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Abstract: With the explosive increase in mobile apps, more and more threats migrate from traditional PC client

to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile

Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve

the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud

computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile

app’s virulence or benignancy. Compared with traditional method, such as permission pattern based method,

MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the

implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework

(SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate

the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a

commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps,

the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app

market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical

to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from

mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive

forensic analysis of mobile apps based on the generated multifaceted data in this stage.

Key words: Android platform; mobile malware detection; cloud computing; forensic analysis; machine learning;

redis key-value store; big data; hadoop distributed file system; data mining

� Jianlin Xu is with Department of Computer Science and
Technology and Tsinghua National Laboratory for Information
Science and Technology (TNList), Tsinghua University,
Beijing 100084, China. E-mail: xjl11@mails.tsinghua.edu.cn.
�Yifan Yu is with Department of Electronic Engineering and

Tsinghua National Laboratory for Information Science and
Technology (TNList), Tsinghua University, Beijing 100084,
China. E-mail:yuyf10@gmail.com.
� Zhen Chen and Junwei Cao are with Research Institute of

Information Technology and Tsinghua National Laboratory

for Information Science and Technology (TNList), Tsinghua
University, Beijing 100084, China. E-mail: fzhenchen,
jcaog@tsinghua.edu.cn.
�Bin Cao, Wenyu Dong, and Yu Guo are with Department

of Computer Science and Technology, Research Institute of
Information Technology and Tsinghua National Laboratory
for Information Science and Technology (TNList), Tsinghua
University, Beijing 100084, China. E-mail: fcaobni,
dongwy13, guoyu90337g@163.com.
�To whom correspondence should be addressed.

Manuscript received: 2013-07-19; accepted: 2013-07-19



Jianlin Xu et al.: MobSafe: Cloud Computing Based Forensic Analysis for Massive Mobile � � � 419

1 Introduction

1.1 Mobile threats

These years witness an explosive increase in mobile
apps. According to Mary Meeker’s report[1] on Mobile
Internet trends, more and more PC client softwares
are migrating to the mobile device[2, 3]. According to
Gartner’s statistical prediction[4], the amount of total
downloads of mobile apps in 2013 will be about 81
billion. Among these, there are about 800 000 Android
apps in Google Play market, and the total download
is about 48 billion as of May 2013[5]. In contract with
Apple AppStore, there are different sources for Android
apps download, such as wandoujia, AppChina, Baidu
mobile assistant, etc. While these markets give a good
supply and bring more convenience for Android users,
they will also bring mobile threats as different market
places have different malware detection utilities and
methods. Some sophisticated malwares can escape from
detection and spread even via such Android markets.

1.2 Some root causes for Android malware origins

It needs some discussions about the malware’s origins,
provenances and spreading.

(1) Android platform allows users to install apps from
the third-party marketplace that may make no efforts to
verify the safety of the software that they distribute.

(2) Different market place has different defense
utility and revocation policy for malware detection.

(3) It is easy to port an existing Windows-based
botnet client to Android platform.

(4) Android application developers can upload their
applications without any check of trustworthiness. The
applications are self-signed by developers themselves
without the intervention of any certification authority.

(5) A number of applications have been modified, and
the malwares have been packed in and spread through
unofficial repositories.

Some sophisticated malwares detect the presence of
an emulated environment and adapt their behavior, e.g.,
create hidden background processes, scrub logs, and
restart on reboot.

1.3 Some known malwares in Android platform

There are a lot of already discovered malwares which
include: Drad.A, Fake Player, Geinimi, PJApps,
HongToutou, DroidDream trojan, DroidKungFu,
SteamyScr, Bgyoulu.A, Cabir, HippoSMS, Fake
Netflix, Walk & Text, Dog Wars, DroidDreamLight,

BaseBridge, Zsone, jSMSHider, Rageagainstthecage,
Zimperlich, Exploid, Plankton, DougaLeaker.A,
Rufraud, Gone in 60 s, etc.

