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Abstract. As the mobile platform continues to pervade all aspects of
human activity, and mobile apps on this platform tend to be faulty just
like other types of software, there is a growing need for automated test-
ing techniques for mobile applications. Model-based testing is a popular
and important testing approach which operates on a model of an ap-
plication’s behavior. However, such a model is often not available or
of insufficient quality. To address this issue, we present a novel grey-box
approach for automatically extracting a model of a given mobile applica-
tion. In our approach, static analysis extracts the set of events supported
by the Graphical User Interface (GUI) of the application. Then dynamic
crawling reverse-engineers a model of the application, by systematically
exercising these events on the running application. We also present a tool
implementing this approach for the Android platform. Our empirical e-
valuation of this tool on several Android applications demonstrates that
it can efficiently extract compact yet reasonably comprehensive models
of high quality for such applications.

1 Introduction

The mobile platform is projected to overtake the desktop platform as the global
Internet platform of choice in the very near future [1]. There has been a deci-
sive shift to mobile devices in numerous application areas such as email, social
networking, entertainment, and e-commerce [1, 2]. This trend has prompted an
explosive growth in the number and variety of mobile applications being de-
veloped. As of June 2012, Android’s Google Play had over 600,000 applications
that had been downloaded more than 10 billion times in total [3]! Users typically
have a choice between several apps with similar functionality. Thus developers
are required to develop high quality apps in order to be competitive. On the
other hand, mobile apps are usually developed in relatively small-scale projects
which may not be able to support extensive and expensive manual testing. Thus,
it is particularly important to develop automated testing tools for mobile apps.
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For the purpose of this research, we use Android applications as a representa-
tive of mobile applications in general. Most tools and frameworks [4–8] currently
available for testing Android apps are simply aids for (manual) test-case author-
ing, deployment, debugging, and visualization. There are no effective industrial
products for automated test-case generation per se. Recognizing this inadequa-
cy, researchers have very recently begun to develop such techniques [9–13]. This
paper attempts to build on this fairly nascent body of research.

Mobile applications are a subset of the more general class of event-driven
applications and specifically event-driven Graphical User Interface (GUI) appli-
cations. However, they have the following characteristics that make them suitable
for specific automated testing techniques.
– Small size. Mobile applications are typically much smaller and simpler than

desktop applications, both in terms of their physical footprint as well as be-
havior. Desktop applications can be large, feature-rich and computational-
ly intensive. However, a significant fraction of mobile apps are designed as
“micro-apps” to solve small and specific tasks [14]. Furthermore, the size of
mobile apps is constrained by the limited processing, storage, and display re-
sources of the mobile device. The small size of mobile applications enables
automatic testing techniques to be feasible and applicable to real-world appli-
cations.

– Event-centric. Mobile devices have evolved to be small-screen devices with-
out a keyboard. Since typing is onerous on such devices, mobile apps are
designed around a rich set of user gestures as input events. Thus, on the one
hand, the role of typed data is somewhat diminished in mobile applications
in contrast to desktop applications. On the other hand, the richer set of user
gestures in mobile apps needs to be incorporated into any testing process.

– Simple & Intuitive GUI. Users of desktop GUI applications might be ex-
pected to refer to documentation or tutorials to fully comprehend how to use
the applications. In contrast, mobile apps are expected to have a simple and
intuitive user-interface where most, if not all, usage scenarios of an application
should be evident to the average user, from the GUI.
Model-based testing [15] is a popular and important type of approach for

software testing that uses a model of the application under test as a basis for
constructing test cases. Automated model generation techniques that dynamical-
ly analyze the GUI of the application have been previously developed for desktop
GUI applications [16] and for Ajax web applications [17]. However, the limit-
ed degree of automation of these tools and the incompleteness of the resulting
models have posed barriers for their industrial adoption. Such limitations can be
attributed, in part, to the nature of their target application domains. For exam-
ple, the GUIs of feature-rich desktop applications or web applications can have a
large, potentially unlimited, number of states. Thus, techniques as Crawljax [17]
either bound their exploration or require user-specified state-abstractions to ex-
tract a finite model. Approaches such as GUITAR [16], on the other hand, resort
to more imprecise event-based models. By contrast, as observed above, mobile
apps have substantially smaller and simpler GUIs. This raises the possibility
of more complete and automated GUI state-space exploration in mobile apps.



