to the
Angry Birds app and measured the app’s native method in-
vokes. Angry Birds uses native methods to optimize UI event
handling. As an aside, we note that we cannot instrument entry and
exit of the Java definitions of the native methods, since these meth-
ods always have an empty body. Instead, we have to select all in-
voke instruction types (Android permits several invocation types),

refine this codepoint set to native method invocations, and then in-
sert the timestamp logging code before and after each such invoke.

We ran the instrumented app with a common use case (for this
application, playing a single game). The results show a mismatch
between the static and dynamic view of native method usage in
the app. While a static analysis of the binary shows 18 distinct
native method invocations, only 7 are actually involved in our use
case. As Table 3 shows, some of these are used significantly more
than others but exhibit significant variability in execution time (e.g.,
update). Other are computationally expensive (e.g., init and pause)
and infrequently invoked.

The total size of the SIF implementation of the Timing Profiler
is 28 lines of code. This illustrates the conciseness of SIFScript;
even small and simple programs are able to provide meaningful
and useful insights into app behavior.

#invokes Avg (ms) Min (ms) Max (ms)

setVideoReady 1 0.061 0.061 0.061
nativeInit 1 507.996 507.996 507.996
nativeInput 156 0.046 0.031 0.336
nativeKeyInput 10 0.027 0.031 0.061
nativePause 1 182.007 182.007 182.007
nativeResize 1 0.031 0.031 0.031
nativeUpdate 3696 5.605 0.366 3894.928

Table 3: Native methods invoked during a game run

Call Graph Profiler. Another common use of instrumentation is to
log the dynamic call graph of an application. This task is different
from the timing profiler in two ways. First, rather than instrument-
ing invocations, it instruments method entries and exits. Second,
while the timing profiler uses a single instrumentation step, the call
graph profiler uses multiple steps, where each step refers to instru-
menting a distinct codepoint set or reporting a distinct path set.

Figure 4 illustrates the SIF steps to construct a call graph for all
methods invoked between X.foo() and Y.bar(). The first step
instruments every method entry to check a global variable that con-
trols call graph generation. If this variable is set, the instrumen-
tation increments a global variable that tracks the level of the cur-
rent method in the call graph, and logs both the level and method
identifier. The second step performs analogous actions for the exit
of every method. In these two steps, the instrumentation location
is specified by indicating a bytecode position; by default, SIF ap-
plies this to every method in every class. Finally, the last two steps
instrument the entry and exit points of the target methods to (re-
spectively) enable and disable the global variable that controls call
graph generation. From the sequence of log records and level in-
dicators, it becomes easy to infer the dynamic call graph. The SIF-
Script for this instrumentation task is 52 lines of code.

Figure 4: Call graph profiler

We verified our call graph profiler on Angry Birds, instru-
menting the app to identify the dynamic call graph generated be-
tween calls to the app’s onCreate() and onDestroy() meth-
ods. This logs 100 distinct app methods out of a total of 1958 meth-
ods in the app. The call graph has over 22K edges and a max depth
of 10, with 90% of the calls being 5-6 methods deep. This example
demonstrates how one can use SIF to develop insights about app
structure and complexity.

An alternative implementation could use the path set sequence
method to find all paths between X.foo() and Y.bar(), then
post-process the returned paths to determine invocations and en-
try/exit pairs. The relative performance of these approaches de-
pends on the app and the inputs; SIF’s feedback estimator can be
used to determine which approach might be better for a given work-
load.
Flurry-like App Usage Analytics. In mobile apps, it is common
practice for developers to collect data about post-deployment app
usage. In fact, there are several services, Flurry [4] being the most
popular, which provide developers with an API for logging app us-
age information. When users use an app, these logs are uploaded to
the service’s site and made available to developers. This capability
enables developers to refine their apps or introduce new features
based on customer preferences, expertise, or other factors.

Figure 5: Flurry-like analytics
We now show how SIF can provide usage statistics for apps whose

developers have not used the analytics API while developing the
app. Our code is specific to helpout, a multi-level puzzle game
app. In this game, users advance levels when they successfully
complete a level, and can choose to move down a level or have the
app display a solution. We develop instrumentation to count how
many times a user advances levels, chooses to move down a level,
or displays a solution.

