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ABSTRACT
The popularity of mobile devices like smartphones and tablets has
increased significantly in the last few years with many millions of
sold devices. This growth also has its drawbacks: attackers have
realized that smartphones are an attractive target and in the last
months many different kinds of malicious software (short: mal-
ware) for such devices have emerged. This worrisome development
has the potential to hamper the prospering ecosystem of mobile de-
vices and the potential for damage is huge.

Considering these aspects, it is evident that malicious apps need
to be detected early on in order to prevent further distribution and
infections. This implies that it is necessary to develop techniques
capable of detecting malicious apps in an automated way. In this
paper, we present SAAF, a Static Android Analysis Framework
for Android apps. SAAF analyzes smali code, a disassembled ver-
sion of the DEX format used by Android’s Java VM implemen-
tation. Our goal is to create program slices in order to perform
data-flow analyses to backtrack parameters used by a given method.
This helps us to identify suspicious code regions in an automated
way. Several other analysis techniques such as visualization of con-
trol flow graphs or identification of ad-related code are also imple-
mented in SAAF. In this paper, we report on program slicing for
Android and present results obtained by using this technique to an-
alyze more than 136,000 benign and about 6,100 malicious apps.

1. INTRODUCTION
Within the past several years, the popularity of smartphones and

other kinds of mobile devices like tablets has risen significantly.
This fact is accompanied by the large amount and variety of mo-
bile applications (typically abbreviated as apps) and the increased
functionality of the mobile devices themselves. Several mobile op-
erating systems are available, with iOS and Android being the most
popular ones according to latest studies [12]. As a side effect of this
popularity, centralized application marketplaces like Google Play
and Apple’s App Store have massively grown. Such marketplaces
enable developers to upload their own applications in a convenient
way and users can download these apps directly to their mobile
devices. Besides the official markets from platform vendors (e. g.,
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Google and Apple) and manufacturers (e. g., Samsung and HTC), a
large number of unofficial third-party marketplaces have emerged.
Most of these markets contain thousands of apps and have millions
of downloaded apps per month. For example, the official Google
marketplace had at the end of 2011 nearly 400,000 applications in
stock and more than 10 billion downloads [5].

This fast growth rate also has a downside: attackers have real-
ized that rogue apps can be used to target smartphones and in the
recent past, malicious software for smartphones became popular.
According to Juniper, the number of malicious apps targeting the
Android platform has risen more than 3,000% in the last half of
2011 to over 13,000 malicious samples [16]. With this number in
mind, the chance of getting infected by malicious apps has risen to
more than 7% depending on the country. Symantec’s analysis of
the Android.Bmaster malware [24] demonstrates the possibilities
that an author of malware has: in this particular case, the amounts
of money charged for a premium SMS that was sent by the ma-
licious app is between 15 and 30 cents. Multiplying such small
amounts with the number of potentially infected devices suggests
that attacks against smartphones are a lucrative venue for adver-
saries. Unfortunately, it is hard to independently verify these num-
bers and objective measurements are missing. However, the often
predicted rise of malicious software [4, 19, 21, 22, 25] might finally
come true given the recent developments.

Considering these aspects, it is evident that malicious apps need
to be detected early on in order to prevent further distribution and
infections. In addition, we need to consider the growth rates of
the app markets—a manual analysis is infeasible and automated
approaches are needed to tackle this problem. This implies that it is
important to develop efficient and automated analyzing techniques
that allow for a reliable assessment of an analyzed app.

In this paper, we present SAAF, a static malware analysis frame-
work for Android apps that is able to recognize suspicious behavior
patterns in an automated way. SAAF analyzes smali code, a dis-
assembled version of the DEX format used by Dalvik, Android’s
Java VM implementation. This approach enables us to perform a
robust analysis that overcomes limitations of state-of-the-art tools
that rely on disassemblers to Java code, a process that is fragile in
practice [9]: Enck et al. introduced DED, a decompiler capable of
analyzing about 94% of the total classes in the applications studied.
In contrast, SAAF only failed to analyze a single app out of more
than 140,000 apps during our evaluation.

Due to the prevalence and timeliness of malware for smartphones,
this topic has received a lot of attention recently (e. g., [6, 8, 9,
20, 30]) and our approach extends prior work in this area. SAAF
performs static data-flow analysis [2, 11] (more precisely program
slicing [1]) to backtrack the parameters used by a given method.
This enables us to identify suspicious code regions within a given



app, we can for example detect whether a given app sends premium
SMS in an automated way. Several other analysis techniques such
as visualization of control flow graphs, a Manifest parser, and iden-
tification of ad-related code are also implemented in the tool. Based
on our current prototype, we report on analysis results of more than
136,000 benign apps and about 6,100 malicious apps. We confirm
several findings reported in other papers for smaller sample sets [9].

In summary, we make the following contributions in this paper:
• We introduce SAAF, a static analysis framework for An-

droid apps. SAAF implements different program analysis
techniques such as data-flow analysis and visualization of
control flow graphs.

• In an empirical study, we analyzed more than 136,000 benign
apps and about 6,100 malicious ones. Our results confirm
observations previously reported for smaller sample sets and
provide some new insights into typical Android apps.