Second, automated crawling techniques typically require knowledge of the set
of GUI widgets supporting actions (e.g. clicks) and precisely what actions are
supported on each such widget. For web applications, much of this information
is represented in client-side JavaScript code, which is notoriously difficult to an-
alyze. Thus, this information needs to be manually specified. For desktop GUI
applications, this analysis is not that important since user-actions are mostly
simple mouse-clicks. However, as noted above, supporting a rich array of user
gestures is an integral part of mobile app design. Further, as we demonstrate in
this work, mobile app development frameworks are quite amenable to automatic
analysis and extraction of this information. The objective of this paper is to
build a novel, customized and more efficacious automated GUI-model generator
for mobile apps, particularly Andriod apps, by exploiting these observations.

Our approach uses static analysis of the application source code to extract
the actions supported by the GUI of the application. This information is typi-
cally not available to a purely black-box analysis and is far more expensive to
extract through a dynamic white-box approach such as [9]. Next, we use dynam-
ic crawling to build a model of the application by systematically exercising the
extracted events on the live application. We concur with the view of [16,17] that
a dynamic analysis is far simpler and more precise than static analysis, for an-
alyzing GUIs. However, we exploit the smaller, simpler and highly event-centric
interface of mobile apps to build a more efficient and automated crawler.

Specifically, this paper makes the following main contributions:
– A dynamic, grey-box GUI reverse-engineering solution for mobile apps, which

we identify as a specialized sub-class of event-driven GUI applications.
– A novel static analysis to support the dynamic GUI crawling.
– A tool implementing this grey-box approach of automated model extraction

for Android apps.
– An evaluation of this tool on several real-world Android apps for demonstrat-

ing its efficacy at generating high-quality GUI models.

2 Background & Problem Definition

Model based testing [15] is an approach for software testing orchestrated around
a model of the application under test. The model is typically an abstract rep-
resentation of the application behavior and may be constructed either manual-
ly [18] or using automatic techniques [16]. This model is used to construct a suite
of test cases to test the application. Various techniques of model-based testing
have been proposed in the literature [19,20].

One of the crucial steps in model-based testing is the creation of the mod-
el itself. When performed manually, it is usually a laborious and error-prone
process. There is a body of work [11,16,17] that tries to partially or completely
automate the process of extracting models from a class of GUI applications. The
general approach is to automatically and systematically interact with the GUI of
the live, running application, in an attempt to extract and record a model of the
usage scenarios supported by it. GUI applications are a subset of general event-
driven applications and include types of applications such as web applications
and desktop GUI applications as well as mobile applications.



As discussed in Section 1, mobile apps have special characteristics that distin-
guish them from other classes of event-driven applications. This paper addresses
the problem of automated GUI-model generation for mobile applications.

Problem Definition. Given a mobile application, efficiently generate a
high-quality model representing the valid input event sequences accepted by the
application, where quality is measured by the following criteria:

1. Coverage. Every reachable program statement of the application should be
executed by running at least one of the event sequences included in the model.

2. Precision. The model should not include invalid events, i.e., events that are
not supported by widgets on a given screen.

3. Compactness. The size of the model, in relation to the number of event-
sequences it represents, should be as small as possible.

Note that the above problem definition uses statement coverage as the cover-
age criterion. However, the solution presented here would be equally applicable
to any other suitable code coverage criteria.

3 Related Work

Automated model extraction: Our work falls under the broad category of
automated model generation techniques. The GUITAR [16] tool by Memon et al.
is one of the earliest and most prominent representatives of this class. GUITAR
reverse engineers a model of a GUI-application directly from the executing GUI.
A recent extension of the tool, Android-GUITAR [21] supports Android apps.
GUITAR uses formalisms called GUI forests and event-flow graphs to represent
the structure and execution behavior of the GUI, respectively. However, the
event-flow graph representation typically includes many false event-sequences
which may need to be weeded out later.