To do this in SIF requires only two steps (Figure 5) and 31 lines
of code. In the first step, the SIFScript loads a unique identifier for
the game player from storage (generating one if necessary) when
a game starts. The SIFScript identifies the game start codepoints by
create a class hierarchy based attribute specification that selects all
app-defined classes derived from the Android Activity class and
all onCreatemethods of those classes. Then, it instruments these
codepoints by inserting code for loading and generating the user
identifier. This identifier is used to distinguish between multiple
game users.

In the second step, the SIFScript instruments the methods that im-
plement the functionality discussed above: going up a level, going
down a level, and asking for help. Whenever one of these methods
is invoked, the user-specified instrumentation sends a message to a
server that includes the method name and the user identifier.

App usage analytics can help developers of helpout under-
stand the distribution of expertise among their users. We had three
users play an instrumented version of this game, and recorded their
usage. As Table 4 clearly shows, user C has the least expertise in
this game, going down a level twice and asking many times for the
solution, while user B has the highest expertise, going up to level
22.

Beyond illustrating SIF’s ability to support application diagnos-
tics, this instrumentation task demonstrates how SIF allows scripts
to perform more sophisticated actions beyond simply counting or
timing method usage (e.g., uploading data to a server).

showSolution gameLevelNext gameLevelPrev

user A 2 10 0
user B 0 22 0
user C 5 7 2

Table 4: Analytics results collected from 3 users
Fine-grained Permissions. In Android, permissions to access re-

sources, such as sensors and devices, are granted and enforced at
the granularity of an entire app. However, many apps are com-
posed of multiple “packages” obtained from different developers.
For example, aroundme is an app that returns context-sensitive
results, and its free version uses two additional packages developed
by ads and flurry. The Android security model does not distin-
guish between the developer of the app and the developers of other
packages, and treats them all as identical principals from a security
perspective.

Motivated by this observation, some recent work [15, 30] has
proposed finer-grained permissions granting and enforcement. This
work analyzes the app to infer the right set of permissions needed
for each package, then instruments the app to enforce those permis-
sions. We now show how SIF can be used to develop functionality
analogous to fine-grained permissions enforcement.

Our SIFScript code pops up a dialog box to obtain explicit per-
mission the first time that a method in a given package invokes a
certain permission. In our example, the SIFScript checks methods in
the flurry API that require INTERNET permission. Thereafter
it remembers the user’s choice and only invokes the API if the user
has granted the necessary permission.

Our SIFScript for this task (Figure 6(a)) contains two steps. The
first step of our SIFScript selects the onCreatemethod of the entry
activity and stores a reference to Context in the user-specified in-
strumentation class. Most UI actions in Android, such as popping
up a dialog box, require a pointer to a UI Context. The second
step illustrates the use of codepoint set selection based on permis-
sions capabilities and the ability of SIF to replace codepoints. In
this step, the SIFScript replaces all API invokes that need INTER-
NET permission in the flurry module with another method that
has the same signature as the replaced method, but displays a dialog
box (Figure 7) that asks for the user’s choice. Subsequent invoca-
tions to any method in flurry will result in network traffic only
if the user has granted access.

We have instrumented the aroundme app with this capability.
Our SIFScript is 64 lines of code, and can be easily extended to en-
force fine-grained permissions for modules other than flurry or
permissions other than network access. This would require a dif-
ferent codepoint set definition and additional code to track different
types of permissions.

Figure 7: Dialog asking for user’s choice

AdCleaner. Free versions of many mobile apps come with adver-
tisement displays. In fact, this feature is so pervasive that there exist
third-party libraries that app developers can use to include ad dis-
plays. Ads can consume Internet bandwidth, affect energy usage,
and take up valuable screen real estate. Analogous to Web-based
ad blockers, mobile app users can add a blacklist of domain names
for ad hosting servers in their local name resolvers, but this requires
root access. Recent research [24] has explored using library inter-
position techniques to block ads.

