
1294 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 8, AUGUST 2013

Hybrid Static-Runtime Information Flow and
Declassification Enforcement
Bruno P. S. Rocha, Mauro Conti, Sandro Etalle, and Bruno Crispo

Abstract—There are different paradigms for enforcing informa-
tion flow and declassification policies. These approaches can be di-
vided into static analyzers and runtime enforcers. Each class has
its own strengths and weaknesses, each being able to enforce a dif-
ferent set of policies. In this paper, we introduce a hybrid static-
runtime enforcement mechanism that works on unannotated pro-
gram code and supports information-flow control, as well as de-
classification policies. Our approach manages to enforce realistic
policies, as shown by our three running examples, all within the
context of a mobile device application, which cannot be handled
separately by static or runtime approaches, and are also not cov-
ered by current access control models of mobile platforms such
as Android or iOS. We also show that including an intermediate
step (called preload check) makes both the static analysis system
independent (in terms of security labels) and the runtime enforcer
lightweight. Finally, we implement our runtime enforcer and run
experiments that show that its overhead is so low that the approach
can be rolled out on current mobile systems.

Index Terms—Data security, information security.

I. INTRODUCTION

C OMPUTER systems often run applications that can ac-
cess protected data. This is the case not only for stan-

dard systems but also for portable devices like PDAs and smart-
phones (such as iPhone and Android platforms). On these de-
vices, applications usually have access either granted or denied
for each individual resource requested to the system.
However, such access control mechanisms are not enough to

control how data is used. Since applications often have to deal
with both secret (e.g., pincode) and public (e.g., phone number)
data, in these situations it is crucial that secret (high) informa-
tion is not leaked to public (low) output channels (noninterfer-
ence [23]). Noninterference is in turn usually too strict to be
practical (even when not considering side-channels): many real
programs eventually need to downgrade the security level of

Manuscript received September 02, 2012; revised February 23, 2013; ac-
cepted May 29, 2013. Date of publication June 12, 2013; date of current version
July 09, 2013. This work was supported in part by the S-MOBILE project
(Grant VIT.7627) funded by the Dutch STW-Sentinel, and the TENACE
PRIN Project (Grant 20103P34XC) funded by the Italian MIUR. The work of
M. Conti was supported by an E.U. Marie Curie Fellowship for the project
PRISM-CODE (Grant PCIG11-GA-2012-321980). The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Prof. T. Charles Clancy.
B. P. S. Rocha is with the Eindhoven University of Technology, Eindhoven,

5612 AZ, The Netherlands (e-mail: brocha@palantir.com).
M. Conti is with University of Padua, Padua, 35131, Italy (e-mail:

conti@math.unipd.it).
S. Etalle is with University of Twente, Enschede, 7500AE, The Netherlands

(e-mail: sandro.etalle@utwente.nl).
B. Crispo is with University of Trento, Povo (TN), I-38123, Italy (e-mail:

crispo@disi.unitn.it).
Digital Object Identifier 10.1109/TIFS.2013.2267798

some information. For example, consider a company policy re-
quiring that the salary of an employee should be considered as
confidential data: any data obtained from a function that takes
this salary as an input will be considered confidential. As a re-
sult, information such as the average of salaries, overall human
resource expenses, or company balance cannot be made public.
For this reason, declassification policies [52] are needed, identi-
fying conditions under which high labeled data can flow to low
labeled channels.
Several static approaches to check control-flow integrity

and declassification have been proposed. These are based on
analyzing the program source code before runtime, via type
checking [60], [40], [43] or dataflow analysis [19], [2], [1], [9].
Programs that fail to satisfy the control-flow integrity or de-
classification policies are then discarded before execution takes
place. A slightly different approach is presented in [25], where
the authors present an extension to the .NET CIL that makes it
possible to automatically verify an in-lined reference monitor
(IRM) using a simple static type-checker, hence eliminating
the need to trust the producer of the IRM. This is possible via
typing annotations that track an abstract representation of a
program’s execution history.
This type of analysis has the drawback of not being suitable

to enforce several desired policies. For instance, in the previous
example of the average salary, it might be desirable to have a
constraint on the minimum number of salaries considered in the
calculated average, which is not known until runtime, and thus
enforcement needs runtime information. Also, security labels
can vary between individual systems, forcing static analysis to
be done directly on the target system, an undesirable restriction
for programs aimed at portable devices. Finally, some data may
have dynamic security labels, which might change during exe-
cution, e.g., a file access by the program, in which the name of
the file is only known during runtime.
To solve these issues, runtime approaches have been pro-

posed [30], [29], [36], [16], [47], [48]. These approaches are
however often computationally expensive, incurring a nonneg-
ligible overhead on the applications. Also, they fail to achieve
some features of static analysis, such as detecting implicit flows
and declassification. Another approach is (automatic) program-
rewriting [24], [35], [61], which satisfies the security policy
during runtime, by rewriting instructions that violate it. In par-
ticular, [24] considers rewriting bytecode, [61] works on binary
code, and [35] proposes both source and binary rewriting. A
rewriting approach, by itself, shares some of the limitations of
the previous ones. For instance, it is unable to detect implicit
flows of information, only captured by a static analyzer that
considers the whole code, rather than just the executed instruc-
tions. Also, rewriting faces the additional problem of possibly

1556-6013/$31.00 © 2013 IEEE

ROCHA et al.: HYBRID STATIC-RUNTIME INFORMATION FLOW AND DECLASSIFICATION ENFORCEMENT 1295

changing the semantics of the monitored program, a side-effect
which is not always tolerable.
When it comes to handling real world programs all ap-

proaches above share the following limitations:
• Type-based approaches that support both information flow
control and declassification require annotations of de-
classification operations. Thus, programs must be written
by programmers aware of both the analysis technology
and the declassification policies that will be applied to it.
Dataflow approaches (which analyze unannotated code)
and runtime enforcers are not currently capable of han-
dling declassification in an automatic fashion.

• While recent work explicitly considers mobile code [3],
[27] (which is platform independent), we believe this re-
mains an important and intricate problem, in particular
in terms of reducing the computational overhead on re-
source-constrained devices such as smartphones. For in-
stance, recent proposals [3], [27] do not consider the spe-
cific constraints of mobile platforms, and also provide val-
idation of their proposed solutions via experiments run on
classic desktop-computer platforms.