The Crawljax tool by Mesbah et al. [17] is an automatic model extractor tar-
geted to Ajax web applications. In contrast to GUITAR it uses a state-machine
representation to capture the model because of the stateful nature of Ajax user-
interfaces. However, Ajax applications present particularly challenging targets
for automatic model extraction because of their large (sometimes unbounded)
state-space. Therefore, in practise, manually specified state-abstractions are re-
quired to extract a model with high coverage but manageable size. WebMate [22]
is another, more recent, model extractor for web applications. The iCrawler
tool [13] by Joorbachi et al. is a reverse engineering tool for iOS mobile applica-
tions that also uses a state-machine model. The emphasis in [13] is on dealing
with the idiosyncrasies of the iOS platform. All of the above tools have no mean-
s of deducing actionable GUI elements and supported actions on each screen.
This information typically needs to be supplied to the tool. Some tools, such
as Android-GUITAR, only exercise the default tap action on widgets. However,
this provides less than optimal coverage of the behavior. Our proposed approach
is unique in that it uses an efficient static analysis to automate and solve this
aspect of model discovery, for the Android platform.



Automated testing of mobile applications: Hu and Neamtiu [23] propose
an approach which exercises the app under pseudo-random event sequences pro-
duced by the Android Monkey tool and analyzes the log files of this execution
for certain kinds of bugs. The AndroidRipper tool proposed in [11] also perform-
s stress-testing of Android apps but by systematically crawling its GUI. These
approaches can sometimes reveal unexpected and interesting errors. However,
their objective is to stress-test the app rather than to create a re-usable model
for use in future testing, as in our case. Takala et al. [18] present a case-study
of applying model based testing for testing Android apps. The M[agi]C tool
proposed in [10] is used to generate test-cases for apps using a combination of
model-based testing and combinatorial testing. Both [18] and [10] work off a
GUI-model of the app which could potentially be generated using our proposed
approach. More recently, Anand et al. [9] have applied concolic execution to gen-
erate feasible event-sequences for Android apps. However, the compute-intensive
nature of symbolic analysis coupled with an explosion in the sheer number of
event-sequences being enumerated limits their approach to fairly short event
sequences. Our approach, by contrast, can efficiently exercise fairly deep event-
sequences. Mirzaei et al. [12] use static analysis to deduce the set of feasible
event-sequences and represent them using a context-free grammar (CFG). The
deduced event sequences are then analyzed through symbolic execution. The
proposed static analysis is conceptually a generalization of our proposed action
inference analysis. However, the lack of algorithmic details and limited evaluation
presented in [12] makes a direct comparison with our approach difficult.

4 A Motivating Example

Fig. 1. Overview of SimpleTipper(a) and its state graph(b)

We use an Android app called Simple Tipper as an example to illustrate
our approach. Simple Tipper is a simplified version of the open-source app,
Tippy Tipper (http://code.google.com/p/tippytipper/), used to calculate the tip
amount for a meal. Figure 1 illustrates its function. It consists of five screens.



On the opening (Input) screen, the user enters the meal bill amount through
a numeric key-pad. The DEL button erases one digit. The CLEAR button or a
longClick on DEL clears the text-field. Clicking the Calculate button, takes
the user to the second (Result) screen, which shows the total cost including the
calculated tip. The third screen is the Menu screen. It opens by clicking the Menu
button on either the Input or the Result screen. The About option on the menu
leads to the fourth screen, About, with information about the app. The Settings
option on the menu directs the user to the fifth screen, Settings with two setting
options. Checking either of them on or off influences the tip calculation.

5 Proposed Approach

We propose a grey-box approach for automatically extracting a model of a giv-
en mobile app. First, we use static analysis of the app’s source code to extract
the set of user actions supported by each widget in the GUI. Next, a dynamic
crawler is used to reverse engineer a model of the app, by systematically exercis-
ing extracted actions on the live app. Our model has been designed to provide
sufficient state abstraction for compactness, without unduly compromising its
precision. The following sections describe these elements of our approach.

