
DroidAlarm: An All-sided Static Analysis Tool for Android
Privilege-escalation Malware

Yibing Zhongyang, Zhi Xin, Bing Mao and Li Xie
State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology

Nanjing University
Sophie.xuer@gmail.com, {zxin,maobing,lixie}@nju.edu.cn

ABSTRACT
Since smartphones have stored diverse sensitive privacy in-
formation, including credit card and so on, a great deal of
malware are desired to tamper them. As one of the most
prevalent platforms, Android contains sensitive resources
that can only be accessed via corresponding APIs, and the
APIs can be invoked only when user has authorized permis-
sions in the Android permission model. However, a nov-
el threat called privilege escalation attack may bypass this
watchdog. It’s presented as that an application with less
permissions can access sensitive resources through public
interfaces of a more privileged application, which is espe-
cially useful for malware to hide sensitive functions by dis-
persing them into multiple programs. We explore privilege-
escalation malware evolution techniques on samples from
Android Malware Genome Project. And they have showed
great effectiveness against a set of powerful antivirus tools
provided by VirusTotal. The detection ratios present dif-
ferent and distinguished reduction, compared to an aver-
age 61% detection ratio before transformation. In order to
conquer this threat model, we have developed a tool called
DroidAlarm to conduct a full-spectrum analysis for identify-
ing potential capability leaks and present concrete capability
leak paths by static analysis on Android applications. And
we can still alarm all these cases by exposing capability leak
paths in them.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—Protection mech-
anisms; D.4.6 [Operating Systems]: Security and protec-
tion—Invasive software

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

Keywords
Android; Capability Leaks; Privilege Escalation Attack; Mal-
ware Transformation; Static Analysis

1. INTRODUCTION
It is generally agreed that users are shifting their prima-

ry Internet accessing terminals from PCs to mobile devices.
And they can download plenty of applications from diverse
markets, such as Google Play, an official Android Market
that contains over 600,000 applications. However, these ap-
plications are also carrying a huge number of unprecedented
threats. According to F-Secure’s Mobile Threat Report Q3
2012 [10], mobile malware cases on Android platform almost
increased 16 times in the first three quarters of 2012, and the
total number in the third quarter of 2012 is as high as 51,447.
Many malware have shown great interests in user’s privacy
information for profit, including SMS messages [17], credit
card information [9], audio records [18] and so on. In or-
der to restrict potential privacy information abuse, Android
raises a permission-based security model [4]. Every applica-
tion must explicitly propose a list of required permissions to
users before the installation procedure, which may expose its
malicious intention. However, a new emerging threat model
called privilege escalation attack [7] can bypass this permis-
sion authorization mechanism. It aims at the event that a
authorization list contains suspicious sensitive permissions,
which may lead to malicious usage. By utilizing the threat
model, sensitive permissions and relevant malicious usage
will be dispersed into different applications.

According to existing references [19, 22, 3, 13], antivirus
scanners may first calculate hash values of the tested file to
decide whether it is a known malware. If it is an unknown
sample, scanners then filter sensitive permissions and then
use CFG analysis, heuristics-based methods and so on to
verify whether it is malicious. So in the above threat model,
it is hard for scanners to identify potential malicious inten-
tions with multiple individual permission lists and applica-
tions.

There are some analysis and detection methods against
privilege escalation attack. Dynamic methods focus on call-
graph analysis [11], the call-chain of IPC [8] or a customized
monitoring framework [5] to address part or all of the at-
tack. However, these methods have problems with path
coverage and input effectiveness. There are also some static
techniques to analyze the attack in the stock image [12] or
applications [6, 16]. However, they only care about public
interfaces on middleware layer and do not cover other form-
s of public interfaces on kernel layer, including file system