2. HIGH-LEVEL OVERVIEW OF SAAF
SAAF is able to perform static analysis of Android applications

and also supports a human analyst understanding a given app. The
tool offers a graphical user interface and also supports automated
analysis tasks such as automated unpacking and disassembling of
applications. Furthermore, the tool can visualize the contents and
code of a given app, and also offers several inspection tools to per-
form various program analysis tasks. In the following, we first pro-
vide a high-level overview of SAAF and then discuss implementa-
tion details specifically related to data-flow analysis in Section 3.

SAAF covers an important aspect of an app analysis process:
automated static analysis. Our implemented variant of data-flow
analysis [2, 11], namely program slicing [1], enables our tool to
automatically search for constant values which are used as param-
eters in defined method invocations. This way, the analyst can for
example determine if an application is able to send short messages
to a hardcoded number—which would result in a strong misuse po-
tential of this application. This search is called static backtracking
and we describe it in detail in the next section. All found constants
are stored in a MySQL database and are accessible for later analy-
ses. Based on these results the analyst can, e. g., let some heuristic
decide which apps are worth a more thorough inspection because
they might exhibit malicious behaviour: long sleep intervals, hard-
coded telephone numbers, calls to sudo and so on. See Section 4.1
for more details.

Furthermore, SAAF does support an analyst doing a manual in-
spection. After an application is loaded within the framework, the
analyst has access to options such as:

• Navigate through the application contents which is presented
in a tree structure. Smali and optionally decompiled Java
code is accessible, which is colored, and links to labels and
methods are clickable.

• Control flow graphs (CFGs) can be generated and exported.
• SAAF offers the possibility to search for several program

components, e. g., strings and invocations.
• SAAF knows about ad package paths and can ignore classes

inside them.
An automatic static analysis should run in the background, possi-

bly on a large set of applications. Obviously, a GUI would hamper
such a task and SAAF thus offers a lot of command line options to
properly work without a GUI.

Being a static analyzer, SAAF is expected to work fast for our
use case. Many applications need to be analyzed in a short amount
of time to quickly get an idea which applications need to be in-
vestigated more closely by means of a more expensive manual or

dynamic analysis. A static analysis of a typical app from our eval-
uation set is completed in less than 10 seconds on average. Some-
times the process is even faster, if the application is small.

3. STATIC BACKTRACKING
The ability to perform static data-flow analyses [2, 11] of method

parameters (called static backtracking in this paper) is one of the
core components of SAAF. It enables the analyst to define a set
of methods of interest with their respective signature (parameters),
in order to see whether they obtain any constants as input. This is
of interest if, for example, the analyst wants to determine if some
application is able to send short messages to a hardcoded number
or with any hardcoded message text—both of which indicate a sus-
picious usage of this feature. There are numerous methods with
parameters which are worthwhile to analyze and we later present
results from our analyses in Section 4. First, we describe the gen-
eral workflow of our tool and then provide more detail on the im-
plementation of the slicing process. Afterwards, we illustrate the
workflow with an actual example.

3.1 General Workflow
SAAF is based on static analysis methods and thus the first step

is to dissect Android applications. Such applications are packaged
in APK files, which are more or less ZIP compressed files with
the compiled bytecode, additional metadata such as the Manifest
file, and additional resources such as image or audio files. SAAF
unpacks these APK files in the following way in order to perform
the data-flow analysis and further analysis operations:

1. The analyst loads an Android application (APK file) or spec-
ifies at least one from the command line.

2. SAAF unpacks the contents of the app and generates smali
files for all classes, using the android-apktool. Working di-
rectly on the bytecode enables us to obtained a detailed view
of the code and overcomes limitations of tools that rely on
decompiling the bytecode to Java code [9].

3. SAAF then parses the smali files and creates an appropri-
ate object representation of its contents. More precisely, we
process the Manifest file, basic blocks of the methods, fields,
and all opcodes.

At this point, the static analysis can begin since all relevant infor-
mation is unpacked and available in a usable form for further pro-
cessing. SAAF will then perform the program slicing [1], which is
explained in the next section. As noted above, our backtracking is a
kind of data-flow analysis that specifically focuses on the analysis
of method parameters to determine if certain parameters have static
values that are relevant for the analysis process.

3.2 Program Slicing
In order to perform our backtracking of method parameters and

to perform the slicing, a slicing criterion must be defined. In our
case, the criterion consists of the following information:

• method name and full classname of its corresponding class,
• method signature, and the
• index of the parameter that shall be backtracked.

The slicing criterion fully specifies the relevant opcodes that invoke
the desired methods in the analyzed application. Such a criterion
enables us to search for use-def chains. We first search through all
invoke opcodes for matching ones. Afterwards, we translate the
given parameter index to a particularly used register in the decom-
piled code (use information). We check the previous opcodes in
the corresponding basic blocks and determine whether the opcodes
perform some operation with the currently tracked register. In other
words, we perform a backward slice. Generally speaking, we iden-



tify all opcodes that modify or use the tracked register and will
backtrack all the interactions until we find a constant (def informa-
tion). We will explain in detail what is considered to be a constant
in Section 3.3, the intuitive notion is that for example a hardcoded
string would be a constant.

SAAF has an internal queue where all registers are stored which
have not yet been backtracked. The queue is initially filled with
the registers found during the first search for matching invoke op-
codes and SAAF backtracks each register until the queue is empty.
It is eventually filled as the logic finds opcodes inferring with the
tracked register that make use of additional registers. The queue
stores the registers name and its exact opcode location in the pro-
gram in order to backtrack it at some time later.