These limitations make information flow and declassification
analysis impractical for real-world programs. In order to make
such analysis possible, a mechanism needs to be able to handle
legacy, untrusted and mobile code. Recent work by [46] has
made an important advance in this goal by proposing a static
analyzer that works on unannotated code, supporting declassi-
fication policies which are decoupled from it. That work, how-
ever, has some limitations of its own: the static nature of the ap-
proach limits the kinds of policies that can be enforced and also
makes it system dependent, limiting the applicability to mobile
devices.
In order to be able to analyze legacy, untrusted and mobile

code, the following goals need to be satisfied: i) providing infor-
mation flow control, ii) with support to declassification policies,
iii) on unannotated programs, iv) with support to runtime secu-
rity labels, v) with a system independent static analysis phase,
and vi) with little runtime overhead. Some hybrid approaches
have been proposed in the literature [49], [7], [14], [62], [41],
but none of them achieve all our goals.
Contribution. We present a hybrid static-runtime enforce-

ment approach for information flow policies, including declas-
sification, which satisfies the points above. Our mechanism
has 3 stages: (1) a static analyzer that takes a program source
and a set of declassification policies and detects all flows of
information between input and output channels in the program,
as well as detecting points where declassification can happen
(generating constraints that have to be checked at runtime);
(2) a preload checker which, before loading the program for
execution, checks the security labels of I/O operations specific
to the target system against the information obtained in the pre-
vious step; and (3) a runtime enforcer that checks labels which
are only known at runtime, as well as runtime constraints for
the declassification policies. Calls to the enforcer are injected
in the application’s code, prior to its execution, on the specific
points where checks are needed, thus further reducing the
overhead of the enforcer. To the best of our knowledge, our is
the first proposal of such approach. We present three motivating

examples, all within the context of a mobile device, and show
that our hybrid static-runtime enforcement suffices to:
• support more realistic policies than present ap-
proaches—as policies may need both static (implicit
flows, declassification) and runtime (dynamic labels,
execution constraints) knowledge.

• reduce runtime overhead—as most of the analysis compu-
tation is done statically, and the static analyzer is system
independent;

With this, we fill the gap left by existing approaches and
demonstrate that information flow and declassification analysis
can be performed on real-world scenarios (i.e., legacy, untrusted
and mobile code). We combine the static analyzer with a run-
time component in a nonstandard way, in the sense that we
also include an intermediate step between both stages and per-
form runtime enforcement via a code injection done only in the
points of the code where enforcement is necessary. This is op-
posed to the standard definition of runtime enforcement [53],
in which every1 program instruction needs to be monitored.
We show how this nonstandard approach allows us to have a
system independent static component, while also having an ex-
tremely lightweight runtime component. In particular, we argue
that our approach has the following advantages: (1) it does not
require specially annotated program code, (2) handles informa-
tion-flow at the level of program variables, (3) supports declas-
sification policies which are decoupled from the code, (4) per-
forms a system-independent static analysis, due to the presence
of system-specific labeling mechanism that is decoupled from
program and policy, (5) supports dynamic (runtime) security la-
bels, (6) handles runtime declassification constraints, and (7) its
runtime component is lightweight enough to be implemented on
mobile devices.
This paper is guided by the three examples and the approach

is presented in an implementation-oriented fashion. As for the
static analyzer needed in our approach, we explain how to ex-
tend PCR analysis [46] so that it can be integrated with the other
steps of our approach. As for the preload checker, we show
how the runtime enforcer checks are injected in the application’s
code. Finally, we implement our final step, the runtime enforcer,
which is the most significant component in terms of overhead.
We run our runtime enforcer against benchmark programs on
an Android device, in order to determine its overhead. We show
that the resulting overhead is almost imperceptible. The focus of
this paper is to propose a solution that combines the strengths
of different approaches (static analysis, code injection, and run-
time enforcement). We present our approach with a focus on a
practical description, rather than a formal one. However, we do
believe that there is still the need for a formal proof for our com-
plete system, which we leave as future work. We underline that
while each single component has been separately studied (e.g.,
the proof for our static analysis component is already given in

1In the standard definition found in [53], each step the monitored target is
about to take generates an input symbol, which is sent for evaluation to a secu-
rity automaton simulation: since the program counter is a state component and
it changes each time a machine-language instruction is executed or an interrupt
occurs, the enforcement mechanism must be involved in executing each target
instruction. Possible optimizations on when to issue the symbol are also envis-
aged in [53]: e.g., in case of enforcement mechanism for access control policies
on files, the production of input symbols can coincide with occurrences of file
access operations.

1296 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 8, AUGUST 2013

[46]), proving the soundness of the combined techniques is a
separate contribution. Also, typically the 3 different approaches
are each proven by a different proving mechanism, further out-
lining the specific challenges of a formal proof for the whole
hybrid approach.
We underline that our approach of splitting the problem in

three steps and coordinating these activities does not make the
problem tractable or decidable—undecidability is intrinsically
part of the problem addressed in this paper [31], [45]. How-
ever, as shown through the examples, we can solve a number
of instances of the general information-flow and declassifica-
tion problem which cannot be treated by only static analysis,
runtime enforcement or program rewriting, separately. We ac-
knowledge that the general problem is undecidable and that our
approach does not present solutions to every instance of the
problem. And by presenting the approach in a practical manner
we (1) show the high practical applicability of the instances we
solve and (2) demonstrate that the combination of the 3 analysis
approaches is not trivial.
The remainder of the paper is organized as follows. In

Section II, we review the state of the art of information-flow
and declassification analysis. Section III presents our practical
motivating examples (which are also referred throughout the
rest of the paper). Section IV describes some preliminary
assumptions. Section V describes declassification policies and
presents an overview of our approach. Then, we present each of
the three components in our solution. In particular, Section VI
describes how we adapt an existing static analyzer to be used
as the first component. The following sections describe more
in detail the preload checker component (Section VII), and
the runtime enforcer component (Section VIII). Finally, in
Section IX we draw the conclusions of our work.

II. RELATED WORK

Most of the static analysis approaches in literature revolve
around annotating program variables with security types [43],
[60], [11]. Jif [15] is one of themost advanced programming lan-
guages designed to enforce fine-grained declassification poli-
cies in the program. However, if the programs and policy are
not carefully designed, both get interdependent, with changes to
one incurring changes to the other [28]. The use of type-based
languages incur that the programmer not only knows a more
intricate language, but is also aware of the policy. This assump-
tion is often not desirable, such as in the mobile device scenario
we use in our examples. Even though Jif supports polymorphic
label-types in the code, enforcement of labels that can change
during runtime is not possible, due to the nature of static anal-
ysis. Dataflow [2], [1], [9], [19] and taint [39], [58], [20] anal-
ysis perform static analysis on unannotated code, but fail to sup-
port declassification policies. Also, implicit flows of informa-
tion are often harder to deal with. In [55] authors present a -cal-
culus based language for dynamic information flow tracking,
that accepts more programs than type-based systems, at the cost
of greater overhead. Their approach tracks information flow in
multiple dimensions (i.e., it reasons over, e.g., the confiden-
tiality of an integrity label), a goal out of the scope of this paper.
Even though variables have no static security labels, declassifi-
cation is done explicitly in the code, by the programmer.