5.1 Action Inference Using Static Analysis

As explained earlier, supporting a wide array of user-gestures is an integral aspect
of mobile app design. A model representing only the default click action would
miss a significant portion of the app’s behavior. For example, in Figure 1(a), the
longClick behavior of the DEL button on screen (1) would be omitted. Further,
the Settings and About screens of the app cannot be accessed without the Menu
button. These constitute much of the app’s state-space, as shown in Figure 1(b).
On the other hand, simply firing all possible actions on each widget would bring
in invalid actions into the model and lower its precision. Thus, knowledge of the
precise set of GUI actions is essential to generating a high quality model.

Our approach uses static analysis to infer these actions. We make the ob-
servation that in the Android framework a user action is defined by either (a)
registering an appropriate event-listener for it or, (b) by inheriting the event-
handling method of an Android framework component. We term the former as
registered action and the latter inherited action. For both these categories iden-
tifying the action involves three basic steps: 1. Identify the place where an action
is instantiated or registered. 2. Locate the component on which the action would
be fired. 3. Extract an identifier of the component which the crawler can later
use to recognize the corresponding object and fire the action.

Algorithm 1 presents the analysis to detect registered actions. It essentially
iterates over all program entry points (EntryPoints) and all actions (Action-
Set) supported by the mobile framework (lines 6− 16). For each entry point P
and action X it extracts the call graph of the app (line 5) and locates a set of



Fig. 2. An illustration of using static analysis for action inference

Algorithm 1: registeredActionDetection
Input : A: Application source code
Output: E: Action map

1 begin
2 ActionSet← getAllActions()
3 EntryPoints← getAllEntryPoints()
4 foreach P ∈ EntryPoints do
5 CG← makeCallGraph(A,P)
6 foreach X ∈ ActionSet do
7 L ← getEventRegMethod(X )
8 PNodeSet← getParentNode(CG,L) // Get all L’s callers
9 foreach PNode ∈ PNodeSet do

10 s← findCallTo(PNode,L)
11 v ← getCallingObject(s)
12 i← backLocate(v,A)
13 ID ← getParameter(i)
14 E.add(ID,X )

15 end

16 end

17 end

18 end

statements PNodeSet (line 8) containing instances of a valid event-listener regis-
tering statement L for action X . Finally, for each statement PNode in PNodeSet
it performs a backward slice on PNode to locate an initialization statement of
the widget on which the instance of L was called (lines 10− 12). This is used to
get an identifier ID of the component (line 13) which is registered in the action
map E with the action X . Figure 2 shows a code snippet where the developer
defines click as well as longClick actions on the button DEL shown on screen
(1) in Figure 1(a). To identify components on which to fire longClick, we first
use the call graph to find the methods where setOnLongClickListener is called.
It happens to be called in method onCreate of activity SimpleTipper. Then we
locate the statement calling setOnLongClickListener in onCreate and get ob-
ject btn delete that the listener is registered to. Finally we backslice to get the
initialization statement of btn delete, get its ID btn delete, and add the ID-
action pair to the action mapping used by the crawler. Thus, when the crawler
encounters a screen with component btn delete it fires a longClick on it.

Algorithm 2 describes the inherited action detection procedure. We first get
class hierarchy CH of the whole app (line 3). Then, we use app’s namespace
to filter non-user-defined class (line 4). For each of the user-defined class, if the
class overrides the action handling method L(line 8), we regard the action X as



Algorithm 2: inheritedActionDetection
Input : A: Application source code
Output: E: Action map

1 begin
2 ActionSet← getAllActions()
3 CH ← getClassHierarchy(A)
4 Klass← getUserClass(CH) // Get user defined classes
5 foreach Class ∈ Klass do
6 foreach X ∈ ActionSet do
7 L ← getActionHandlMethod(X )
8 M← getDeclaredMethod(Class,L)
9 if L ∈ M then

10 ID ← getNameOrID(L,M)
11 E.add(ID,X )

12 end

13 end

14 end

15 end

valid, then we extract the Activity name or registered ID of the class (line 10),
and add the ID-action pair in the action mapping (line 11).