1.4 Some malicious behaviors of Android malware

Malware is usually motived by controlling mobile
device without user intervention, such as:

(1) Privilege escalation to root,
(2) Leak private data or exfiltrate sensitive data,
(3) Dial premium numbers,
(4) Botnet activity, and
(5) Backdoor triggered via SMS.

1.5 Our work

In this paper, based on home-brewed cloud computing
platform and data mining, we propose a methodology
to evaluate mobile apps for improving current
security status of mobile apps, MobSafe, a demo
and prototype system, is also proposed to identify
the mobile app’s virulence or benignancy. MobSafe
combines the dynamic and static analysis methods
to comprehensively evaluate an Android app, and
reduce the total analyse time to an acceptable level. In
the implementation, we adopt the two representative
dynamic and static analysis methods, i.e. Android
Security Evaluation Framework (ASEF) and Static
Android Analysis Framework (SAAF) to evaluate the
Android apps and estimate the total time needed to
evaluate all the apps stored in one mobile app market,
which provide useful reference for a mobile app market
owner to filter out the mobile malwares.

2 Related Work

Security analysis of Android apps is a hot topic. More
and more researchers use static analysis and dynamic
behavior analysis, and even integrate it with machine
learning techniques to identify malware.

2.1 Static analysis methods

Barrera et al.[6] made an analysis on permission-
based security models and its applications to Android
through a novel methodology which applies Self-
Organizing Map (SOM) algorithm preserving
proximity relationships to present a simplified,
relational view of a greatly complex dataset. The SOM
algorithm provides a 2-dimensional visualization of the
high dimensional data, and the analysis behind SOM
can identify correlation between permissions. They
discover insights on how the developers use the allowed
permission model in developing and underlining
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the permission model’s strengths as well as its
shortcomings through their methodology. Based on
their results, they propose some enhancements to the
Android permission model.

Enck et al.[7] (TaintDroid) built a tool that warns
users about applications that request blacklisted sets of
permissions. They took both dangerous functionality
and vulnerabilities into consideration and applied a
wide range of analysis techniques. They designed and
implemented a Dalvik decompiler, ded, which can
recover application’s Java source code only using its
installation image. Besides, they analyzed 21 million
LOC retrieved from the top 1100 free applications in
the Android market using automated tests and manual
inspection. Consequently they identified the essential
causes of Android application security problems and
showed the severity of discovered vulnerabilities. Their
results show the wide misuse of privacy sensitive
information, the evidence of telephone misuse, wide
including of ad libraries in Android application, and
the failing to securely use Android APIs of many
developers.

Felt et al.[8] developed Stowaway, a tool to
detect overprivilege in Android applications, and
used this tool to evaluate 940 applications from
Android market, finding that about one-third
are overprivileged. Additionally, they identified
and quantified developer’s patterns leading to
overprivilege. Moreover, they determined Android’s
access control policy through automatic testing
techniques. Their results present a fifteen fold
improvement over the Android documentation and
reveal that most developers are trying to follow the
principle of least privilege but fail due to the lack of
reliable permission information.

Elish et al.[9] implemented an analysis tool to
construct data dependence graphs statically with inter-
procedural call connectivity information that capture
the data consumption relations in programs through
identifying the directed paths between user inputs (e.g.,
data and actions) and entry points to methods providing
critical system services. Furthermore, they conducted
an initial set of experiments to characterize the data
consumption behaviors of legitimate and malicious
Android apps with this tool, specifically on how
they respond to user inputs and events. Nevertheless,
some malwares may attempt to circumvent their data
dependence checking by misusing the user’s inputs
while performing malicious activities, so their work

need to be improved in these conditions.
Burguera et al.[10] proposed Crowdroid, which finds

that open(), read(), access(), chmod(), and chown() are
the most frequently used system calls by malware.

Hoffmann et al.[11] presented SAAF, which provides
program analysis such as data-flow analysis and
visualization of control flow graph. They analyzed
about 136 000 benign apps and 6100 malicious apps,
and their results confirm the previous observations for
smaller app sets; what’s more, their results provide
some new insights into typical Android apps.