353

and network sockets, which may miss some capability leak
cases. For example, NickyBot [14] puts its audio files on
SDcard, which may be obtained by its potential cooperator.
And Chan et.al. [6] use decompiled applications to analyze,
which suffers unsatisfactory decompiled results and poten-
tial obfuscation interruption.
In this paper, we show the seriousness of privilege-escalation

evolution on Android malware and also have developed an
automatic static analyzer to alarm these cases. We build
three privilege-escalation transformation models to explain
the former issue based on different functionalities. Different
functionalities are mapped to implement in different cooper-
ation ways. The communication between applications makes
full use of different forms of public interfaces.
To alarm the attack, we have developed DroidAlarm to

perform the automatic static analysis process. Relevant files
(i.e. the configuration file and the executable file) are parsed
for sensitive permissions and public interfaces. If an appli-
cation has both sensitive permissions and public interfaces,
relationships between sensitive permissions and public inter-
faces will be built to reveal its capability leaks. API calls
corresponding with these permissions will be located. Then,
based on the cooperation ways concerning these APIs, exist-
ing public interfaces will be checked and the data flow will
be followed to get concrete capability leak paths, which will
raise users’ vigilance on potential privilege escalation attack-
s. Since DroidAlarm is off-line, there is a limited overhead.
We analyze 49 well-known malware from Android Mal-

ware Genome Project [20] with DroidAlarm. These 49 cov-
ers each malware family infected by the similar payload, so
they already involve all malware patterns in this project.
They have not widely adopted privilege escalation to ad-
vance themselves yet. Only 6% have unintentional capa-
bility leaks. However, we explore the construction models
to transform them into privilege-escalation malware based
on different functionalities. After transformation, the detec-
tion ratios have significantly reduced, compared to an aver-
age 61% before transformation. So these privilege-escalation
malware bypass most antivirus tools on VirusTotal [1]. How-
ever, we can still alarm all these cases.
In particular, our contributions are as follows:

• We explore three styles of privilege-escalation malware
transformation techniques based on their different func-
tionalities.

• We build the first bytecode-based static capability leak
analyzer, DroidAlarm, on all kinds of communication
channels, including ICC, file system and network sock-
ets.

The rest of this paper is arranged as follows: Section 2
gives a whole background of Android and privilege escalation
attack ; Section 3 presents the design and implementation of
our malware transformation techniques and DroidAlarm in
detail; Section 4 provides the evaluation results; Section 5
summarizes related work and the distinguishing features of
our work; Section 6 illustrates the limitations and future
work; Section 7 concludes the paper.

2. BACKGROUND
Before presenting our work, the relevant background of

Android and the threat model will be briefly highlighted.

Activity

Dalvik VM

Application layer

ICC

Middleware layer

File System

Network Sockets

Kernel layer

App A

Component

check

API calls

check

Intent ops

check

File System
check

Sockets
check

Service

Broadcast
Receiver

Content
Provider

App B

Detection

Activity

Dalvik VM

Service

Broadcast
Receiver

Content
Provider

Permission
check

Figure 1: System Overview

2.1 Android
Fig. 1 shows Android internals from the viewpoints of

possible communication channels and our check spots. An-
droid is a free, open source, Linux-based OS designed for
smartphones. Possible communication channels are built at
multiple layers, including middleware layer and kernel lay-
er. Communication channels at kernel layer contain Linux
file system and network sockets. At middleware layer, the
communication channel is usuallly built at the granularity
of components, called inter component communication (IC-
C). An Android application consists of four types of com-
ponents, which are Activities, Services, Broadcast Receivers
and Content Providers. The ties between different compo-
nents are Intents, which contain data and actions to trans-
mit. At application layer, each application has a unique uid
and runs on an independent Dalvik Virtual Machine (DVM).
In Android, APIs related with sensitive resources, like send-
ing SMS messages, are protected by different permissions.

2.2 Privilege Escalation Attack
Privilege escalation attack needs to be distinguished from

privilege escalation or root exploit [21]. For root exploit,
malware intentionally utilize Android platform-level vulner-
abilities to get root privileges. However, privilege escalation
attack mostly focuses on borrowing others’ permissions to
reach its malicious goal instead of actually getting them.