If a tracked register vx is overwritten by register vy by the means
of a move opcode, register vy will of course be backtracked from
this instruction on instead of vx; this is called aliasing [26]. The
same is true for all opcodes that put a result into the tracked reg-
ister: all involved registers are added to the queue and are later
backtracked. If the tracked register itself is not part of the value
registers, it will not be backtracked anymore.

Until a found constant terminates the backward slicing, several
opcodes require special handling in order to find constants of in-
terest. Due to space constraints, we are unable to describe in this
paper in detail how our tool deals with arrays, fields, basic block
boundaries, method invocations, return values and the like. How-
ever, SAAF handles all opcodes and employs a combination of
backward and forward slicing to find all constants which might get
assigned as a parameter to the slicing criterion.

3.3 Constants
We terminate the analysis process when one of the following

conditions holds:
• A constant value is assigned to the tracked register.
• An object reference is written into the tracked register.

These two cases end the search for constants for a tracked regis-
ter: the first marks our goal to find assigned constants in the byte-
code which finishes our search for def information. All opcodes of
the const-x type provide such informations in addition to some oth-
ers, e. g., mathematical operations or initialized fields and arrays.
They assign constants to registers, e. g., strings or integers. In both
cases the register will be overwritten and has an unknown seman-
tically meaning before the assignment, which is irrelevant for our
analysis. While the first one adds a resulting constant to our search,
the second one terminates our search. If the register is overwritten
with some reference, we will still see all involved constants for this
object, which is explained in the example in the next section.

Apart from opcodes that put a constant of a specific type into
the tracked register, we are also interested in the following aspects
that might be encountered during the search, if they are somehow
linked to the tracked register r:

• Fields and arrays with their types, names, initial and assigned
values if a value is copied from them to r.

• Unknown (API) methods if they are called and return a value
which is assigned to r. Known methods are part on the use-
def chain and all return values are tracked.

• Variable names and types for found constants.
• Opcodes that overwrite r with something else, e. g., if an ex-

ception is moved to it.
If such cases are found, they are added to the result set in a proper

format and are tagged accordingly. We name them simply search
results or constants for the rest of the paper. These results store
additional meta-information such as the line number, the filename,
and other relevant information that is helpful during the analysis

process. These search results reveal used values such as telephone
numbers in the best case and show at least relevant information
such as a called method which returns used data in other cases.

3.4 Example
To give a small example of use-def chains, we provide a small

Java program and the corresponding decompiled smali code in List-
ings 1 and 2. Both are shortened for the sake of brevity.

If two slicing criterions for this program are set to search for the
parameters destination number and message (1st and 3rd parameter)
of the sendTextMessage() method in Android’s API, the following
constants are identified (the f value is explained later on):

• The number 12345 (f=0) for the 1st parameter,
• the method a.t.T.getDeviceId() (f=1) and
• the string “imei = ” (f=1) for the 3rd parameter.
• Additionally, the invocations of getSystemService()

(f=1) and toString() (f=0) are found next to the string
phone (f=2).

The telephone number is found by the means of program slic-
ing: SAAF translates it to register v1 in line 33 and starts the
slicing process which promptly finds that the register gets a field
value assigned at line 29. Possible values for this field are then
found by searching for corresponding setters, which are found in
the constructor in line 4-5. The register for the message content
is translated to register v3 in line 33. The slicing process then re-
veals that the register gets the value of register p1 assigned in line
30, which relates to the method parameter in line 25. In a next
step, SAAF searches for all method invocations for the method
sendMsg() with the corresponding signature and package path.
The slicing process will therefore continue at line 22 and will back-
track register v4 as the corresponding parameter. Register v4 gets
some unknown value assigned through the toString() invoca-
tion of the StringBuilder object which is assigned to register v2
(see line 20-21). As the value itself is unknown, SAAF will now
treat the method as a constant and further search for more constants
that interfere with this object (v2). It determines that register v0 is
passed as a parameter to the method invocation of append() on
the corresponding StringBuilder object referenced by v2. This way,
in lines 17-19 register v0 will also be tracked and this will lead to
the call of a.t.T.getDeviceId() which returns and writes
something unknown to v0, in this case, the IMEI. v3 is now also
tracked because getDeviceId() was invoked on it and as v2 is
still tracked, the string “imei = ” and “phone” will be found in
a similar way.

Note that our approach to track involved registers in method calls
where no smali code is accessible, e. g., API methods such as the
aforementioned append(), might result in inaccurately identified
constants. Nevertheless, this behavior is relevant for data structures
where values are added and internally “mixed up”. This way, the
detection logic finds all parameters of previous method invocations

Listing 1: Sample Java code.
1 p r i v a t e S t r i n g number = " 1 2 3 4 5 " ;
2
3 p u b l i c vo id work ( ) {
4 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( ) ;
5 S t r i n g s = " ime i = " ;
6 sb . append ( s ) ;
7 TelephonyManager tm = ( TelephonyManager )
8 g e t S y s t e m S e r v i c e ( C o n t e x t . TELEPHONY_SERVICE) ;
9 S t r i n g ime i = tm . g e t D e v i c e I d ( ) ;

10 sb . append ( ime i ) ;
11 sendMsg ( sb . t o S t r i n g ( ) ) ; }
12
13 p r i v a t e vo id sendMsg ( S t r i n g t e x t ) {
14 SmsManager sms = SmsManager . g e t D e f a u l t ( ) ;
15 sms . sendTextMessage ( number , n u l l , t e x t , n u l l , n u l l ) ; }