Support to declassification often needs some help from the
programmer. Type-based enforcement approaches [50], [6]
keep track of variables that hold declassifiable expressions via
extensions on the type system. The Gradual Release (GR) prop-
erty [5] formalized the information revealed by declassification
policies by stating that the observer’s knowledge increases only
at declassification points. This property was extended by the
Conditioned Gradual Release (CGR) property [12], which took
important steps in decoupling policy from code. It requires
that the low-security observer of program behavior cannot
detect differences between runs whose inputs yield the same
values for declassifiable expressions. Finally, a more complete
separation between code and policy was achieved by the Policy
Controlled Release (PCR) property [46] which, based on CGR,
is able to completely remove security types from the program.
The PCR approach is the basis of our static analyzer.
Runtime enforcement mechanisms [36], [16], [29] monitor

accesses a program does during execution, enforcing access
control policies. These mechanisms are often useful for en-
forcing access control, but not information flow, since the
latter requires knowledge of nonexecuted code, in order to
detect implicit flows. In [38] authors propose a theory for
runtime enforcement, modelling runtime mechanisms that can
transform results, and also an analysis of the policies that
such model can enforce. Their abstract model is simple and
expressive, and our runtime enforcement step can be fit in
the model in a straightforward manner. The model, however,
makes explicit one of the limitations of runtime enforcement:
as it only considers actions performed by the application at
runtime, it is unaware of implicit flows of information caused
by actions that were not performed. A recent study on policies
enforceable by runtime monitoring is presented in [37]. The
same authors present a framework for composing expressive
runtime policies in [13]. However, policies are again based on
specific security-sensitive actions performed by the program.
In [26], the authors address the issue of the computability
constraints of runtime monitoring, giving a characterization
of those security policies enforceable by program rewriting.
In [8] the authors propose a purely dynamic information flow
analysis approach that handles implicit flows. However, this is
achieved by disallowing, on the language semantics, dynamic
label updates within high conditionals, an unnecessary limita-
tion in our approach. In [59], authors study language support
for runtime principals that specify runtime authority in down-
grading mechanisms such as declassification. They establish
the basic property of noninterference for programs written in
such language, while an example of a security sublanguage
for enforcing information-flow policies was proposed in [4].
Finally, in [34] the authors present a semantic framework for
expressing security policies for declassification and endorse-
ment in a language-based setting. The proposed framework
specifies how attacker controlled code affects program exe-
cution and what the attacker is able to learn from observable
effects of the code.
A hybrid approach had been proposed in [54], although au-

thors proposed the combination of inline reference monitors
with static type systems. Our approach precludes the need of a
type system—even though a type system might be necessary to
undertake a formal proof for our solution (which is left as future

ROCHA et al.: HYBRID STATIC-RUNTIME INFORMATION FLOW AND DECLASSIFICATION ENFORCEMENT 1297

work), but not in the static analyzer itself. Concrete proposals of
hybrid mechanisms are scarce, although have become increas-
ingly popular [32], [33], [56], [42]. In [63] the authors integrate
static analysis and runtime tracking to establish an approach to
generate a sensitive data propagation graph aimed at incurring
minimum time overhead on systems. All the cited approaches,
however, do not support either runtime security labels or declas-
sification policies. In [44] the authors use static analysis to detect
which parts of the program satisfy a policy, and use a runtime
enforcer to guarantee that unsafe parts are not executed. Thus,
they do not enforce policies that need runtime information: the
runtime enforcer serves only to select the parts of the code that
may be executed.
In [51] the authors show that, by blocking execution of unsafe

instructions, a dynamic monitor can guarantee termination-in-
sensitive noninterference, for a flow-insensitive analysis. Then,
in [49], the same authors prove impossibility of a sound purely
dynamic information-flow monitor that accepts programs cer-
tified by a classical flow-sensitive static analysis. The authors
demonstrate the need for hybrid mechanisms in flow-sensitive
analysis, and present a general framework for suchmechanisms.
In both papers, however, authors do not consider either declas-
sifications or dynamic labels. Hybrid mechanisms that support
declassification have been proposed in [7], [14] however these
approaches do not share the expressiveness of PCR analysis,
being unable to declassify expressions of unbounded size (such
as the average salary), do not share our goal of separating policy
from program, and work on security typed languages, requiring
the programmer to identify points where declassification occur.
A recent implementation-oriented approach is Resin [62],

a language runtime that implements data-flow assertions. It is
a fully runtime approach, incurring a nonnegligible overhead
(33% CPU overhead for their measured application). Besides, it
does not share a number of our goals: it allows the programmer
to specify application-level data flow assertions, as opposed to
our goal of analyzing untrusted programs, and it does not focus
on information flow control or declassification policies. Similar
observations hold for TaintDroid [20] which performs dynamic
taint analysis for the Android system (which is the same system
we considered for our implementation). TaintDroid assumes
that third-party applications are not trusted and monitors how
the applications propagate sensitive data. However, differently
from our work, TaintDroid is not capable of enforcing declas-
sification, or fine-grained policies (to let only specific tagged
data to flow to application or to network connections). Finally,
another recent implementation of control-flow integrity, with
smartphone architecture in mind, has been proposed in [18]:
again, also this solution only consider runtime enforcement and
does not allow declassification policies.

III. MOTIVATING EXAMPLES

In this section, we present three examples that will be used
throughout the paper. The examples are all within the context
of mobile devices, and present problems which current popular
mobile platforms (e.g., Android, Apple iOS) cannot handle. In-
deed, these problems cannot be handled by either static or run-
time enforcement approaches, emphasizing the necessity for a
combined approach.

Example 1 (Classification): Consider a policy that allows ap-
plications to read the contents of the phone’s contact list, but not
send it to low level channels (e.g., an arbitrary Internet connec-
tion). However, assume the user is allowed to mark as “trusted”
certain output locations, such as a network connection, an SMS
or an e-mail address. Thus, information derived from the contact
list can only be sent to trusted output channels. In this scenario,
the static analyzer is needed to detect the flows of information
within a program, while the runtime enforcer is needed to check
the dynamic security label of the output channel. Algorithm 1
presents an example. In the following example algorithms we
use underlined text to indicate input and output operations.

Example 2 (Declassification): Consider a policy for loca-
tion-based services. The policy states that a user’s location is
private in general and cannot be output. However, there are two
allowed declassifications: (1) the time zone of a location, and
(2) the result of a function that compares whether two loca-
tions are near to each other. In this scenario, an application can
transmit its location to a different device using a secure connec-
tion. In particular, the application transmits data along with its
corresponding security label to the other device (assuming that
the underlying system platform supports this). Here, the static
analyzer not only detects flows of information, but also points of
the program that match the expressions allowed by the declassi-
fication policy. Again, the runtime enforcer checks for dynamic
labels. See Algorithm 2 where isNear only works with argu-
ments from a location input (such as a GPS).

Example 3 (Iterative declassification): Now, consider a cor-
porate application (Algorithm 3) in which a device accesses the
records of several products, and it outputs the average of some
property of the products (e.g., price, nutritional facts, cost, etc.).
According to a declassification policy, the program can only
output the average of a property for a given number of prod-
ucts (and not their single values). The static analyzer detects
that the program conforms with the declassification policy, but
the condition of the minimum amount of values the average has
to contain is only checked during runtime.