This capability is simple to implement in SIF, and requires only

(a) Before (b) After

Figure 8: Screenshot before and after AdCleaner

14 lines of code and a single instrumentation step. Our implemen-
tation simply replaces the loadAd() method invocation of a pop-
ular ad library with a null method. Figure 8 shows the screenshots
of aroundme before and after our instrumentation is applied.
Privacy Leakage. As with many tools that have significant ex-
pressive power, SIF can also be used for malicious purposes. With
this instrumentation task, we illustrate how easy it is in SIF to in-
nocuously insert a significant privacy leak. In this example, this
capability is achieved as a result of SIF’s support for arbitrary user-
specified instrumentation.

We have been able to instrument the Skype app, which is per-
mitted to use both the camera and the network, to periodically take
a picture with the camera and upload it to a website. This can, of
course, significantly leak privacy by exposing the physical context
of a given user. The SIFScript for this (Figure 6(c)) is 56 lines of code
and requires only a single step, which instruments the onCreate
method of the entry activity and stores a reference to the Context
object. The inserted code starts a background task that periodically
takes a photo and uploads it to a user server.

Figure 9 shows an experiment in which a user first uses a phone
outdoors, puts the phone in his pocket, then removes the phone in-
doors. The photos clearly reveal these place transitions in addition
to several details about the locations.

Figure 9: Photos taken and uploaded by instrumented app

FreeMarket. A recent study [26] has explored vulnerabilities in
the process of in-app Android purchases. Specifically, the work
proposes an attack on Google’s In-App Billing service protocol that
allows for users to pay for purchases from within an app. This at-
tack instruments an app to modify its behavior to (a) bypass access
to Google’s billing servers, (b) redirect these calls to a local An-
droid service (instantiated by instrumentation code) that always re-
turns successfully, and (c) bypassing a key verification step. These
instrumentation steps have been documented in [26] and we have
been able to devise SIF code that replicates these instrumentation
steps.

The SIFScript for this task consists of 22 lines of codepoint set
specifications. The first step finds invokes to Android’s bindSer-
vice API in Context class and replace that binding with one to

(a) Fine-grained permission control (b) AdCleaner (c) Privacy leakage study

Figure 6: SIFScript descriptions for some tasks

Figure 10: FreeMarket attacker

a local service. The second step replaces invocations to the sig-
nature verification Java API call with a null method that is always
successful. A final step adds some instrumentation to deal with the
case where in-app billing is invoked through Java reflection.

We have re-created the instrumentation steps necessary to mount
the attack described in [26], but have not validated that attack be-
cause (a) the actions of the local service are not described in detail
in the paper, and (b) the attack is successful only on some applica-
tions whose identities are not revealed in the paper (so we would
have to search for a vulnerable app).
AlgoProf. A recent work [29] has explored methods to estimate
an application’s asymptotic complexity as a function of input size.
Their prototype, AlgoProf, instruments Java bytecode in order to
collect extensive profiling information, and then post-processes the
output to produce a complexity estimate. Specifically, they instru-
ment every method entry and exit, array access, field access, ob-
ject allocation, and loop entry and exit. Although this work did
not target mobile apps (its focus is on Java apps in general), it
nicely demonstrates features of SIF that might be exploited in fu-
ture instrumentation-based studies of mobile apps.

We have written a SIFScript to replicate the instrumentation re-
quired by AlgoProf. For space reasons, we omit a pictorial descrip-
tion of the code. The SIFScript has ten steps which require 61 lines
of code (not including the user-specified instrumentation), and uses
a wide range of SIF’s codepoint set capabilities. Unlike previous ex-
amples that have only instrumented method entry and exit or invo-
cations, this SIFScript also instruments Java bytecodes (e.g., for field
accesses) and is the only one of our examples that also instruments
loops. Although our SIFScript easily duplicated the instrumentation
part of the approach in only 61 lines of code, we could not ver-
ify the results of executing the instrumented apps without also du-
plicating AlgoProf’s complexity inference algorithms, which was
beyond the scope of this paper.
AppInsight. By far the most complex instrumentation task that
we have applied SIF to is AppInsight [25], which analyzes latency-
critical paths in mobile apps. Based on the observation that many
UI actions require multiple concurrent operations, this work iden-
tifies upcalls and then adds instrumentation code to match upcalls
with asynchronous callers.