Nadji et al.[12] proposed airmid, which uses
collaboration between in-network sensors and smart
devices to identify the provenance of malicious
traffic. They created three mobile malware samples, i.e.,
Loudmouth, 2Faced, and Thor, to testify the correctness
of airmid. Airmid’s remote repair design consists of
an on-device attribution and remediation system and a
server-based infection detection system. Once detected,
the software executes repair actions to disable malicious
activity or to remove malware entirely.

2.2 Dynamic behavior analysis

Portokalidis et al.[13] proposed Paranoid Android, a
system where researchers can perform a complete
malware analysis in the cloud using mobile phone
replicas.

Zhou et al.[14] proposed DroidMOSS which takes
advantage of fuzzy hashing technique to effectively
localize and detect the changes from app-repackaging
behavior.

2.3 Machine learning

Schmidt et al.[15] proposed a solution based on
monitoring events occurring on Linux-kernel
level. They applied the tool, readelf, to read static
information held by executables and used the output
of readelf to classify Android software. After applying
readelf to both normal apps and malware apps, they
used the names of the functions and calls appearing at
the output of readelf to form their benign training set
and malicious training set. Furthermore, they applied
three classifiers, PART (extracting decision rules from
the decision tree learner C4.5), Prism (a simple rule
inducer which covers the whole set by pure rules), and
nNb (a light-weight version of the well-known Nearest
Neighbour algorithm), to predict whether an Android
software is normal or malicious. The testing result show
that their approach is effective. Additionally, they built
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a system which provides three main functionalities:
on-device analysis, collaboration, and remote analysis,
to detect malware apps on Android.

Frank et al.[16] investigated the difference between
high-reputation and low-reputation applications, and
further to identify malware. Their method only uses
the permission requests, and doesn’t statically analyze
applications to extract features when there is no
available code.

Shabtai et al.[17] similarly built a classifier for
Android games and tools, as a proxy for malware
detection.

Sanz et al.[18] applied several types of classifiers
to the permissions, ratings, and static strings of 820
applications to see if they could predict application
categories, using the category scenario as a stand-in for
malware detection.

Zhou et al.[19] found real malware in the wild with
DroidRanger, a malware detection system that uses
permissions as one input.

3 MobSafe

3.1 Infrastructure cloud platform

3.1.1 CloudStack
Saturn-cloud[20, 21], a home-brewed cloud computing
platform, is used to conduct security analysis
task. Saturn-storage, NFS storage with ZFS file system
(openindiana+napp-it)[22], is used to accommodate the
virtual machines. It can scale to 16 hard disks, each
with 2 TB SATA storage, totally achieve 32 TB store
volume. Cloudstack[23] is used to manage a VMware
vSphere based computing servers. The whole cloud
infrastructure is shown in Fig. 1.

3.1.2 Hadoop storage for mobile apps
There are about 40 servers and 40 TB storage in our
experimental research platform based on HDFS.

3.2 Work principle

MobSafe is a system to check whether an Android app
is virulence or benignancy based on some customized
tools in cloud platform. The procedure of mobsafe is
shown in Fig. 2.

MobSafe is an automatize system which can be used
to analyze Android apps. When you submit an unknown
apk file to MobSafe for analysis, it will check the key-
value store whether the apk is already analyzed and its
result is stored in hadoop storage. This comparison is
based on the hashing of the apk file as the key to query

Fig. 1 Infrastructure cloud platform based on CloudStack.

Fig. 2 The procedure of Android app analysis in Mobsafe.

the redis key value store. In this implementation, the
redis version is 2.1.3. If the key is matched in redis, then
the result is returned as response to submitter. If the key
is not matched, it indicats a new apk file. In such case,
the apk is stored in hadoop storage. After that, a daemon
invokes the automatize tool, such as ASEF and SAFF,
to collect the logs and store them in hadoop specified
directory. Also the daemon inserts the key to redis and
updates the value with the result directory in hadoop
storage.