5.2 Model Definition

We model the GUI behavior of an Android app as a finite-state machine. As
noted by others [16, 17], GUI applications in general could have a large, poten-
tially infinite number of UI states. However, our aim is to exploit the simple and
intuitive GUI design of mobile apps to derive a compact yet high-quality model.

The model design is inspired by the UI design principles espoused by the
Android team. The Android User Experience Team [4] suggests that developers
should “make places in the app look distinct” to give users confidence that they
know their way around the app. In other words, different screens of the app
should and typically do have stark structural differences not just minor stylistic
ones. In addition, we would like to capture and reflect important differences
such as a button being enabled or disabled. Such differences are reflected in
the attributes of GUI components that support user actions. Finally, to keep
the model compact we ignore differences in the UI state resulting from different
data values input by the user.

We use these principles to define a UI state, which we term as a visual ob-
servable state. Our model is a finite-state machine over these states with the
user-actions constituting the transitions between these states. The structure of
a GUI screen in Android is represented by a tree of different GUI components,
called a hierarchy tree. Further, we classify GUI components as executable com-
ponents and display components. The former support user actions (which are
detected by our static analysis) while the latter are just for display purposes.
Thus, a visual observable state in our model is composed of the hierarchy tree
of the UI screen, as well as a vector of attribute values of each of the executable
components. The attributes chosen are ones that result in an observable change
to the GUI component but excluding ones bearing user-supplied text values or



values derived from them. It is fairly easy to manually identify the relevant
attributes for each type of UI component, once, for all applications.

Figure 1(b) shows the state model of Simple Tipper. Each of screens (1) and
(2) correspond to a unique state. Note that different values of the bill amount,
input by the user in screen (1) do not give rise to different states. Further the
pop-up dialog box launched by hitting the Menu button corresponds to state (3),
irrespective of whether it is launched from states (1) or (2). For screen (5), the
Settings screen, the two checkboxes are executable components. Their state
changes give rise to the four different states 5a− 5d for the app.

5.3 The Crawling Algorithm

The objective of the crawling algorithm is to exhaustively explore all the ap-
p’s states by firing open actions, i.e., actions which have previously not been
exercised by the crawler, on each observed state. The crawling process ends if
the model has no open states, i.e., states which have open actions to be fired.
This can potentially be done through a simple depth-first search (DFS) on the
UI states. However, the key challenge here is the backtracking step, i.e., undo-
ing the most recent action done by DFS, on reaching a previously seen state.
Crawljax [17] solves this, in the case of web applications, by re-loading the initial
state and replaying all but the last action leading up to the current state. This
is possible to do in our case too, but can be fairly expensive, as shown in our
evaluation. We refer to this strategy as standard DFS in the sequel.

Algorithm 3: crawlApplication
Input : A: Application under test, E: Action map
Output:M: Crawled Model

1 begin
2 M← ∅; s← getOpeningScreen(A)
3 while s 6= null do
4 s← forwardCrawlFromState(s,A,M, E) // forward crawl from s
5 s← backtrack(s,A)
6 if isInitialState(s) then s← findNewOpenState(s,M,A)

7 end

8 end

Mobile platforms, such as Android, provide a Back button to undo actions.
But this button is designed for app navigation and is context-sensitive. Thus, it
is not a reliable mechanism for backtracking to precisely the previous state. For
example, on state 5d of Figure 1, pressing the Back button will not lead us back
to previous state 5b or 5c, not even to the previous screen (3), but to the screen
(1) or (2) from where it was reached. Thus, the Back button need not take the
navigation back to the immediately preceding state but to any of its ancestors.
Hitting Back a finite number of times will eventually take the app to the initial
screen. Our crawler uses a modified depth-first search, which tries to crawl only
“forward” as much as possible using the Back button to backtrack when needed.