The SIFScript for AppInsight requires twelve instrumentation steps
requiring 91 lines of code (not including user-specified instrumen-
tation). These steps run the gamut of location specifications and ac-
tions, instrumenting individual bytecodes and invocations, replac-
ing invocations with user-defined instrumentation, and inserting
new handlers for specified events. It was not possible to compare
the output of our implementation against the original AppInsight
because SIF works for Android platforms and AppInsight lever-

ages certain opcodes and functions that are only present in Sil-
verlight (Windows Phone). Nonetheless, our SIFScript implementa-
tion demonstrates that even complex state of the art instrumentation
based approaches can be easily implemented in SIF.
Location Auditor. Finally, we have previously described another
instrumentation task, location auditing (Listing 2) on the aroundme
app. This task demonstrated the use of the pathset abstractions. An
experiment involving this instrumented app is discussed below.

4.2 Efficiency of SIF
The second major aspect of SIF’s design is its efficiency, which

we quantify in four distinct ways. First, SIF uses program analysis
to minimize the instrumentation of path sets, and we quantify these
savings. Second, we demonstrate that SIF’s user-perceived time to
instrument a binary is moderate. Third, we quantify the runtime
overhead due to SIF. Finally, we quantify the accuracy of our feed-
back estimator. With an accurate estimator, users can iteratively
refine their instrumentation to achieve acceptable overhead.
Program Analysis for Path Sets. SIF analyzes the program bi-
nary in order to minimize the instrumentation for the sequence
operation on path sets. To evaluate its performance, we instru-
mented the aroundme app with the location auditor task (List-
ing 2). CPFinder was able to find 10 codepoints with LOCA-
TION permission and 12 with INTERNET permissions. Using pro-
gram analysis, SIF determined that only 25 methods (out of about
560 methods in the app) needed to be instrumented, or fewer than
5% of the total number of methods. This demonstrates the benefit
of sophisticated program analysis for path sets.

We also ran a simple use case that searched for nearby gas sta-
tions and restaurants. SIF reported three suspicious paths: two
from the aroundme package and one from ads. As expected,
aroundme read the location and sent it over the network. Unex-
pectedly, we found that the ads package also appeared to send a
user’s location over the network, presumably for location-targeted
advertising.

No path was reported for the flurry package, indicating that,
at least for this use case, there were no paths that read the GPS
sensor then accessed the network. However, by analyzing network
traffic, we found that flurry did leak location information. An
analysis of the binary revealed that it read and stored the location
in memory or storage, and later transmitted that location over the
network. To detect such leaks, taint analysis or other forms of in-
formation flow analysis are necessary; SIF’s path inspection capa-
bilities can help narrow the search scope of leakage.
Time to Instrument Apps. In this section, we quantify the CPU
time taken to instrument binaries for seven of the tasks presented
above; in each case, we instrument the corresponding apps used
to demonstrate the instrumentation tasks. Our measurements are
performed on a ThinkPad T400 laptop with 3GB RAM. As shown
in Table 5, the search for relevant codepoints is fast; CPFinder
takes at most 4.6s to finish. The time to apply the instrumentation
is at most 6s. Notice that the cost depends on the app binary size
as well as the complexity of the relevant SIFScript. Instrumentation
time is dominated by the the cost of packing and unpacking the

Table 5: Time to instrument SIF tasks

app. All tasks can finish within half a minute; we consider this to
be reasonable, especially since SIF itself only contributes to a small
fraction of these times.
Runtime Overhead. There are two sources of overhead that affect
the performance of an instrumented app: user-defined instrumen-
tation, and instructions inserted by SIF. We now quantify the latter
by replacing all user-defined code with empty stub so that the func-
tionality of the original app is unchanged; this allows us to measure
the overhead attributable to SIF. We run the same workload on both
original and instrumented app and compare their running time. Ta-
ble 6 shows the duration of original app and the overhead intro-
duced by SIF. Overall, SIF introduces less than 2% overhead except
for the call graph profiler, where the overhead is 4.41%. This is
because SIF overhead depends on the number of codepoints to be
instrumented and the call graph profiler has to instrument many
more codepoints than the rest.