We divide privilege escalation attacks into code coopera-
tion and data cooperation. In code cooperation, app A with
less permissions can invoke components of a more privileged
app B, like Activity launching function startActivity, to con-
duct sensitive behaviors. And in data cooperation app A can
get sensitive data from app B through various communica-
tion channels, such as intent.getExtras().

There may exist a dispute that the attacker needs to in-
stall at least two malicious apps on a single user’s device to
complete the procedure. However, it can be easily handled
in two aspects. On one hand, an attacker can explore ca-
pability leaks in other apps [12, 6, 16] and utilize them to
reach their malicious goals. On the other hand, if one attack
app has been installed, it can use the function of app recom-
mendation to wheedle the user to install other ones. Then
they can cooperate to achieve their malicious intention.

354

parsed by
apktool

(1)

parsed by
androguard

(2)

(3)

No sensitive permissions

(3)Senstitive permissions

Public interfaces

No public interfaces

(1) (3)

Permission

recognition

Public interface

recognition

unsuspicious

suspicious

Manifest

.dex file

Figure 2: overview of suspicious analysis

3. DESIGN
After presenting the threat model, the design of DroidAlar-

m and our malware transformation techniques will be intro-
duced.

3.1 DroidAlarm
Fundamentally, in order to reduce privilege escalation at-

tack, DroidAlarm aims at alarming capability leaks of an ap-
plication that potentially give rise to the attack. The whole
solution is divided into two modules and four submodules.

3.1.1 permission recognition
Pemission recognition is a submodule in Fig. 2. In our

threat model, sensitive resources is the purpose of capability
leaks. Since sensitive permission is related with accessing
sensitive resource, it is an important target in this module.
Android categorizes the protection levels of permissions

into four levels: normal, dangerous, signature and signa-
tureOrSystem. The threat level increases one by one. In
our solution, as we do not think normal permissions can be
actual risks, we define all other permissions as sensitive per-
missions. The threat level of permissions in a third-party
application is generally no higher than dangerous, and mal-
ware are no exceptional. With permissions extracted from
AndroidManifest by apktool [2], we check every item with
permission protection levels file and maintain those whose
protection levels are not normal. If sensitive permissions are
found, analysis procedure jumps to the next step.

3.1.2 public interface recognition
Based on our threat model, public interfaces are vital tar-

gets in the following submodule (Fig. 2). They have various
forms in AndroidManifest and the dex file. In Android-
Manifest they are mostly related with components. First-
ly, Activities, Services and BroadcastReceivers containing
a user-defined intent-filter can be triggered by other appli-
cations. So this kind of intent-filter is a striking feature.
Secondly, Content Providers have a “true” exported value
unless they are designed for Android 4.2 or higher versions.
Finally, as multiple applications that have a same uid can
share their resources to make privilege escalation attack, an-
other conspicuous attribute is sharedUserId. However, more
public interfaces at three communication channel levels are
extracted from the dex file by androguard [3]. For ICC, In-
tent is the key. For file system, all the four types of file,
SharedPreference, traditional Java file, SQLite and SDcard
file, can be considered as public interfaces. Ultimately, all
the network socket classes also need to be recognized.
Combined with the results of permission recognition, if a

malware has such interfaces, it is suspicious. However, sus-

(1)

(1)

(2)

(3) (3)

(4)
(4) (4)

(4)

A suspicious
apk

Sensitive
permissions

Public
interfaces

Sensitive
APIs

Code
cooperation

Data
cooperation

Certain
suspicious data

flow paths

Certain
suspicious

components

Figure 3: overview of leak path analysis

picious analysis module is not sufficient to settle this issue.
When a malware has public interfaces that do not reveal
sensitive resources protected by corresponding permissions,
it is a false positive case. To reduce the rate of false positive,
we need to filter the preliminary result set.