Algorithm 3 describes this strategy. It repeats a sequence of three steps till
it can make no further progress at which point it terminates. The first step is a
forward crawling step implemented by function forwardCrawlFromState() (line



4). In this step the algorithm recursively visits states with open actions. It fires
an open action and continues crawling till it reaches a state with no open actions.
At this point function backtrack() (line 5) is called to backtrack from the current
state till another open state is found or one of the initial states of the crawl
model is reached. In the former case forward crawling is resumed from this open
state. In the latter case the function findNewOpenState() (line 6) is used to find
and crawl to a new open state and forward crawling is continued from there.

Algorithm 4: forwardCrawlFromState
Input : sc: State to crawl forward from, A: Application under test

M: Crawl model being generated, E: Action map
Output: s: Current state at the end of crawling

1 begin
2 sx ← sc
3 while sx 6= null do
4 s← sx
5 if isNewState(s) then
6 initActions(s, E,A)
7 addToModel(s,M)

8 end
9 e← getNextOpenAction(s)

10 if e = null then sx ← null
11 else
12 sx ← execute(s, e,A)
13 updateOpenActions(s, e)
14 addToModel(s,e, sx,M)

15 end

16 end
17 return s

18 end

Algorithm 4 implements the function forwardCrawlFromsState() for forward
crawling from a given state sc. It iterates lines 4 − 15 on the current state s,
obtaining an open action e on s (getNextOpenAction(), line 9) and executing
it, to potentially reach another open state (function execute() on line 12). The
set of open actions of s is accordingly updated by function updateOpenActions()

(line 13) to reflect this. Further, the executed transition s
e−→ sx is added to the

modelM by function addToModel() on line 14. As an illustration, to completely
crawl the sub-graph formed by states 5a−5d in Figure 1(b) standard DFS would
need to backtrack several times whereas our algorithm would cover it in a single
forward crawl through the sequence Menu → Settings → a1 → a2 → a1 →
a2 → a2 → a1 → a2 → a1 , by continuing to fire open actions.

6 Tool Implementation

We have implemented our reverse engineering approach in a tool called Orbit.
It is composed of an action detector module and the dynamic crawler. Figure 3
shows an overview of Orbit.

Action Detector. The action detector is implemented using the WALA
static analysis framework [24]. Android applications are event-driven and there-
fore organized as a set of event-handler callback methods. Thus, static analysis



Fig. 3. Overview of Orbit tool

of just the app code gives a set of partial, disconnected sub call-graphs. The re-
maining behavior resides in the Android SDK which we do not explicitly analyze.
However, our tool incorporates an intent passing logic module, created based on
our knowldege of the Android SDK. For a given app, this module automatically
builds a mapping of intent sending methods and intent filters by analyzing the
app’s source code and manifest file. This mapping essentially connects the sub-
call graphs into a partial connected call graph. It is partially complete because
for some intent passing mechanisms like intent broadcasting whose behavior is
affected by the runtime state of the Android system, we are unable to infer this
information statically. Then we apply the action inference algorithm described in
Section 5.1 on the partial connected call graph to generate the action mapping.

Dynamic Crawler. Our crawler is built on top of the Robotium [5] An-
droid test framework and implements the algorithms explained in Section 5.3.
Although it gets its list of actions from the Action Detector, it implements special
handling for certain components such as dynamically created GUI components
and system generated GUI components which are not statically declared.

Dynamically created GUI components typically appear in Android contain-
ers like ListView, as a list of dynamically created child components. Each child
has an identical behavior, defined by the container. In such cases the crawler
represents the container as one of two abstract states: an empty list and a non-
empty list. Further, it randomly chooses only one of the child components to
crawl further, by firing actions defined in the container. System generated GUI
components typically have system defined IDs and predefined actions. For ex-
ample, the system generated context menu is a ListView object, with ID selec-
t dialog listview and different menu options as child components, each with a
different behavior. The crawler identifies such components at runtime and sys-
tematically crawls each child, rather than treating it as a generic container.

7 Evaluation

To assess the efficacy of our automated model extraction technique we conducted
a case study addressing the following research questions:

RQ1: Is the proposed GUI crawling algorithm more efficient than a standard
depth-first state traversal algorithm ?