Original app (sec) Overhead by SIF (sec)

Timing Profiler 59.473 0.452 (0.76%)
Call Graph Profiler 59.729 2.637 (4.41%)
Flurry-like Analytics 115.384 0.679 (0.59%)
Fine-grained Permission 11.862 0.153 (1.29%)
AdCleaner 11.721 0.114 (0.97%)
Privacy Leakage 35.230 0.137 (0.39%)

Table 6: Runtime overhead of SIF

Accuracy of Overhead Feedback. We evaluate the accuracy of
SIF’s overhead estimates by comparing them with measured ground
truth values. Our experiments measure execution times with and
without instrumentation. The difference between these two num-
bers is the ground truth cost of the instrumentation. The experi-
ments were averaged over ten runs and controlled for most types of
non-deterministic behavior seen between successive runs 3.

Figure 11: Accuracy of SIF’s overhead estimates

Figure 11 plots the SIF estimates and measured ground truth for
3 For example, we modified the Angry Birds binary to set its
random number seed to a fixed value (by default, it uses the current
local time.

the six tasks we have tested completely that also involve user-specified
instrumentation. The y-axis represents the instrumentation over-
head measured as a fraction of the total execution time. SIF’s over-
head estimate is very close to ground truth, within 15%, for all
tasks but privacy leakage. For fine-grained permission control and
AdCleaner, the measured ground-truth has lower execution time af-
ter the instrumentation; that is because, in both cases, SIF replaces
invocations with null methods. Our overhead estimator currently
does not account for replaced invocations, so it over-estimates over-
head. However the estimate in these situations will always provide
a conservative upper bound estimate, which is appropriate, since
the goal is to give the user an approximate indication of potential
overhead. The one case that requires significant future work is the
privacy leakage study. Its estimate is significantly off because its
user-defined instrumentation is complex (the code fires a periodic
timer which uploads a photo) and we have not developed analysis
methods for such code.

5. RELATED WORK
Instrumentation frameworks have been widely used for tradi-

tional software. Adaptive Programming [18] provides a language
to systematically alter classes, but does not support instrumenta-
tion of particular methods or paths. Aspect-Oriented Program-
ming (AOP) [16] allows for instrumentation of user-defined pro-
gramming points that match certain conditions, and has spawned
many derivative pieces of work [19, 14, 21]. However, these pieces
of work focus on specific problems and do not provide a general
purpose framework for instrumentation. More general frameworks
that are based on AOP include AspectJ [17], AspectC++ [28], and
LMP [10]. Compared to SIF, these approaches are limited by the
underlying representation of codepoints; they do not include loops [16]
and are limited to method invocation, entry, and exit points. In
comparison, SIF is able to arbitrarily instrument any codepoint or
path-based location.

More broadly, SIF differs from AOP based instrumentation frame-
works in four ways. First, it provides mechanisms for identifying
and utilizing path-based information. Second, although AOP al-
lows for loop structures to be used as codepoints, this is not ade-
quate for extracting complete path information; SIF’s instrumenta-
tion mechanisms allow for a more complete handling of language
constructs such as loops and exceptions. Third, unlike AOP, SIF
provides inter-procedural instrumentation mechanisms in addition
to intra-procedural instrumentation. Finally, SIF provides support
for multi-threaded path information reporting; in AOP it is difficult
to distinguish thread information at local codepoints, but SIF can
distinguish paths that belong to different threads by taking advan-
tage of global path variables.

An earlier binary instrumentation framework, Metric Descrip-
tion Language (MDL) [12], allows users to dynamically record in-
formation for x86 instructions. MDL is tightly coupled with x86,
restricts the instrumentation that can be inserted to either counter
or timers, and does not support path-based structures, such as loops
and branches. In contrast, SIF permits arbitrary user-specified in-
strumentation, and supports path-based structures like loops and
branches.