Listing 2: Sample smali code.
1 . f i e l d p r i v a t e number : Lj / l / S t r i n g ;
2
3 . method p u b l i c c o n s t r u c t o r < i n i t > ( )V
4 c o n s t−s t r i n g v0 , "12345"
5 i p u t−o b j e c t v0 , p0 , Lxmpl;−>number : Lj / l / S t r i n g ;
6 r e t u r n−vo id
7
8 . method p u b l i c work ( )V
9 new−i n s t a n c e v2 , Lj / l / S t r i n g B u i l d e r ;

10 invoke−d i r e c t { v2 } , Lj / l / S t r i n g B u i l d e r ;−>< i n i t > ( )V
11 c o n s t−s t r i n g v1 , " ime i = "
12 invoke−v i r t u a l {v2 , v1 } , Lj / l / S t r i n g B u i l d e r ;−>append ( Lj

/ l / S t r i n g ; ) Lj / l / S t r i n g B u i l d e r ;
13 c o n s t−s t r i n g v4 , " phone "
14 invoke−v i r t u a l {p0 , v4 } , Lexample;−> g e t S y s t e m S e r v i c e ( Lj

/ l / S t r i n g ; ) Lj / l / O b j e c t ;
15 move−r e s u l t −o b j e c t v3
16 check−c a s t v3 , La / t / TelephonyManager ;
17 invoke−v i r t u a l { v3 } , La / t / TelephonyManager ;−>

g e t D e v i c e I d ( ) Lj / l / S t r i n g ;
18 move−r e s u l t −o b j e c t v0
19 invoke−v i r t u a l {v2 , v0 } , Lj / l / S t r i n g B u i l d e r ;−>append ( Lj

/ l / S t r i n g ; ) Lj / l / S t r i n g B u i l d e r ;
20 invoke−v i r t u a l { v2 } , Lj / l / S t r i n g B u i l d e r ;−> t o S t r i n g ( ) Lj /

l / S t r i n g ;
21 move−r e s u l t −o b j e c t v4
22 invoke−d i r e c t {p0 , v4 } , Lxmpl;−>sendMsg ( Lj / l / S t r i n g ; ) V
23 r e t u r n−vo id
24
25 . method p r i v a t e sendMsg ( Lj / l / S t r i n g ; ) V
26 c o n s t / 4 v2 , 0x0
27 invoke−s t a t i c {} , La / t / SmsManager;−> g e t D e f a u l t ( ) La / t /

SmsManager
28 move−r e s u l t −o b j e c t v0
29 i g e t−o b j e c t v1 , p0 , Lxmpl;−>number : Lj / l / S t r i n g ;
30 move−o b j e c t v3 , p1
31 move−o b j e c t v4 , v2
32 move−o b j e c t v5 , v2
33 invoke−v i r t u a l / r a n g e { v0 . . v5 } , La / t / SmsManager;−>

sendTextMessage ( Lj / l / S t r i n g ; Lj / l / S t r i n g ; Lj / l /
S t r i n g ; La / a / P e n d i n g I n t e n t ; La / a / P e n d i n g I n t e n t ; ) V

34 r e t u r n−vo id

to such objects and eventually constants. The only register that
is not backtracked this way is the “this” reference for non-static
invokes. This solution covers implicit method invocations such as
constructors.

In order to later distinguish between good and probably inaccu-
rate results, we tag such found constants as fuzzy. This tag is an
integer f and indicates how (in)accurate the result is from our anal-
ysis point of view. A fuzziness value of f=0 means that the result
is accurate. Values higher than 0 indicate more inaccuracy and ex-
press our uncertainty about the precision of this result. Each such
backtracked register will increment its fuzzy value by 1. The value
is passed on to tracked registers, which are added to the register
queue due to the currently tracked register. An added register will
therefore inherit the fuzziness value of the register it is related to.
This approach enables us to control the overestimation of the anal-
ysis phase and the fuzzy value implies a metric to “measure” this
uncertainty. The fuzziness values f of the found constants in the
example are given in parentheses in the above list.

4. EVALUATION
We now present several evaluation results obtained with the help

of SAAF. In total, we successfully analyzed 136,603 free sam-
ples which we crawled from the Google Market (nowadays known
as Google Play) in the mid of 2011. Only one application out of
136,604 could not be analyzed due to a 4 byte UTF-8 string that
could not be stored in our MySQL database. Our malware set
consists of 6,187 samples of old and new malware samples, and
should cover samples from most of the known malware families.
The evaluation was performed on two different servers, one was

Table 1: Top 10 permissions.
Malware % Market %

INTERNET 93.45 INTERNET 86.20
READ_PHONE_STATE 77.51 ACCESS_NETWORK_STATE 52.08
SEND_SMS 63.69 WRITE_EXTERNAL_STORAGE 34.01
ACCESS_NETWORK_STATE 52.63 READ_PHONE_STATE 32.46
WRITE_EXTERNAL_STORAGE 48.07 ACCESS_COARSE_LOCATION 22.98
RECEIVE_SMS 40.32 ACCESS_FINE_LOCATION 22.42
RECEIVE_BOOT_COMPLETED 36.90 VIBRATE 18.05
READ_SMS 22.42 WAKE_LOCK 12.36
ACCESS_WIFI_STATE 21.45 ACCESS_WIFI_STATE 11.01
VIBRATE 20.36 CALL_PHONE 8.99

equipped with an Intel Xeon E5620@2.40GHz CPU and one with
a E5630@2.53GHz CPU. Both have 24GB of RAM and no SSDs.