RQ2: Are the widget and screen actions inferred by static analysis effective in
enhancing the behavior covered by the generated model ?

RQ3: Can our tool generate a higher quality model, more efficiently, compared
to other state-of-the-art techniques ?



Subject #LOCs #Activities Category Purpose
TippyTipper 2238 5 Tool Dining tip calculator
OpenManager 1595 6 Business File manager for Android
Notepad 332 3 Productivity Create and manage notes
TomDroid 3711 3 Business Online note-reading
Aarddict 4518 4 Books & Reference Aard Dictionary for Android
HelloAUT 234 1 Entertainment Draw & Color shapes
ContactManager 497 2 Productivity Contacts manager
ToDoManager 323 2 Productivity Create and manage task lists

Table 1. Test subjects used in the evaluation
Subjects For our case study we use eight open-source Android apps that have
also been used by other papers addressing automated testing of mobile applica-
tions [10,11,21]. They are mostly small to medium-sized apps spanning a variety
of application categories and are listed in Table 1.

Results To address the three research questions, we carry out a corresponding
experiment for each of the questions on all subjects. Among the subjects, Notepad
can be started with multiple notes(Notepad2) or no note(Notepad0), which will
substantially change the initial state of the crawling. To eliminate bias, we carry
out every experiment on Notepad for both scenarios.

To address the R1, we record the time spent, the coverage as well as the
counts of forward actions (any actions other than back) and back actions exer-
cised during both DFS traversing and our crawling (FwdCrawl) in Table 2. As
shown in the Table, although both DFS and FwdCrawl can cover most of app’s
behavior, DFS takes 70% more time to traverse all 9 subjects together.

Subject
FwdCrawl DFS

Time(sec) Coverage(%) #Fwd #Back Time(sec) Coverage (%) #Fwd #Back

TippyTipper 198 78 61 15 512 82 134 52
OpenManager 480 63 92 18 822 56 209 29
Notepad2 102 82 25 4 147 83 39 12
Notepad0 80 78 18 2 75 71 15 2
TomDroid 340 70 78 23 459 58 61 8
AardDict 173 65 15 2 397 60 20 8
HelloAUT 156 86 46 0 278 85 61 0
ContactManager 125 91 20 1 137 92 22 2
ToDoManager 178 75 60 2 294 74 84 4

Table 2. Comparison of Standard DFS-based Crawling vs. Proposed Forward Crawling

The second experiment we carry out is to run our traversal algorithm with
click actions only instead of inferred action set. To address R2, we record the
coverage and counts of clicks, longClicks, and menu, the most three common
actions fired during crawling. These are shown in Table 3. The results show that
non-click actions constitute only 22% of the of the total actions but increase the
coverage by 34%, on average. The low proportion of these actions also supports
the argument made in Section 5 that blindly firing all supported actions will
produce a large number of invalid edges in our model. Table 3 also shows that
our crawling produces fairly compact models with few states.

We also compare Orbit with other existing Android GUI ripping tools to
address R3. In Table 4, we compare Orbit with Android GUITAR [21], Android
GUI Ripper [11] and Android’s Monkey tool. As Android GUI Ripper takes
substantially long time to run, we use the runs of its generated test cases to do
the comparison. The time of each run was recorded from the start of the AUT
(App Under Testing) to the generation of coverage report. The time along with



Subject
#clicks #longClicks #menu #States Coverage(%)
C C+I C C+I C C+I C C+I C C+I

TippyTipper 21 55 – 2 – 4 3 9 47 78
OpenManager 50 67 – 19 – 4 10 20 39 63
Notepad2 2 13 – 3 – 9 2 7 39 82
Notepad0 0 8 – 1 – 9 0 7 14 78
TomDroid 3 52 – 0 – 26 2 9 36 70
AardDict 4 15 – 0 – 7 3 7 43 64
HelloAUT 15 34 – 0 – 12 4 8 53 86
ContactManager 20 20 – 0 – 0 5 5 92 92
ToDoManager 60 60 – 0 – 0 7 7 76 76

Table 3. Comparison of Crawling with and without Action Inference

coverage shows our crawler is 32% - 75% faster while constructing a 5% - 140%
more complete model than Android GUITAR and Android GUI Ripper.