DynamoRio[7] and Pin[20] are dynamic code manipulation frame-
works. They run x86 instructions on interpreters using Just In Time
Translation (JIT) and perform instrumentation while executing the
programs. In contrast, SIF uses static instrumentation techniques,
which avoids the runtime cost of interpretation and instrumenta-
tion of these two approaches. Also, SIF can analyze the structure
of an entire application during instrumentation, so it can have a
global view that allows for optimization and more sophisticated in-

strumentation. For example, it can more readily identify subsets
of relevant paths and loop structures than these approaches. Simi-
larly, Valgrind [23] provides a Shadow Value recording, a form of
instrumentation, for assembly code. Unlike SIF, however, it does
not support user-defined instrumentation.

There have also been instrumentation frameworks proposed for
Java or Android applications. InsECTJ [27] can record runtime in-
formation for Java applications. It can trace bytecode execution
at specified points, such as method entry, and record information,
such as method arguments, at these points; unlike SIF, it does not
support the insertion of arbitrary user-specified instrumentation at
these points. Davis et al. [9] have built a framework to rewrite
methods in Android applications. Their framework cannot, unlike
SIF, exploit the path information for more sophisticated instrumen-
tation.

Several other pieces of work have instrumented binaries to study
various kinds of application behavior: dynamic memory alloca-
tion [11], data flow anomalies [13], app billing [26], workload char-
acterization [29], dynamic permissions checking [22], and critical
path latency [25]. Although these approaches make extensive use
of instrumentation, they do not provide general code instrumenta-
tion capabilities that SIF does. We have shown that SIF is expressive
enough to realize the instrumentation used in many of these papers.

6. CONCLUSION
In this paper, we have described the design and implementa-

tion of SIF, a binary instrumentation framework for mobile apps
whose codepoint set abstractions are able to specify instrumen-
tation location at different granularities and incorporate resource
usage permissions. Its path set abstractions allow dynamic path
inspection between arbitrary codepoints, and its program analysis
techniques can reduce the overhead of instrumentation. SIF is ex-
pressive enough to incorporate a variety of instrumentation tasks
previously proposed in the literature, and is quite efficient.

Much work remains, however, including validating SIF on other
instrumentation tasks, porting SIF to other platforms and integrat-
ing their access permissions methods into SIF, supporting advanced
language features such as reflection in its path set abstractions,
evaluating the effectiveness of path sets for studying privacy leak-
age and comparing path-sensitive analysis with more expensive
information-flow style analyses, studying the usability of overhead
feedback, and improving the accuracy of feedback estimation for
advanced forms of user-specified instrumentation.

Acknowledgements
We would like to thank our shepherd, Z. Morley Mao, and the
anonymous reviewers, for their insightful suggestions for improv-
ing the technical content and presentation of the paper.

7. REFERENCES
[1] apktool. http://code.google.com/p/android-apktool.
[2] BCEL. http://commons.apache.org/bcel.
[3] dex2jar. http://code.google.com/p/dex2jar.
[4] flurry. http://www.flurry.com.
[5] traceview. http://developer.android.com/guide/developing/

debugging/debugging-tracing.html.
[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:

analyzing the android permission specification. In Proc. of
ACM CCS, 2012.

[7] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. In ACM SIGPLAN
Notices, 2000.

[8] T. Ball and J. R. Larus. Efficient path profiling. In Proc. of
ACM/IEEE MICRO, 1996.

[9] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.
I-arm-droid: A rewriting framework for in-app reference
monitors for android applications. MoST, 2012.

[10] K. De Volder and T. D’Hondt. Aspect-oriented logic meta
programming. In Proc. of ACM Reflection, 1999.

[11] D. Garbervetsky, C. Nakhli, S. Yovine, and H. Zorgati.
Program instrumentation and run-time analysis of scoped
memory in java. Electronic Notes in Theoretical Computer
Science, 2005.