3.3 Frontend

Mobsafe has a web frontend, which is based
on SpringSource’s Spring framework, and Twitter
Boostrap. It provides suspect apps upload function and
returns the analysis result demonstrated in web page.
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3.4 Backend

3.4.1 ASEF
ASEF[26] is an automatize tool which can be used
to analyze Android application. When you submit an
unknown apk file to ASEF for analysis, firstly it
will start the ADB logging and traffic sniffing using
TCPDUMP, then launch an Android Virtual Machine
(AVD) and install the application on it. After that ASEF
begins to launch the application to be analyzed and
send a number of random gestures to simulate human
integration on the application. Meanwhile, ASEF also
compares the log of Android virtual machine with a
CVE library, and its internet activity with Google Safe
browser API[25]. After a certain number of gestures are
sent to virtual machine, the test circle is ended and
the application will be uninstalled. Then ASEF will
begin to analyze the log file and the Internet traffic that
the app generated. ASEF uses Google Safe Browsing
API to find out whether the URLs the app try to reach
are malicious or not. ASEF also checks the existed
vulnerability with a known vulnerability list to find out
whether the application has some serious vulnerability.

3.4.2 SAAF
SAAF[24] is a static analyzer for Android apk files. It
can extract the content of apk files, and decode the
content to smali code, then it will apply program slicing
on the smali code, to analyze the permissions of apps,
match heuristic patterns, and perform program slicing
for functions of interest.

3.4.3 Other tools
There are also a lot of other assistance static
analysis tools, such as readelf[27], ded[28], apktool[29],
androguard[30], and soot[31], to help us analyze the
Android apps. Most of these tools are based on
reversing engineering. Some dynamic analysis tools
like Strace[32] and Randoop[33] to detect Android apps
are based on runtime behaivor. Strace watches system
call in Linux kernel while Randoop stimulates the
Android apps by random inputs and watches the output
messages.

4 Evaluation

4.1 Global statistics of the dataset

We have collected data set from AppChina, a China
Android market with its Android app installation
tool. This assistance tool helps a user to install, upgrade,
and remove Android apps quickly and logging such

operations for analysis. The data set is collected during
the three-month period from May 1st to July 31st in
2012. The size of data set is about 1 TB zipped logs
(expanded size above 10 TB). Totally there are about
100 000 active Android apps in logs. We downloaded
Android apps from AppChina to verify based on
MobSafe. Each downloaded Android app has its web
page on the market website. We also crawled the web
version of the Android market to supply Android app
with text description. We also conduct some correct
proof by self-written malware verification.

Figure 3 shows the total number of active apps in
AppChina keeps steadily increase during these three
months. It maintains a growth rate above 10%.

From Table 1, all these resolution Android devices
account for about 90% of total Android devices. We also
notice that high resolution display Android device users
increase steadily while some middle resolution display
Android device users decrease steadily.

We classify the Android devices into three categories:
Low class, Middle class, and High class according
to the display resolution. It seems that the display
resolution of Android devices is increased steadily in
these three months as shown in Fig. 4.

It also needs to notice that the number of apps
installed in mobile Android devices is about 30
according to three months’ statistics in Fig. 5. But as

Fig. 3 The trend of Android mobile apps in AppChina in
one quarter (in 2012).

Table 1 Different display resolution with different portion
accounts for all Android devices in 2012.

Portion account of different display resolutions (%)
240�320 320�480 480�800 480�854 540�960 720�1280 800�1280

May 5.40 26.45 37.60 13.00 7.11 1.22 4.30
June 4.12 29.41 35.31 12.88 5.99 1.93 5.54
July 3.77 31.76 35.1 11.83 5.39 2.73 5.47
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Fig. 4 The portion of three different display’s resolutions
varied in three month in 2012.

more and more users chose high resolution Android
devices, the number of apps installed in device increases
too.

4.2 Performance metrics

4.2.1 ASEF
In order to measure how much time ASEF takes to
analyze an app, we write a script which can record

Fig. 5 The average number of apps installed in three
category Android devices in 2012.

the timestamp of the beginning of running a program
and use ASEF to analyze 20 different Android apps
downloaded from AppChina. The result is shown in
Fig. 6, where the time it takes to analyze one application
varies from 64 s to 150 s, and the average time is about
100 s. It means that we can finish the analysis and
acquire the result in less than 2 min on average.