For illustration purposes we also compare our tool against the Android Mon-
key tool. Monkey fires a pseudo-randomly generated action sequence, of a spec-
ified length, on the app. For our subjects we found that the maximum coverage
achieved by Monkey tended to saturate at around 1200 events. For our experi-
ment we ran Monkey 10 times with a 1500 event-count, on each app, and report
the median of the coverage achieved in these 10 runs, in Table 4. Indeed, for the
given event-count Monkey is much faster than Orbit but achieves substantially
lower coverage. This underscores the value of the systematic crawling performed
by Orbit.

Subject
Monkey

Android Android
Orbit

GUITAR GUI Ripper
Time(sec) Cov.(%) Time(sec) Cov.(%) Time(sec) Cov.(%) Time(sec) Cov.(%)

TippyTipper 83 41 322 47 - - 198 78
OpenManager 90 29 - - - - 480 63
Notepad2 127 60 - - - - 102 82
Notepad0 122 59 - - - - 80 78
TomDroid 69 46 - - 529 40 340 70
AardDict 124 51 - - 694 27 173 65
HelloAUT 98 71 117 51 - - 156 86
ContactManager 90 53 247 61 - - 125 91
ToDoManager 115 71 194 71 - - 121 75

Table 4. Comparison of Orbit with other tools

8 Discussion

Crawling algorithm. Our crawling algorithm is faster than DFS for every
subject except Notepad0. By examining the execution log we found that our
algorithm had traversed two more states than DFS, which accounted for the
difference. This is due to the randomness in the choice of the next action to
explore and to the side effects of execution. When crawling by DFS, the crawler
happened to click the delete note button first before clicking the open note
button. Since there are no notes left after deletion, the crawler cannot visit the
edit note screen. Our crawling happened to click the edit button before delete,
so we are able to traverse the editing screen. The randomness can be mitigated
by carrying out multiple runs. We also plan to consider controlling the order of
event sequences as part of future work.

Selection of subjects. Our evaluation is based on subjects drawn from
existing related tools, and we try to avoid bias by including all subjects used



by Android GUITAR and GUI Ripper in their evaluation. However, we do see a
preference in the choice of subjects made by these tools. Both of the tools seemed
to select subjects with less non-click actions. For GUI Ripper, both the subjects
do not have longClick actions, although we did find a later version of TomDroid
that has longClicks. For GUITAR, because GUITAR does not support non-click
actions, two of its subjects, ContactManager and ToDoManager do not support
non-click actions at all. In general, Android apps have a wide variety of actions,
and we apply our methodology against both on apps have multiple actions and
those who only has one or two kinds of actions. The result show our methodology
is effective on both of the cases.

Orbit vs Android GUITAR. As Android GUITAR can only fire click
actions, it seems unfair to use our result with action inference for comparison.
If we compare our click-only runs with GUITAR we observe that for most of
the subjects, Android GUITAR’s coverage rate in Table 4 is comparable to our
click-only coverage in Table 3. So we infer that our advantage in model complete-
ness is largely attributable to the action detection technique. Another difference
between the two tools is that GUITAR was initially created for desktop applica-
tions and its event-flow model typically contains many false paths, while Orbit
is designed specifically for mobile apps, and uses a more precise state-based
model which would also integrate well with other state-based testing techniques.

Manual effort. The only manual work in our approach is to manually selec-
t attributes of executable components to compose the visual observable states
for the GUI. This is a one-time effort for a mobile platform. As we have al-
ready performed this exercise for Android apps, additional effort will only be
required when applying our technique on other mobile platforms to make minor
adjustments or revisions for Android.

9 Conclusion

In this paper we have proposed a method for automatically reverse engineer-
ing GUI-models of mobile applications. We described our system, Orbit that
implements our method for Android, and presented the results of our empiri-
cal evaluation of this tool on several real apps. The results showed that for our
subjects, Orbit efficiently extracted high-quality models, fully automatically.
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