For the rest of this paper, applications from the crawled Google
Market will be typically referred to as samples from the Market and
the malware samples will simply be called malware or malware set.

4.1 Analysis Results
Permissions: We analyzed the permissions used by both types of
applications and present the results in Table 1. Analyzing the per-
missions reveals the permissions one would expect for malicious
applications: almost all applications have the permission to access
the Internet and most of the other permissions grant access to sensi-
tive information like the various identifiers of the phone and, more
importantly, to read and send short messages. Since criminals at-
tempt to generate revenue from premium short message services, it
is obvious that the corresponding permission is placed third in the
total ranking. The only exception is the last permission, VIBRATE,
which seems to be a remnant from trojanized popular games which
can often be found in third party markets. This assumption is
backed up by the fact that this permission is also ranked high in
the analyzed applications from the Google Market.

The permission ranking for the Market applications is also simi-
lar as one would expect: most applications access the Internet, de-
termine the network state, and identify the device. The only excep-
tion is the 10th permission CALL_PHONE. Applications with these
permissions are hard to categorize. There are obvious ones such as
dialers or SIP applications, but also a lot of applications that have
the same prefixed package path, but fall into many categories as
games, “reader applications” for websites, and so on. Many appli-
cations look like they were either developed by the same person(s)
who reuse old components, or were created by application builders.
One package path can be found in 1,100 applications and another
one in over 600 applications. All these applications request the
same permissions for the corresponding package path. It seems that
the applications do not really make use of the granted permissions,
especially of the CALL_PHONE permission.

Another interesting fact is the average number of requested per-
missions per applications. Applications from the Market request
4.4 permissions on average, while malicious applications requests
8.9 permission on average. A possible explanation is that a tro-
janized application needs the original permission set in addition to
the new ones required for the added malicious code.

We are interested in the amount of applications which have the
permission to access the Internet and additionally at least one per-
mission that grants access to sensitive user data. Such applications
could leak data by the means of sending it anywhere over the net-
work connection. Our evaluation takes into account permissions
that grant access to device serial numbers, SMS/MMS, location
data, contacts, logs, account data, and the calendar. From the mal-
ware set, 90.6% have a permission set which allows such informa-
tion leakage. This is not surprising, as most malware aims at either
stealing data or sending premium rate messages. The Market appli-



cations are less likely to leak private information, but still 67,4% of
these apps have a permission set allowing this. This is partly caused
by ad frameworks which are permission hungry in order to identify
their “customers”, but additionally from unexperienced developers
which accidentally over-privilege their applications, as Felt et al.
found out [10].

IMEI/IMSI: Many application authors use the IMEI and IMSI
number from a device as a unique identifier. While 53% of the
malware determines at least one of these numbers through the ap-
propriate API call, only 23% applications from the Market set do
so. These numbers seem rather small, but compared to the applica-
tions which have the required permission READ_PHONE_STATE,
cf. Table 1, these numbers look reasonable. One possible expla-
nation is that the Market set is approximately one year old and the
strategies of included ad frameworks have changed since, as one
would expect a higher amount of these unique identifiers.

Executed Commands: We also backtracked the strings that are
passed to the exec Android API method, which executes a com-
mand in a command shell. We found that malware mainly uses
this function to call the su binary in order to install applications,
remount partitions, or to enumerate running processes. Executing
such commands with elevated privileges is crucial for the malware
to obtain a higher level of rights. Interestingly, some of these com-
mands can also be found in the Market set, albeit with a much lower
frequency. Malware makes use of this method in 18.9% of the sam-
ples, while only 6.4% of the applications from the Market set call
this function. Since many people root their smartphones to gain
access to additional features, this percentage looks reasonable.

SMS API Usage: Finding applications that are able to send short
messages to hardcoded numbers and possible hardcoded content
might give a strong clue to classify such software as malicious. A
total of 54% applications call such API methods in the malware
set, while only 3.4% do so in the Market set. This huge number
for malicious applications seems reasonable, as a lot of samples
were found in recent time which abuse premium number services.
While there are also legitimate use cases, a small amount of the
applications in the official market also make use of this feature,
e. g., an SMS forwarder application. The following numbers are an
excerpt from the numbers SAAF found during the analysis phase,
all of them representing premium numbers that were identified in
an automated way: 69229, 7781, 1121, 10086, 9685, 9818, 4157,
4545, 7790, 79067, 8014, 80888, 7061, 7250, 1065-71090-88877,
and many more.

Alarm Usage and Thread.sleep(): During the analysis we also
evaluated the usage of API functions that halt the execution of the
active thread or which (periodically) wake the application up after
a specified amount of time. While such a behavior is not malicious
per se, it still might indicate that a given application might sleep
for a certain amount of time first before becoming active, a typi-
cal behavior seen for Windows malware. As expected, such API
usage was commonly found in both application sets: 56.9% of the
malicious applications and 44.4% of the market applications call at
least one such API function.