When we look up the whole analysis procedure in

Fig. 6 ASEF: The total consumed time of each app.
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detail, we can find out that there are 6 steps during
analyzing one app. The preparing step, the starting log
service step, the ending process step, and the analyzing
step take up 3%, 3%, 5%, and 10% of total time
separately. About 80% of time is consumed on the
installing and testing stage, shown in Fig. 7. So if we
want to reduce the total time, we should try to speed up
these two steps.

In the analysis step, the time it takes depends on
the random gestures we input. The more gestures, the
longer it takes. Figure 8 presents the result of reduced
time by cutting down some gestures. We decrease the
number of gestures sent to AVD so that the testing
time will be shortened. After we decrease the number
of gestures from 1000 to 200, the total time decreases
by 20 s, which accounts for 20% of the total time. This
method is effective and we can also use it to improve

Fig. 7 ASEF: Time consumption of each step (s).

Fig. 8 The time consumption analysis of ASEF framework.

user’s experience.
4.2.2 SAAF
We apply SAAF to 25 Android apps downloaded from
AppChina for static smali code analysis, to evaluate
the performance of this tool. From Fig. 9 below, we
can see that the most time consuming step of SAAF
is the slicing step, and the second is the permission
categorizing step. The average time of analyzing one
app consumed by SAAF in one Linux virtual machine,
which runs on Intel-i5 four-core CPU with 4 GB of
memory, is about 33.93 s.

From Fig. 10, we know that the analyzing of different
apps will consume different times, and the total time
depends on the complexity of apps, such as the amount
of methods etc. But for most apps, SAAF will finish the
analysis in an acceptable period.

4.3 Estimated instances

That means if we apply ASEF to all the apps in Google
Play market, which has 800 000 apps in total, it will
consume about 450 hours by 50 such virtual machines,
which runs on Intel-i5 four-core CPU with 4 GB of
memory.

If we apply SAAF to all the apps in Google Play
market too, it will consume about 151 hours by 50 such
virtual machines.

From the above calculation, it also needs to notice
that the dynamic method (such as ASEF) costs more

Fig. 9 SAAF: Time consumption of each step (s).
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Fig. 10 SAAF: The total consuming time of each app.

time than the static one (such as SAAF) as the former
one needs to monitor app’s system call and network
behaviour.

According to average number of apps installed in one
Android device is about 30, it costs about 1 hour to use
ASEF and SAAF to finish the analysis in one virtual
machine and AVD. But if we can distribute the installed
apps into separated individual VMs or AVDs, the whole
time can be less than one minute, which is acceptable
for user’s experience in security check.

5 Conclusions

In this paper, we propose a methodology to evaluate
the security of Android mobile apps based on cloud
computing platform. We also implement a prototype
system, i.e., MobSafe, for automation forensic
analysis of mobile apps’ static code and dynamical
behavior. Based on the real trace from AppChina, a

mobile app market, we can estimate that the number
of active Android apps and the average number apps
installed in one Android device, and the increasing
ratio of mobile apps. We adopt ASEF and SAAF,
the two representative dynamic analysis method and
static analysis method, to evaluate the Android apps
and estimate the total time needed to evaluate all the
apps stored in a mobile app market. As mobile app
market serves as the main line of defence against
mobile malwares, it is practical to use cloud computing
platform to defence malware in mobile app markets.

6 Future Work

Machine Learning (ML)[34] is a promising technology
to identify mobile app’s virulence or benignancy based
on data mining. As we collect more and more app’s
logging and network behaviour data, we can further
use K-means method to classify apps after training
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a classifier. In this case, the well-known accuracy
metrics includes precision and recall can be measured
to evaluate the calssifier algorithm. Other method such
as PCA (Primary Component Analysis) and Matrix
Factorization also can be used and tested on such data.
The final implementation will be shown on the web site
(www.mobsafe.net).
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