1298 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 8, AUGUST 2013

IV. PRELIMINARY ASSUMPTIONS

In this section we describe the assumptions made by our
work. First, we discuss two important concepts used in the
examples, and throughout the paper.
Security labels. Each input/output channel accessed by the

programs has a security label associated with it. Security labels
are not annotated directly on the program code because labels
are system independent (hence not known at coding time) and
our work deals with unannotated code. The labels form a lattice
[19] in which they are ordered, from least restrictive (lower) to
the most restrictive (higher). For simplicity, in this paper the
only static labels are low and high. For the standard informa-
tion flow policy, information can only flow from low to high in
the lattice.
Declassification policies. Exceptions to the standard infor-

mation flow policy are defined by declassification policies. De-
classification policies are (allowed) exceptions to the informa-
tion flow policy in force. A declassification policy may specify
that—under some specific conditions—some high data may
be relabeled as low. The “specific conditions” depend on the
functions that have been applied to the data, describing which
expressions on the input values may be declassified. Thus, if a
variable on the program holds the expression described by the
policy, it is allowed to be sent to a low output channel.
Now we describe the assumptions made on the underlying

system, which is part of the Trusted Computing Base. The con-
sidered programming language is assumed to have a well-de-
fined set of I/O statements, which can be identified by the static
analyzer. These I/O statements are “safe”, in the sense that their
behavior is always the expected one. Also, functions referred
by declassification policies (such as , in Example 2)
are also safe, meaning that they can not be abused or inverted
in order to obtain the original value of its arguments. Policies
using unsafe functions are considered malformed policies [52],
and measuring the safety of a declassification policy is out of the
scope of this paper. We remind that, while no inliner for mul-
tithreaded Java can be both secure and transparent for all the
possible policies, this is possible for a broad class of policies
[17], to which we restrict our study.
We consider an underlying system that includes a security

labeling system, and provides an API for handling the labels.
We leave the implementation of this API unspecified, since
this paper focuses on the enforcement of policies by programs,
rather than on the specification of a labeling system [40], [10],
[57]. Thus, the API is composed of commands to get and
set (when the program is permitted to) security labels on data
blocks (e.g., files, network packets) and also to determine labels
of I/O channels (e.g., a network or DB connection, a phone’s
camera or SMS manager). Also, we consider operators

and for comparison of labels. In this paper we consider I/O
channels and data blocks can have labels hi and low, besides
the special labels:runtime for an I/O channel whose label
can only be known at runtime, and data for channels in which
each individual packet of data has a label attached to it.

V. DECLASSIFICATION POLICIES

We define a simple language for specifying declassification
policies. Policies in this language are easily converted to the
graph format used by the static analyzer. For Example 2, we
have the following declassification policy:

define

alpha input:getLocation()

beta input:any

allow

output:low timezone (alpha)

output:low isNear (alpha, beta)

The keywords input and output are used to represent I/O
channels. The define block names the input channels cited by
the policy, and the allow block defines operations that should
be permitted. Here, two expressions on the inputs are allowed
to be sent to low output channels. Next, we present the policy
for Example 3:

define

alpha fetch(openDBConnection())

allow

for to c do

In this policy, we use local variables to hold intermediate
values. The define block initializes these variables. Note that
can be any number greater or equal than 25. The allowed ex-
pression describes the sum of at least 25 values from . Thus,
we have the policy format defined by the grammar:

Where are variable names are standard logic
and arithmetic operators are numeric constants,
are names for I/O channels (alpha, beta), are one-line
program statements (assignments and function calls), are
keywords that match multiple channels (any, low), and are
expressions, defined the standard way. Note that rule defines
a program, the other rules being specific to the policies.

ROCHA et al.: HYBRID STATIC-RUNTIME INFORMATION FLOW AND DECLASSIFICATION ENFORCEMENT 1299

Fig. 1. Overview of the three-step enforcement.

A. Hybrid Enforcer

Our approach consists of a hybrid static-runtime mechanism
organized in three steps: static program analyzer, preload
checker, and runtime enforcer. In practice, the first two steps
perform the most expensive part of the analysis, leaving the
runtime enforcer to perform a few very precise (and thus
efficient) checks. Fig. 1 shows how the three steps interact with
each other, while in the following we give an overview of their
role.
1) Static analyzer: it takes a program and identifies all its in-
formation flows, i.e., for each output operation, it identifies
which input operations its value can potentially depend on
(including implicit flows). Additionally, it takes a set of de-
classification policies and identifies which variables of the
program hold expressions on inputs allowed by the poli-
cies. Thus, it downgrades the security level of those vari-
ables and of the corresponding flows of information. The
information flows, combined with the matched declassifi-
cations, are included in a flow report of the program.

2) Preload checker: before the program is run, the checker
takes the flow report from the previous step and checks
the security labels of the system in which the program is
about to run. The information flows with static labels are
then validated at this step (i.e., high cannot flow to low).
Flows containing I/O channels with dynamic security la-
bels can only be checked at runtime, and thus are marked
for checking in a runtime checklist. Also, declassifications
from the previous step might have constraints associated
with them, some of which may only be checked at runtime.

3) Runtime enforcer: the lightweight enforcer verifies that
the conditions of the runtime checklist are satisfied at cer-
tain points of execution. The conditions may consist of
checks of security labels of channels as they are accessed,
and also of counting the number of times some loops in
the program run. In order to reduce runtime overhead, the
calls to the enforcer are injected in the application byte-
code, prior to the program’s execution, on the specific pro-
gram points that need checking.

VI. THE STATIC ANALYZER

Our static analyzer starts from the graph-based Policy Con-
trolled Release (PCR) mechanism introduced by [46]. This
mechanism is able to static analyze code in a language with as-
signments, loops and conditionals, as well as with well-defined
I/O commands, like the one we use in our examples. Also, it
supports declassification policies which are decoupled from
the code, and automatically detects points in the code where
the value held by a given variable satisfies a declassification
policy (e.g., a variable that holds an average of values from a
given input). The graph-based PCR analysis is flow sensitive,
in the sense that variables do not have fixed security labels
associated to them. Also, it is termination insensitive, as it
does not handle leaks of information caused by observing the
termination behavior of the program.
Graph-based PCR analysis is designed by its authors to pro-

duce a yes/no result. That is, it takes a program and a policy as
input and returns whether the former satisfies the latter or not.
However, in order to combine it with our other steps of enforce-
ment we need to modify this behavior. We need the analyzer to
return a report with all the flows of information found in the pro-
gram, plus points where declassification happens. We call such
report a flow report.
A program point is used to identify an input (or output) oper-

ation in the program, and may be referenced by both the source
and the compiled code. For each I/O operation detected by the
static analyzer, a wrapper is generated around that operation,
ensuring that the same program point used in the source will be
recognized in the compiled code. We use Greek letters to iden-
tify I/O channels and write to denote the I/O operation on
channel at program point . On a high-level source code, a
program point can be seen as a line number.
The flow report contains all flows of information in the pro-

gram, one for each output operation in the program code, in-
cluding declassificationmatchings. A flow is basically a relation
between an output operation and a set of input operations whose
values can influence it. Consider again the program of Example
1: there are two input operations, at lines 4 and 8, and one output
at line 9. Here, we name these operations and , respec-
tively. Since in this program the values from both inputs flow to
the output, its flow report contain a single information flow, de-
noted: . This way, flows have the format ,
where is a set of input operations, and is an output opera-
tion.
Besides flows from inputs to outputs, the flow report must

also contain points where declassification happen. Consider Ex-
ample 2: here, we denote the input on line 2 as , the two in-
puts on the same channel made in lines 4 and 7 as and ,
and the outputs on lines 6 and 9 as and , respectively. Thus,
we could intuitively define two flows of information in this pro-
gram as and (note that some
flows are implicit, e.g., to). However, some variables of
this program hold values described by its declassification policy.
Recalling the example, we know that variables myTz and near
hold values which are allowed to be declassified. We know that
myTz holds a derivation of and near a derivation of both
and . Thus, we write the flows as
and . Here, the