We were interested in the average amount of time applications
use the Thread.sleep() method throughout both application
sets. We therefore queried SAAF for all values that are passed
to the sleep function. This is an integer value and specifies how
many milliseconds the calling thread should sleep. We calculated
the average value of all obtained values which are between 0 and

86,400,000 (24 hours) and which have a fuzzy level of 0, i. e., are
absolutely accurate backtracking results. The finding is very inter-
esting, because both sets have very similar values. While malware
goes to sleep for 21.9 seconds on average, market applications do
so for 22.9 seconds. We have not analyzed why the results are al-
most identical and leave it for a future evaluation. As a last note, we
found values that were negative—which should produce an excep-
tion during runtime—or extraordinary high (many days or weeks
up to years).

System Services: Table 2 provides an overview of the overall used
identifiers for Android System Services for all applications, deter-
mined by the used Context.getSystemService(...) API
function parameter.

Table 2: Top 10 system services.
# Malware Market

1 phone window
2 connectivity layout_inflater
3 notification location
4 layout_inflater phone
5 activity connectivity
6 alarm audio
7 location input_method
8 input_method notification
9 window sensor

10 audio vibrator

Malware uses the Tele-
phonyManager service
the most, which is re-
quested by the identi-
fier “phone”. This ser-
vice has many methods
which reveal a lot infor-
mation about the state
of the phone, whether a
data connection is estab-
lished, which network
the phone is connected
to, serial numbers, coun-

try codes and so on. Because many malware samples send short
messages to premium services, the software often determines the
country the phone is currently located, so the right premium num-
ber can be chosen; otherwise the premium rate service number
might not be available if chosen wrongly. The ConnectivityMan-
ager—which is requested by the id “connectivity”—serves a sim-
ilar role as the TelephonyManager regarding network connectivity
changes and the like.

While malware seems to be very interested about the phone’s
state, samples from the market set most often care about window
(activity) and layout states, which the first two used system services
reveal for this sample set. The third entry “location” refers to the
LocationManager. It is used to request the phone’s location based
on GPS or network coordinates. Most ad frameworks make use of
this feature to serve targeted ads to the user.

The other requested system services throughout the two sets are
more or less normally distributed, if one recalls that malware often
piggybacks non-malicious applications or mimics those.

Loaded Libraries: Looking at the search results for libraries
which are called by the analyzed applications, we found that mal-
ware most often loads a library called androidterm. This library is
part of a terminal and provides functionality to access the Android
command-line shell. We additionally found suspicious identifiers
for loaded libraries such as ScanVirus, VirusBackRunner, ScanCon-
troller and scan_engine. Such strings indicate that the malware
might be related to some kind of fake anti-virus campaign, a pop-
ular attack vector in the desktop computer world [28] that recently
became relevant for smartphones as well.

The legitimate applications mostly use applications to manipu-
late images, e. g., lept (Leptonica lib) or libraries which are often
used in games, e. g., andenginephysicsbox2dextension (2D engine),
gdx (libgdx, a game development lib) or unity (3D engine).

Reflections: SAAF evaluates whether an application loads clas-
ses or calls methods with the Java Reflection API. There are many



legitimate use cases for this which we will not describe in this pa-
per, but reflections can also be used to obfuscate the control flow,
since no method invocation can be observed if a method is executed
through this API. We found that 36.5% of the malicious and even
57.5% of the Market applications make use of the reflection API.

It is of interest for us to determine for which goal the API is used.
On the one hand, the called methods indicate that malware tries to
hide some of its functionality, as the following exemplary classes
are loaded throughout this sample set:

• android.os.SystemProperties,
• telephony.SmsManager,
• android.telephony.cdma.CdmaCellLocation,
• java.net.InetAddress and
• android.content.pm.PackageManager.

Effectively, the malware samples use reflections to hide the fact
that they want to access sensitive APIs. On the other hand, Market
applications mostly use the API inside the included ad frameworks,
as the found parameters clearly indicate (but are omitted for the
sake of brevity).

Intents: In the Android operating system, intents are used to per-
form special actions and to communicate with (other) application
components. For the malware set, the two most commonly used
intents clearly indicate the program’s purpose, namely SMS_SENT
and SMS_DELIVERED (both have no package prefix). In contrast,
the market applications use normal system intents most often such
as for example:

• android.net.conn.CONNECTIVITY_CHANGE,
• android.intent.action.SCREEN_ON and
• android.intent.action.BATTERY_CHANGED.

SSL Sockets: Although many popular libraries and most used API
functions enable data exchange over the HTTP(S) protocol, some
developers chose to create plain sockets to communicate with some
end point. If security matters, they hopefully encrypt the data. An-
droid provides the widely used SSL/TLS protocol for such cases.
Creating a secure socket is rather easy, but old Android versions by
default chose a ciphersuite that contains a lot of old ciphers. If not
changed before a connection is established, old Android versions
up to version 2.2 will provide ciphers such as DES-CBC-MD5 or
EXP-RC2-CBC-MD5. This behavior was changed in later ver-
sions, but Android 2.2 was quite common when the market appli-
cations were crawled and even now these old versions are installed
on about 25.5% of all devices [3]. The distribution was calculated
during a 14 day period ending at June 1, 2012, as stated on the
website.

For us, it is interesting to see how many applications create SSL
sockets and how many manually set the ciphersuites. We found that
153 malware samples do so and only 31 set ciphersuites. The same
pattern is visible for market applications: only 943 out of 7,174 do
so. This is a bad behavior for applications which are also avail-
able for old devices, as it might introduce severe security implica-
tions, e. g., an attacker could perform a man-in-the-middle attack
and trick the application into accepting a weak ciphersuite.