[12] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic
program instrumentation for scalable performance tools. In
Proc. of IEEE SHPCC, 1994.

[13] J. Huang. Detection of data flow anomaly through program
instrumentation. IEEE TOSE, 1979.

[14] J. Irwin, J. Loingtier, J. Gilbert, G. Kiczales, J. Lamping,
A. Mendhekar, and T. Shpeisman. Aspect-oriented
programming of sparse matrix code. In Proc. of ISCOPE,
1997.

[15] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy,
J. S. Foster, and T. Millstein. Dr. android and mr. hide:
fine-grained permissions in android applications. In Proc. of
CCS SPSM, 2012.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. Proc. of ECOOP, 1997.

[17] R. Laddad. AspectJ in action: practical aspect-oriented
programming. Manning, 2003.

[18] K. Lieberherr. Adaptive object-oriented software the demeter
method. PWS Boston, 1996.

[19] C. Lopes. D: A language framework for distributed
programming. PhD thesis, Northeastern University, 1997.

[20] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In Proc. of ACM SIGPLAN Notices, 2005.

[21] A. Mendhekar, G. Kiczales, and J. Lamping. Rg: A
case-study for aspect-oriented programming. Technical
report, SPL97-009, 1997.

[22] M. Nauman, S. Khan, and X. Zhang. Apex: extending
android permission model and enforcement with user-defined
runtime constraints. In Proc. of CCS SPSM, 2010.

[23] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proc. of
ACM PLDI, 2007.

[24] P. Pearce, P. A. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege Separation for Applications and Advertisers in
Android. In Proc. of ACM ASIACCS, 2011.

[25] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,
I. Obermiller, and S. Shayandeh. AppInsight: mobile app
performance monitoring in the wild. In Proc. of ACM OSDI,
2012.

[26] D. Reynaud, T. Song, E. Magrino, R. Wu, and Shin.
Freemarket: Shopping for free in android applications.
NDSS, 2012.

[27] A. Seesing and A. Orso. Insectj: a generic instrumentation
framework for collecting dynamic information within
eclipse. In Proc. of OOPSLA on Eclipse Technology
eXchange, 2005.

[28] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.

http://code.google.com/p/android-apktool
http://commons.apache.org/bcel
http://code.google.com/p/dex2jar
http://www.flurry.com
http://developer.android.com/guide/developing/debugging/debugging-tracing.html
http://developer.android.com/guide/developing/debugging/debugging-tracing.html

Aspectc++: an aspect-oriented extension to the c++
programming language. In Proc. of ACM TOOLS Pacific,
2002.

[29] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. In
Proc. of ACM PLDI, 2012.

[30] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on android).
In Proc. of TRUST, 2011.

APPENDIX
A. MORE SIFSCRIPT PROGRAMS
1 class FineGrainPerm implements SIFTask {
2 public void run() {
3 CPFinder.init();
4 CPFinder.setClass("com.tweakersoft.aroundme.

AroundMe", "android.app.Activity");
5 CPFinder.setMethod("onCreate:\\(Landroid\\/os\\/

Bundle;\\)V");
6 CPFinder.setBytecode(ENTRY);
7 UserCode code;
8 for (CP cp : CPFinder.apply()) {
9 code = new UserCode("Logger", "storeContext",

THIS);
10 Instrumenter.place(code, BEFORE, cp);
11 }
12 CPFinder.init();
13 CPFinder.setClass("com.flurry.*", null);
14 CPFinder.setPermission(INTERNET);
15 for (CP cp : CPFinder.apply()) {
16 code = new UserCode("Logger", "checkPerm",

ALL_ARGS);
17 Instrumenter.place(code, AT, cp);
18 }
19 }
20 }
21 class Logger {
22 private static Activity act;
23 private static short allow = -1;
24 public static void storeContext(Object obj) {
25 act = (Activity) obj;
26 }
27 public static Object checkPerm(Object obj, String

name, Object... args) {
28 if (allow < 0) {
29 create_dialog(act);
30 }
31 Object ret = null;
32 if (allow > 0) {
33 List<Class> params = new ArrayList<Class>();
34 for (Object arg : args) {
35 params.add(arg.getClass());
36 }
37 try {
38 Method mthd = obj.getClass().getMethod(name,

params);
39 ret = mthd.invoke(obj, args);
40 } catch (Exception e) {}
41 }
42 return ret;
43 }
44 private static void create_dialog(Context con) {
45 AlertDialog.Builder builder = new AlertDialog.