1300 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 8, AUGUST 2013

term denotes that the flow from is declassi-
fied to a low security label. Since our goal is to have the static
analyzer only report flows and declassifications within the pro-
gram in a system-independent fashion, each declassification is
associated to a set of constraints that need to be satisfied in the
target system. These constraints are related to linking the input
channels described by the policies with the ones accessed by
the program. Thus, we have that
and , meaning that, for
the declassification to be valid, input operation must access
input channel denoted by command and may
match any value. In other words, the expression
will eventually be translated to low if every constraint in is
satisfied, and to otherwise.
Example 3 outlines the other type of declassification con-

straint we use. Here, the only flow in the static analyzer re-
port is . We know that the value
from input is declassified according to the declassification
policy that describes the average. However, the policy contains
a constraint about the number of iterations on the assignment of
the variable that computes the average. Thus, we have

, where
the second constraint means that the loop on line 4 must iterate
at least 25 times.
Finally, we note that the graph-based PCR static analysis

has some limitations, which are subject of further research,
as pointed by [46]. One of such limitations is the detection
of algebraic equivalence between different expressions on the
policy and the program. That is, expressions calculated by
the program must be syntactically identical to the ones of the
policy, for a matching to occur (e.g., is considered to be
different than). A research path for this problem consists
in building a term rewriting system that uses equivalence rules
of the considered operations to put both program and policy
graphs in a canonical form, before matching. We consider this
a separated problem, and leave it as future work.

VII. THE PRELOAD CHECKER

The preload checker is the step responsible for matching the
report generated by the static analyzer with the security labels
of the specific system of execution. Each information flow from
the flow report is checked by verifying the labels of the cor-
responding I/O channels. This is done by using the system la-
beling API. Flows containing only I/O channels with static la-
bels are validated at this stage, while flows with dynamic la-
beled channels generate checks to be performed by the runtime
enforcer. Also, the static analyzer’s flow report may identify de-
classification matchings which contain additional constraints to
be checked. The preload checker also verifies some of these con-
straints, and the ones that need runtime information are included
in the runtime checklist.
The preload checker first translates the elements of the flow

report to their corresponding labels in the target system. Each el-
ement in the runtime checklist has the format , where
is a program point and a directive for a specific check
to be performed. The possible directives are detailed in Table I.
The preload checker is defined at the end of this section (Algo-
rithm 4), while we first give an intuition of its behavior via our
examples. Notice that declassifications that can only be checked

TABLE I
RUNTIME ENFORCER DIRECTIVES

TABLE II
PRELOAD CHECKER OUTPUT FOR EXAMPLE 1. (A) LABEL TRANSLATIONS;

(B) RUNTIME CHECKLIST

at runtime are considered to be necessary, i.e., failure of the
check results in halting the program. This is further discussed
in Section IX.
In Example 1, after the static analyzer does its job, the

program is then compiled and the analyzer output is used by
the preload checker just before the program is executed. The
preloader translates each I/O operation to its corresponding
label, as shown in Table IIa. However, notice that translates
to runtime, which means that its label can only be checked at
runtime (as it depends on the value of variable). Based on
this table, a checklist for the runtime enforcer is also generated,
as shown in Table IIb. In this example, the checklist basically
states that the label of the output statement of program point 9
needs to be checked and satisfy the constraint of being at least
hi.
In Example 2 (Declassification), the preload checker must

also check the policy constraints, which are all mappings be-
tween input operations on the code and the ones specified by
the policy. These mapping can be checked entirely at this step,
as shown in Table IIIa. Table IIIb shows the translation of the
flows to labels. Notice that, although Algorithm 4 translates de-
classifications to only the policy label (low in all examples)
when the check of the constraints does not fail, here we always
show all the labels involved in the declassification, for clarity.
Recall that data stands for a label that is set for each transmis-
sion, as opposed to runtime (used in the previous example)
which means that the whole channel has a single security label,
which is known only at runtime. Finally, the runtime checklist is
presented in Table IIIc, with 3 items. The first tells the enforcer
that the data label of input operation at program point 4 needs
to be stored for further usage. Then, the second check treats the
first flow: the output channel with automatic label must be la-
beled according to the inputs it depends on. Thus, the check is
for the enforcer to assign a label to the data sent by that output
operation, as the maximum label of all the inputs it can leak in-
formation on, i.e., the maximum between low and the data label

ROCHA et al.: HYBRID STATIC-RUNTIME INFORMATION FLOW AND DECLASSIFICATION ENFORCEMENT 1301

TABLE III
PRELOAD CHECKER OUTPUT FOR EXAMPLE 2. (A) DECLASSIFICATION
CONSTRAINTS; (B) LABEL TRANSLATIONS; (C) RUNTIME CHECKLIST

of input at program point 4. Finally, the third check deals with
the second flow: for output operation of program 9 to be safe,
the label relative to input operation at program point 4, stored
earlier, must be at most as strict as the label of the output com-
mand of program point 9 (which is low).
Finally, in Example 3 (Iterative declassification) notice that

the static analyzer generates an iteration counting constraint for
the declassification matching (Table IVa). The second constraint
denotes that the statement at program point 4must iterate at least
25 times. Also, notice that this constraint cannot be verified at
preload time, so the checker marks this as RT, meaning it needs
to be checked at runtime. As for the checklist to be passed to the
runtime enforcer, for the only flow to be safe, the declassifica-
tion constraints must be all satisfied. Based on that, the checklist
for the runtime enforcer has two items (Table IVc): a request for
counting the number of times a loop will run, and then using that
number to validate the output operation.
On Algorithm 4, consider that is the flow report for

program , with each being a single flow. For a flow
and return the left-hand side (set of inputs

and declassifications) and right-hand side (output), respectively.
The same applies for a declassification , with also
denoting its constraint set. Also, when a label is obtained from

(a system call that returns the label
to the channel associated with), an entry is made on
representing the original program point that generated the label.
Command is another system
call that determines whether two commands represent access
to a same I/O channel. This call may return RT if the check
can only be made during runtime. For the entries of the run-
time checklist , text in typewriter font represents
the runtime enforcer directives, here treated as constant strings,
whereas text in standard notation represents statements
that are actually evaluated by the preloader algorithm. Func-
tion appears with two different uses: on lines 13 and 18
it is used to calculate a maximum result for constraint checking,
using the ordering ; on lines 31 and 33 it is used
over labels by the following: if the set of input labels only con-
tain static labels (e.g., low, high), it evaluates to the most
strict label (high); if, however, the set includes a dynamic label
(data or runtime), it evaluates to max(in_label(n),

TABLE IV
PRELOAD CHECKER OUTPUT FOR EXAMPLE 3. (A) DECLASSIFICATION
CONSTRAINTS; (B) LABEL TRANSLATIONS; (C) RUNTIME CHECKLIST

m), where n is the program point of the dynamic label and m
the max of the static labels. In the latter case, max will be eval-
uated at runtime.
About data input channels inside loops. Since our enforce-

ment is not permissive (i.e., does not accept safe executions of
possible unsafe programs), storing labels of data input chan-
nels inside loops can cause problems, as the label would be
overwritten at every iteration of the loop. To solve this problem
without permissiveness, our approach, when trying to store a
preexisting data label, replaces the stored one with a “most
strict join” of both. This can lead to imprecise analysis (i.e., over
strict), but only in some rare cases: when a data input channel
is read within a loop, with only some of its values (the lower
labeled) being aggregated together (higher labeled ones being
discarded), and then sent to an output. However, as explained
in Section IX, our approach can be extended to be permissive,
ruling out this imprecision.