Content Provider: Most of the data stored on Android devices
can be accessed through so called Content Providers. To access
data, a developer has to form a URI describing the desired con-
tent, for example content://calendar/calendars. The
provider parses this URI and will serve requested data from the
according data structures, and it additionally ensures that required
permissions are at hand (if required). Applications from the Google
Market set have a very diverse set of used URIs which access a lot

of different Android Content Providers throughout the applications
such as the calendar, contacts, and SMS/MMS databases. The most
accessed content by malware samples is related to the SMS/MMS
Content Providers, by a large margin. Of course the malware sam-
ples also access the aforementioned providers, but most URIs are
SMS/MMS related.

Native Code and Classloaders: Java and also Android allow calls
to native code which is not available in Java bytecode but is located
in native libraries, e. g., .so shared objects. We found that 9.43%
of the malicious apps perform such calls and 4.61% of the market
applications do so.

Another feature of Java and Android is the ability to load classes
from arbitrary destinations, e. g., from the Internet, and to run the
included code within these classes. While not being malicious per
se, this feature can be abused to hide (malicious) code from being
analyzed. We analyzed how many applications use the ClassLoader
(sub)classes in any way and found that only 0.87% of the malicious
apps to so. On the contrary, 22.05% of the apps from the market
do so. This high number seems very unlikely, so we invested how
many apps contain code which uses classloaders and which is not
located in ad framework package paths. Excluding these ad classes,
3,04% of all apps remain. This is still almost 4-times the amount
for malicious apps. We leave it for a further evaluation to determine
what these apps actual do, but seeing this feature as a typical one
for malicious apps to evade detection or analyses seems vague.

Crypto: The last finding we want to report about is the presence of
cryptography in the analyzed applications. SAAF analyzed the ap-
plications and looked for usages of the doFinal() method in the
class java.crypto.Cipher method. If an application makes
use of the built-in cryptographic routines, they most likely call this
function.

Out of all malware samples, 17.6% use this function and 25.3%
of all Market applications do so. This indicates that the usage
of cryptographic functions is no indicator for malicious behavior.
Unfortunately, SAAF is at this point unable to detect self-written
cryptographic functions, so the real usage of cryptographic func-
tions in the malware is likely higher.

4.2 Malware Analysis
We now give a brief excerpt of the analysis of three kinds of

malware samples. The first sample is from the DougaLeaker.A
family and was discovered in April 2012 with a MD5 checksum of
91d57eb7ee2582e0600f21b08dac9538. The sample steals
contact data and sends it to a remote host. For this sample, SAAF
was able to extract two URLs to where stolen data might be trans-
mitted, namely

• http://depot.bulks.jp/get44.php and
• http://depot.bulks.jp/movie/movie44.mp4.

These URLs were found as arguments to the Android and Apache
URI parsers. A manual analysis revealed that the data is sent to the
first found URL.

The next sample belongs to the Rufraud family and presents it-
self as the popular game Angry Birds. The sample itself is a fake
installer and sends premium rate short messages after the user is
tricked into agreeing being charged. These samples were found at
the end of 2011 in the Google Market and our sample has the MD5
checksum 95a04cfc5ed03c54d4749310ba29dda9. Depen-
ding on the country the user resides in, the malware sends pre-
mium SMS to different providers. SAAF is able to extract 19 dis-
tinct destination numbers (1121, 1171, 1645, 17013, 1874, 4157,
4545, 69229, 7540, 7781, 7790, 79067, 8014, 80888, 81185, 9014,



90901599, 9090199, 92525), but SAAF is not able to extract the
text part of the messages. Instead, we found a string which is
used as a key to decrypt the message text that is supposed to be
sent (E273FED8415F7B1D8CFEAC80A96CFF46). The results
additionally reveal that the sample checks whether the messages
were successfully sent or not, as the following two strings indi-
cate which are passed to the Android IntentFilter class, namely
SMS_DELIVERED and SMS_SENT. Such results give a strong hint
that the analyzed application has malicious intents.

As a third example we provide an overview of three variants of
the Gone in 60s “malware” that appeared in September 2011 on
the official Google Market. This malware copies private informa-
tion as the SMS database and contact details from a phone to a
remote location. The user is then presented with an access code
which enables him to see all the stolen (copied) data and the ap-
plication removes itself. All this happens in less than 60 seconds,
hence the name. For each sample SAAF found several constants,
the most interesting ones being an URI to query the SMS database
(“content://sms”) and an URL pointing to the drop zone which is
used in an HTTP POST request (“http://gi60s.com/upload.php”).

These results indicate the desired functionality of this particular
application. It accesses the SMS database and connects to a web-
site to where it uploads the stolen data. These results extracted by
SAAF support a malware researcher and enable her to obtain an
initial overview of a given Android app.

5. LIMITATIONS
We now clarify the limitations of our current prototype. Since

SAAF is a static analyzer, it has all the drawbacks static analyzers
have in general [23]. For example, information available only at
runtime is not available, and the usage of encryption methods and
obfuscation put a heavy burden on such tools. Despite these gen-
eral drawbacks that SAAF shares with other static analysis tools,
our framework could be improved in the following ways. First, al-
though being able to detect the usage of the Reflection API and ad-
ditionally often also the called class and method, SAAF currently
does not backtrack into methods found this way while backtracking
a register. This is a feature we intend to implement in the future.
Despite the effects of heavy obfuscation and dynamic code load-
ing, the analyst can easily see if and to what extend such features
are used as the automatic analysis will reveal these. Such indicators
might give a strong clue of the intents of an application.