Builder(con);
46 builder.setCancelable(true);
47 builder.setTitle("Allowing com.flurry for

Internet?");
48 builder.setInverseBackgroundForced(true);
49 builder.setPositiveButton("Yes", new

DialogInterface.OnClickListener() {
50 public void onClick(DialogInterface dialog, int

which) {
51 allow = 1;
52 dialog.dismiss();
53 }
54 });
55 builder.setNegativeButton("No", new

DialogInterface.OnClickListener() {

56 public void onClick(DialogInterface dialog, int
which) {

57 allow = 0;
58 dialog.dismiss();
59 }
60 });
61 AlertDialog alert = builder.create();
62 alert.show();
63 }
64 }

Listing 3: Fine-grained permission control

1 class PermLeakage implements SIFTask {
2 public void run() {
3 CPFinder.init();
4 CPFinder.setClass(null, "android.app.Activity");
5 CPFinder.setMethod("onCreate:\\(Landroid\\/os\\/

Bundle;\\)V");
6 CPFinder.setBytecode(ENTRY);
7 for (CP cp : CPFinder.apply()) {
8 UserCode code = new UserCode("Logger", "start",

THIS);
9 Instrumenter.place(code, BEFORE, cp);

10 }
11 }
12 }
13 class Logger {
14 public static void start(Object obj) {
15 Activity act = (Activity) obj;
16 Context context = act.getApplicationContext();
17 new Timer().schedule(new MyTask(context), 0,

10000);
18 }
19 }
20 class MyTask extends TimerTask {
21 private SurfaceView view;
22 private Camera cam;
23 private PictureCallback jpegPictureCallback = new

PictureCallback() {
24 public void onPictureTaken(byte[] data, Camera

camera) {
25 FileOutputStream fos = null;
26 String fname = String.format("/sdcard/%d.jpg",

System.currentTimeMillis());
27 try {
28 fos = new FileOutputStream(fname);
29 fos.write(data);
30 fos.close();
31 } catch (Exception e) {}
32 HttpClient httpClient = new DefaultHttpClient()

;
33 HttpPost httpPost = new HttpPost("http://enl.

usc.edu/upload.php");
34 MultipartEntity multiPart = new MultipartEntity

();
35 multiPart.addPart("my_pic", new FileBody(new

File(fname)));
36 httpPost.setEntity(multiPart);
37 try {
38 httpClient.execute(httpPost);
39 } catch (Exception e) {}
40 }
41 };
42 public MyTask(Context context) {
43 view = new SurfaceView(context);
44 cam = Camera.open();
45 try {
46 cam.setPreviewDisplay(view.getHolder());
47 } catch (IOException e) {}
48 }
49 public void run() {
50 cam.startPreview();
51 cam.takePicture(null, null, jpegPictureCallback);
52 try {
53 Thread.sleep(500);
54 } catch (InterruptedException e) {}
55 }
56 }

Listing 4: Privacy leakage

	1 Introduction
	2 Background and Motivation
	3 A Selective Instrumentation Framework
	3.1 Overview of SIF
	3.2 The SIFScript Language
	3.2.1 Codepoint Sets
	3.2.2 Path Sets

	3.3 SIF Component Design
	3.3.1 Preliminaries
	3.3.2 Realizing the Codepoint Set Abstraction
	3.3.3 Realizing the Path Set Abstraction
	3.3.4 Overhead Feedback

	3.4 Implementation of SIF for Android

	4 Evaluation
	4.1 Expressivity of SIF
	4.2 Efficiency of SIF

	5 Related Work
	6 Conclusion
	7 References
	A More SIFScript Programs