VIII. THE RUNTIME ENFORCER

The runtime enforcer has a very simple behavior, similar to
the one described in [21]. As the program is executed, each
check on the checklist is performed as its corresponding pro-
gram point is achieved. The runtime enforcer itself is a simple
program, containing different functions for each type of check,
and its own state-tracking variables. In this section we consider
a Java-based runtime environment. Thus, our enforcer is a Java
class with only static methods and parameters. Consequently,
only a single instance of the enforcer is instantiated for a mon-
itored program. Calls to the enforcer class are injected in the
target application’s bytecode, after the preload check, just be-
fore execution. Here we treat this code injection as a prelimi-
nary step to the runtime enforcement, although it can also be
considered a final stage of the preload checker.
Code injection. The approach of injecting calls to the run-

time enforcer in the application bytecode, just before execution,
brings advantages for two reasons. First, it keeps the runtime
enforcement stage with minimal overhead, as the injected code
is a simple method call containing all information needed for
that check. This precludes the need for the enforcer to monitor
every single instruction, and to iterate over the different types
of check. Second, it connects the program points calculated by
the static analyzer (over the source code) with the information
available to the runtime enforcer (which works on the bytecode).

1302 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 8, AUGUST 2013

The injection is simple: for each check at the runtime check-
list, a call for the enforcer to perform such a check is added
just before the corresponding program point. We demonstrate
the process via an example: consider a Java implementation of
Example 1, shown in Fig. 2. Line 29, in bold font, represents
the output command that needs to be checked. Fig. 3 shows a
snippet of the corresponding .dex bytecode, compiled for An-
droid’s Dalvik virtual machine, already with the injected code,
identified by the comment lines. Bold font is used to point the
output instruction for which the check is needed. Note that in
the “debug info” of the bytecode, it can be seen that bytecode
address 0049 (recalculated from its original value, after the code
injection) corresponds to program point 29, the program point
where the output happens in the Java source code. Here, the
check check_output of the enforcer is injected right before
the output command. Since the code injection is a simple (and
technology dependent) process, we omit a detailed specification
of it.
The enforcer program. The enforcer provides a method for

each check type. For each case, a statement is executed and
its result validated. If the statement is not satisfied (i.e., ex-
pression does not hold, or command cannot be executed) then
the enforcer halts the calling thread, and reports the violation.

Fig. 2. Java implementation for Example 1.

For the considered Java enforcer, each check is implemented
by a method, e.g., check_output(label) is implemented
by method , where and
are arguments representing the current program point and com-
mand, respectively.
Overhead. We have implemented our runtime enforcer in

Java, and measured both its processing and memory overhead,
running with applications on an Android device. First, we
discuss the theoretical limits for this overhead, and then we
proceed to show our experimental results. For the memory
overhead, the enforcer keeps two buffers, and

, which map a program point to an integer and a label,
respectively. These buffers can be implemented either with
standard arrays or hash tables. Note that entries on each of the
two buffers point to different types of commands: entries in

point to looping and entries in to input
commands. So, a worst-case scenario happens on a program
made entirely by loops and inputs, all loops being referenced
by policies, all inputs being dynamic, and a single output in the
end, with all inputs flowing to it. In this case, for a program with
commands, exact entries are made on the buffers, each

using one memory word (32 or 64-bit). Note that, in practice:
(1) the average case tends to use considerable less memory,
e.g., in our 3 examples, the ratios of (number entries/number
commands) were 0/9, 1/9 and 1/10, respectively; and (2) pro-
grams tend to use much more memory for their data than for
their code, meaning that the bound of entries in the buffers
is usually low.
As for the processing overhead, note that each injected code

piece is a simple call to one of the enforcer’s methods. These
methods, in turn, are implemented with the execution and ver-
ification of a simple statement, with no loops. Thus, it is clear
that the enforcer methods have, by themselves, constant com-
plexity, and that the enforcer does not change the complexity
of the monitored program. Once again, the number of checks
added to the program is bounded by the number of com-
mands. But most practical cases do not reach the bound , since
only operations on dynamic I/O channels and declassification
constraints generate checks. In our 3 examples, the ratios of
(number checks/number commands) were 1/9, 3/9 and 2/10, re-
spectively. It should be noted that, in the classical definition of
a runtime execution monitor [53], the runtime enforcer moni-
tors every command of the program. Our enforcer, though, does
not necessarily need to monitor every instruction, since the task

ROCHA et al.: HYBRID STATIC-RUNTIME INFORMATION FLOW AND DECLASSIFICATION ENFORCEMENT 1303

Fig. 3. Dalvik bytecode snippet for a Java implementation of Example 1.

of identifying instructions that need monitoring is performed by
the previous stages of our hybrid approach.
We have implemented Android versions of the three exam-

ples of this paper, plus a number of benchmarking programs
meant to stress the runtime enforcer performance. Unfortu-
nately, there are only a few proposals for hybrid approaches
in literature, and they all differ not only in how they are mea-
sured, but also on their specific goals. Thus, there is not yet
a “standard benchmark” for hybrid static-runtime information
flow and declassification analysis, making a direct comparison
of performance with other approaches not possible at this
moment. Our experiments have the purpose of showing that
the overhead of our runtime component is negligible for most
practical scenarios.
We recall that the aim of our hybrid-approach is to minimize

the runtime checks only to methods that are relevant and have
not been covered by the static analysis phase. Typically these
represent a fraction of all methods invoked by an application at
runtime. Thus, running the experiments using legacy applica-
tions would have shown a smaller overhead than the small, se-
curity intensive benchmark programs we use here. To stress and
focus the performance penalties due to our runtime check, we
decided then to implement our own applications representing
the three motivating examples shown through the paper. Fur-
thermore, in order to also consider worst case scenarios, un-
common in real-world applications, we implemented the ad-hoc
applications FileCopy, FileEncrypt, InfGather and Statistics,
with the specific purpose of stressing the enforcer and com-
puting the overhead in these extreme cases. Results show that
even in these extreme cases, our hybrid technique has limited
overhead compared to dynamic analyses that intercept and ana-
lyze all methods that are invoked at run time.
Each of the benchmarks we implemented has a different “pro-

file” for accessing I/O. FileCopy performs a copy between files,
reading blocks of 1 KB at a time. However, each block has
a data security label. Thus, the runtime enforcer has to set
the label of each write with the label from the previous read.
This is an example of a program with extreme I/O access, all
of which checked by the runtime enforcer. FileEncrypt is the
same as the previous, but each block is encrypted before being

TABLE V
STATISTICS FOR BENCHMARK APPLICATIONS

written. With this, the program incurs a considerable processing
time between I/O accesses. InfGather and Statistics are similar
programs, which access inputs from 10 different sources, and
then perform a single output, whose value depends on all pre-
vious inputs. In the former, all input channels have runtime
security labels, which have to be checked during access, and
then compared to the output label. In the latter, labels are static,
but violate noninterference. However, some statistical calcula-
tion is done over the data, and a declassification policy allows
such computation. Thus, the runtime enforcer is left to check
if the input channels accessed by the program match the ones
described by the policy, and also count the number of input ac-
cesses made by the main loop. Finally, Loops is a programmade
by several loops, all of which are small in size and have their
number of iterations counted by the enforcer, presenting an ex-
treme example of almost every instruction being checked.
For completeness, in Table V we report statistics about the

size of applications used in our evaluation.
Each program was executed 50 times with and without the

calls to the runtime enforcer, and their processing times and
memory usage was observed. Fig. 4 presents the processing
times of the programs. Error bars are for confidence intervals
of 95%.
Note that only the “extreme” examples incurred a large pro-

cessing overhead. In FileCopy, there is almost no processing be-
tween I/O accesses. The enforcer gets the data label from each
input read, and applies it to each output write. Thus, the enforcer
nearly does the same amount of computing as the original pro-
gram itself. Notice how the enforcer overhead becomes minimal

1304 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 8, AUGUST 2013

Fig. 4. Processing times of experiments.