The fact that SAAF is able to analyze all but one application
does not mean that it is guaranteed to always find all constants.
There are likely corner cases where code constructs are misinter-
preted and something is missed. For obvious reasons, we have been
unable to check all found results against expected results.

6. RELATED WORK
Security aspects of smartphones have received a lot of attention

recently and we are not the first to introduce analysis techniques
for mobile apps. In the following, we discuss how SAAF relates
to prior work in this area. We focus our discussion on other static
analysis approaches, especially since many papers have been pub-
lished in this area concurrently to our work. Afterwards, we also
briefly discuss dynamic analysis techniques, which are basically
complementary to our approach.

ANDROGUARD is a toolset to decompile and analyze a given
application, with the goal to detect malicious apps via signature
matching [6]. We do not require decompilation, since this process-
ing step might introduce imprecision in cases where the decompiler
does not successfully reconstruct valid Java code, a problem that of-

ten occurs in practice [9]. Furthermore, SAAF does not only rely
on pattern matching or static signatures and ANDROGUARD is not
working in a fully automated way, which implies that the tool is not
designed to handle a large corpus of apps.

Recently, Kim et al. presented a tool called ScanDal that is able
to automatically detect privacy leaks [17]. The authors evaluate
SCANDAL with a very small sample set containing only 8 mali-
cious and 90 benign samples. In addition, SCANDAL has some
limitations, as it does not support reflection-related APIs and JNI.
Our evaluation set is three orders of magnitude larger and we ex-
pect that it provides a more realistic overview of the current threat
landscape.

Another tool closely related to our approach is DED, a decom-
piler that recovers source code of Android applications directly
from their installation images [9]. The tool infers lost types, per-
forms Dalvik VM-to-Java VM bytecode retargeting, and translates
class and method structures. Furthermore, the authors studied 1,100
benign Android apps to better understand the security characteris-
tics. Compared to DED, SAAF has a higher coverage: the authors
of DED report that about 94% of the total classes in the applica-
tions studied could be recovered. In contrast, we found that we
could analyze more than 99.99% of more than 140.000 apps that
we studied, with only 1 exception. Our analysis results confirm the
findings reported by Enck et al. on a larger sample set.

Grace et al. demonstrate with their RISKRANKER approach how
to scan application markets for unknown malware samples [15].
Their approach is two-tiered: within the first detection stage, RISK-
RANKER tries to find apps with native code that use known root
exploits or that send premium SMS messages. The second stage
deals with obfuscated apps and tries to detect malicious apps that
are encrypted or that load additional code. The system found 322
new instances of malware in a total set of 118,318 applications col-
lected from various Android markets. The focus of SAAF lies on
static analysis techniques.

There are several papers that touch on various Android-related
topics and these papers also have a small overlap with our work.
We briefly discuss this kind of work but do not elaborate it in detail
since the overlap is rather small. For example, Elish et al. imple-
mented a static approach for malware identification based on user-
centric data dependence analysis [7]. DROIDMOSS uses the fuzzy
hashing method to detect repackaged apps in third-party Android
markets [29]. The detection of privacy leaks and the unwanted ac-
cess to user-related data on the Android platform has been explored
extensively in the past. Some examples for detecting and mitigating
these leaks are provided by Gibler et al. [13] and King et al. [18].
Regarding the in-app ad-networks, Stevens et al. [27] and Grace et
al. [14] performed some similar research.

One of the first dynamic malware and privacy leak detection sys-
tems was TAINTDROID [8]. It is an efficient and dynamic taint
tracking system that provides real-time analysis reports by lever-
aging Android’s execution environment. This system was comple-
mented with a fully automated user emulation and reporting system
by Lantz and is available under the name DROIDBOX [20]. Both
systems are unable to track native API calls and are slow com-
pared to a static analysis approach like SAAF or the ones dis-
cussed above. DROIDRANGER implements a combination of a
permission-based behavioral foot printing scheme to detect sam-
ples of already known malware families and a heuristic-based fil-
tering scheme to detect unknown malicious apps [30]. With this
approach, the authors were able to detect 32 malicious samples in-
side the official Android Market back in June 2011. Within their
dynamic part, they use a kernel module to log system calls used
by known Android malware. As discussed above, such dynamic



approaches are complementary to SAAF: static and dynamic anal-
ysis approaches can be combined to enhance the analysis results.

7. CONCLUSION
In this paper, we introduce SAAF, a static analysis framework

for Android apps. SAAF analyzes smali code, a disassembled ver-
sion of the DEX format used by Dalvik, Android’s Java VM im-
plementation. Since no decompilation to Java is performed, the
approach is more robust and resilient to code obfuscation tech-
niques or insufficiencies of decompilers. Compared to state-of-the-
art tools that are capable of analyzing about 94% of the total classes
in the applications studied, SAAF successfully analyzed more than
than 140,000 apps studied for this paper. SAAF mainly performs
data-flow analysis based on program slicing to analyze the structure
of an app, but is also capable of performing other kinds of analysis.
We surveyed a large collection of Android apps and malware, and
our evaluation results confirm some insights previously obtained on
smaller sample sets [9].
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