TABLE VI
MEMORY USAGE RATIO OF EXPERIMENTS

when processing is added between the I/O accesses, in FileEn-
crypt. A similar thing happens in Loops, where the program is
made entirely by loops, and the enforcer counts number of iter-
ations on all of them. This way, the amount of injected code is
large. In all other cases, overhead was almost imperceptible.
Table VI presents the results for memory usage. AllocCount

and AllocSize represent number of memory allocations and used
memory size, respectively. Each cell represents the ratio be-
tween the value for running that program with and without the
enforcer. As expected, the overhead on used memory is min-
imal, being at most 1.3%, for the FileCopy program, in which
labels are stored in every I/O access. For programs in which
loop counting is done, the number of memory allocations can
increase noticeably with the enforcer, as seen in Statistics and
Loops. However, since for each loop only an integer is used to
count, the overhead on used memory size is still minimal.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a hybrid static-runtime approach
for enforcement of information flow and declassification poli-
cies. We presented examples, all within the context of mobile
devices, that demonstrated the expressiveness of the policies our
system can treat. By adding an intermediate step between static
analysis and runtime enforcement, we managed to make both
the static analysis independent of a particular system’s security
labels, and also the runtime enforcement be lightweight, con-
sisting of only constant computation time checks. Our system
supports unannotated code, due to the extension of the PCR an-
alyzer, as well as declassification policies. Both the policies and
the labeling system might include runtime constraints which are
verified by the runtime enforcer. We have implemented the run-
time enforcer, and shown via experiments that its overhead is
negligible for most practical scenarios.
In order to simplify definitions, two assumptions were made

in our mechanism. First, we consider that every declassifica-
tion that needs to be checked during runtime is necessary. That
is, if the declassification constraints are not satisfied at runtime,
then the program is marked as unsafe without further analysis.
This also means that nested declassifications do not need to be

checked, as the failure of the outermost one will result in stop-
ping the execution. This assumption can be relaxed by extending
our mechanism so that the runtime checklist contains informa-
tion of what to do when a declassification fails: stop the pro-
gram, still allow it or perform further checks, depending on the
labels. In favor of clarity, we leave such extension for future
work. Second, the flow report contains all inputs that an output
can possibly depend on. In other words, our runtime enforce-
ment is not permissive to the point of accepting safe executions
of potentially unsafe programs. Again, the mechanism can be
extended so that runtime checks verify if unsafe branches are
taken or not, but we leave this as future work.
Another important issue to be addressed in future work is a

formal soundness proof for our solution. For this, a possible ap-
proach could be to use a different proving technique for each
single step (e.g., a proof for our static component is already
given in [46], by means of Policy Controlled Release (PCR)
mechanism), and then prove the soundness of the composition
of the different steps. We expect this proof to be a significant
additional contribution to the current work, and we identify the
main challenges and possible pitfalls in: i) modelling the com-
plex system we are considering, i.e., providing a sound for-
malization of the Android system; ii) proving the soundness of
putting together components that have been proved with dif-
ferent techniques.
Finally, as future work we also aim at investigating secu-

rity features in aspect oriented programming [22], and whether
policy specific enforcing code can be stitched as aspect pro-
gramming.

REFERENCES

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for informa-
tion flow in object-oriented programs,” in Proc. POPL’06, 2006, pp.
91–102.

[2] T. Amtoft andA. Banerjee, “Information flow analysis in logical form,”
in Proc. SAS’04, 2004, pp. 100–115.

[3] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C.
Myers, “Sharing mobile code securely with information flow control,”
in Proc. SP’12, 2012, pp. 191–205.

[4] A. Askarov and A. Myers, “A semantic framework for declassification
and endorsement,” in Proc. ESOP’10, 2010, pp. 64–84.

[5] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifica-
tion, encryption and key release policies,” in Proc. SP’07, 2007, pp.
207–221.

[6] A. Askarov and A. Sabelfeld, “Localized delimited release: Com-
bining the what and where dimensions of information release,” in
Proc. PLAS’07, 2007, pp. 53–60.

[7] A. Askarov and A. Sabelfeld, “Tight enforcement of information-re-
lease policies for dynamic languages,” in Proc. CSF’09, 2009, pp.
43–59.

[8] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information
flow analysis,” in Proc. SIGPLAN Notices, Dec. 2009, vol. 44, no.
20–31.

[9] J.-P. Banâtre, C. Bryce, and D. L. Métayer, “Compile-time detection of
information flow in sequential programs,” in Proc. ESORICS’94, 1994,
pp. 55–73.

[10] S. Bandhakavi, W. H. Winsborough, and M. Winslett, “A trust man-
agement approach for flexible policy management in security-typed
languages,” in Proc. CSF’08, 2008, pp. 33–47.

[11] A. Banerjee and D. A. Naumann, “Secure information flow and pointer
confinement in a Java-like language,” in Proc. CSFW’02, 2002, p. 253.

[12] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive declas-
sification policies and modular static enforcement,” in Proc. SP’08,
2008, pp. 339–353.

[13] L. Bauer, J. Ligatti, and D. Walker, “Composing expressive runtime
security policies,” ACM Trans. Software Eng. Methodology, vol. 18,
pp. 9:1–9:43, Jun. 2009.

ROCHA et al.: HYBRID STATIC-RUNTIME INFORMATION FLOW AND DECLASSIFICATION ENFORCEMENT 1305

[14] S. Chong and A. C. Myers, “End-to-end enforcement of erasure and
declassification,” in Proc. CSF’08, 2008, pp. 98–111.

[15] S. Chong, A. C. Myers, K. Vikram, and L. Zheng, Jif Reference
Manual, Jun. 2006.

[16] M. Conti, E. Fernandes, B. Crispo, and Y. Zhauniarovich, “CRePE: A
system for enforcing fine-grained context-related policies on Android,”
IEEE Trans. Inf. Forensics Security, vol. 7, no. 5, pp. 1426–1438, Oct.
2012.

[17] M. Dam, B. Jacobs, A. Lundblad, and F. Piessens, “Security mon-
itor inlining for multithreaded Java,” in Proc. ECOOP 2009, 2009, pp.
546–569.

[18] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S.
Nürnberger, and A.-R. Sadeghi, “Poster: Control-flow integrity for
smartphones,” in Proc. CCS’11, 2011, pp. 749–752.

[19] D. E. Denning, “A latticemodel of secure information flow.,”Commun.
ACM, vol. 19, no. 5, pp. 236–243, 1976.

[20] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. OSDI’10, 2010,
pp. 1–6.

[21] U. Erlingsson and F. B. Schneider, “SASI enforcement of security poli-
cies: A retrospective,” in Proc. NSPW’99, 1999, pp. 87–95.

[22] G. Florez-Larrahondo and W. Haddock, “Aspect oriented program-
ming with hidden markov models to verify design use cases,” in Proc.
AOSD’09, 2009, pp. 223–228, ACM.

[23] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proc. SP’82, 1982, pp. 11–20.

[24] K. Hamlen, “Security Policy Enforcement by Automated Program-
Rewriting,” Ph.D. Thesis, Ithaca, NY, USA, 2006, AAI3227141.

[25] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Certified in-lined
reference monitoring on .net,” in Proc. PLAS’06, 2006, pp. 7–16.

[26] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability
classes for enforcement mechanisms,” ACM Trans. Program. Lang.
Syst., vol. 28, no. 1, pp. 175–205, Jan. 2006.

[27] D. Hedin and A. Sabelfeld, “Information-flow security for a core of
javascript,” in Proc. CSFW’12, 2012, pp. 3–18.

[28] B. Hicks, D. King, P. McDaniel, and M. Hicks, “Trusted declassi-
fication: High-level policy for a security-typed language,” in Proc.
PLAS’06, 2006, pp. 65–74.

[29] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-
mac: A run-time assurance tool for java programs,” Electron. Notes
Theo. Computer Sci., vol. 55, no. 2, pp. 218–235, 2001.

[30] B. W. Lampson, “Protection,” SIGOPS Operat. Syst. Rev., vol. 8, no.
18-24, Jan. 1974.

[31] W. Landi, “Undecidability of static analysis,” ACM Lett. Program.
Lang. Syst., vol. 1, no. 4, pp. 323–337, Dec. 1992.

[32] G. Le Guernic, “Automaton-based confidentiality monitoring of con-
current programs,” in Proc. CSF’07, 2007, pp. 218–232.

[33] G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt, “Au-
tomata-based confidentiality monitoring,” in Proc. ASIAN’06, 2007,
pp. 75–89.

[34] P. Li and S. Zdancewic, “Arrows for secure information flow,” Theor.
Comput. Sci., vol. 411, no. 19, pp. 1974–1994, Apr. 2010.

[35] J. Ligatti, L. Bauer, andD.Walker, “Edit automata: Enforcement mech-
anisms for run-time security policies,” Int. J. Inf. Security, vol. 4, no.
1-2, pp. 2–16, Feb. 2005.

[36] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement of non-
safety policies.,” ACM Trans. Inf. Syst. Security, vol. 12, no. 19, pp.
1-19–41, Jan. 2009.

[37] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement of non-
safety policies,” ACM TISSEC, vol. 12, no. 19, pp. 1-19–41, Jan. 2009.

[38] J. Ligatti and S. Reddy, “A theory of runtime enforcement, with re-
sults,” in Proc. ESORICS’10, 2010, pp. 87–100.

[39] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” in Proc. SSYM’05, 2005, pp. 18–18.

[40] A. C.Myers, “JFlow: Practical mostly-static information flow control,”
in Proc. POPL’99, 1999, pp. 228–241.

[41] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum, “A vir-
tual machine based information flow control system for policy enforce-
ment,” Electr. Notes Theor. Comput. Sci., vol. 197, no. 1, pp. 3–16,
2008.

[42] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-
site scripting prevention with dynamic data tainting and static anal-
ysis,” in Proc. NDSS’07, San Diego, CA, USA, 2007.

[43] F. Pottier and V. Simonet, “Information flow inference for ML.,” ACM
Trans. Progr. Lang. Syst., vol. 25, no. 1, pp. 117–158, 2003.

[44] L. Qin, S. Duanfeng, H. Xinhui, and Z. Wei, “A hybrid security frame-
work of mobile code,” in Proc. COMPSAC’04, 2004, pp. 390–395.

[45] G. Ramalingam, “The undecidability of aliasing,” ACM Trans. Pro-
gram. Lang. Syst., vol. 16, no. 5, pp. 1467–1471, Sep. 1994.

[46] B. P. S. Rocha, S. Bandhakavi, J. den Hartog, W. H. Winsborough,
and S. Etalle, “Towards static flow-based declassification for legacy
and untrusted programs,” in Proc. SP’10, 2010, pp. 93–108.

[47] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “Moses: Sup-
porting operation modes on smartphones,” in Proc. SACMAT’12, 2012,
pp. 3–12.

[48] G. Russello, M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich,
“Demonstrating the effectiveness of moses for separation of execution
modes,” in Proc. CCS 2012, 2012, pp. 998–1000.

[49] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security
analysis,” in Proc. CSF’10, 2010, pp. 186–199.

[50] A. Sabelfeld and A. C. Myers, “A model for delimited information
release,” in Proc. ISSS’03, 2003, pp. 174–191.

[51] A. Sabelfeld and A. Russo, “From dynamic to static and back: Riding
the roller coaster of information-flow control research,” in Proc. Per-
spectives of Systems Informatics, 2009, pp. 352–365.

[52] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifi-
cation,” in Proc. CSFW’05, 2005, pp. 255–269.

[53] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Security, vol. 3, pp. 30–50, Feb. 2000.

[54] F. B. Schneider, J. G. Morrisett, and R. Harper, “A language-based
approach to security,” in Proc. Informatics—10 Years Back. 10 Years
Ahead, 2001, pp. 86–101.

[55] A. Shinnar, M. Pistoia, and A. Banerjee, “A language for informa-
tion flow: Dynamic tracking in multiple interdependent dimensions,”
in Proc. PLAS’09, 2009, pp. 125–131.

[56] P. Shroff, S. Smith, and M. Thober, “Dynamic dependency monitoring
to secure information flow,” in Proc. CSF’07, 2007, pp. 203–217.

[57] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language for
enforcing user-defined security policies,” in Proc. SP’08, 2008, pp.
369–383.

[58] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “TAJ:
Effective taint analysis of web applications,” in Proc. PLDI’09, 2009,
pp. 87–97.

[59] S. Tse and S. Zdancewic, “Run-time principals in information-flow
type systems,” ACM Trans. Program. Lang. Syst., vol. 30, no. 1, Nov.
2007.

[60] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound type system for
secure flow analysis,” J. Computer Security, vol. 4, pp. 167–188, 1996.

[61] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing untrusted
code via compiler-agnostic binary rewriting,” in Proc. ACSAC’12, pp.
299–308.

[62] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Improving ap-
plication security with data flow assertions,” in Proc. SOSP’09, 2009,
pp. 291–304.

[63] J. Yu, S. Zhang, P. Liu, and Z. Li, “Leakprober: A framework for pro-
filing sensitive data leakage paths,” in Proc. CODASPY’11, 2011, pp.
75–84.

Bruno P. S. Rocha photograph and biography not available at the time of pub-
lication.

MauroConti photograph and biography not available at the time of publication.

Sandro Etalle photograph and biography not available at the time of publica-
tion.

Bruno Crispo photograph and biography not available at the time of publica-
tion.