3.1.3 code cooperation
Based on suspicious analysis module, we construct a con-

crete path from a sensitive permission to a public interface.
We locate sensitive APIs corresponding to the above per-
missions, and divide them on the cooperation way.

Code cooperation that focuses on APIs with some sen-
sitive behaviors is a submodule in Fig. 3. Regarding pub-
lic interfaces obtained, we firstly check whether components
containing the above APIs have such an interface or not. If
so, a leak path will be built. Besides, we also need to check
the above components to see if other components that in-
voke one of them have public interfaces. Then we repeat the
process iteratively. Eventually, we may build a leak path, a
sensitive API with relevant permissions releasing resources
during a series of component invoking, where the component
at the highest invoking level contains a public interface.

3.1.4 data cooperation
Data cooperation is a more complex submodule in Fig. 3,

where we concentrate on APIs concerning sensitive data and
APIs that provide sensitive behaviors to generate sensitive
data. A simple algorithm is presented as Algorithm 1.

As variables are stored in registers on Dalvik bytecode,
we extract every method that initially calls one of the above
APIs, and gets a sensitive register set with related variables.
Then we analyze each instruction as a sequence of intrapro-
cedural CFG of these methods. Based on different types of
instructions, we make four decisions. Firstly, if any register
in the set is changed, we remove it. Secondly, if data of any
sensitive register is passed to another one that is not in the
set, we record the influenced register in the set. Thirdly,
if there is a public interface, which exposes all or part of
the sensitive register set, we can then build a certain ca-
pability leak path. Fourthly, if a function call involves any
sensitive registers, we track it iteratively. In the end, if the
return value of the method is in one register of the set, we
refer to interprocedural CFG and check its invokers similar-
ly. Consequently, there will be a conclusion that whether
a malware has a capability leak path where sensitive data
obtained from an API with sensitive permissions are trans-
mitted to a public interface during a series of function calls.

355

Algorithm 1 algorithm of data flow tracking

1: [method, SOURCE] = extract sensitive API()
2: for every instruction I as a sequence of intraprocedural

CFG of method do
3: if i changes va in SOURCE then
4: SOURCE.remove(va)
5: end if
6: if i assigns vb in SOURCE to vc then
7: SOURCE.merge(vc)
8: end if
9: if i provides a public interface and its parameters in

SOURCE then
10: build a certain suspicious data flow path
11: end if
12: if i is a function call and its parameters in SOURCE

then
13: track the function and its parameters in SOURCE
14: end if
15: end for
16: if method has return value then
17: expand CFG to find its invokers and check them with

the return value
18: end if

3.2 Malware transformation techniques
Since existing malware have not widely adopted privilege-

escalation construction techniques as discussed in Section 4,
we are inspired to explore the techniques based on their d-
ifferent functionalities. According to the survey [21], there
are mainly four payload functionalities, namely root exploit,
remote control, financial charges, and personal information
stealing. However, root-exploit malware aims at getting root
privilege by invoking particular native codes, without re-
quiring any sensitive permissions. So we focus on other
three kinds of functionalities. As malware may have mul-
tiple functionalities, they may need to be split into different
parts that achieve different functionalities.
Remote control is usually the prerequisite of financial char-

ges and personal information stealing. This kind of malware
receives network or SMS bot commands. Since this behav-
ior may need INTERNET or RECEIVE SMS permission,
we separate this procedure from malware. We implement it
as a way of code cooperation. When an application receives
bot commands, it will start the exported components with
corresponding behaviors in other applications.
Financial charges is a typical functionality for profit. In

this scenario, malware send SMS messages or make back-
ground phone calls to premium-rate numbers. However,
some malware hard-code premium-rate numbers and mes-
sage contents, so we disperse content preparation and SMS
sending into different applications. Background phone calls
making can be transformed similarly. This kind of transfor-
mation can be also implemented as code cooperation. Intent
containing these relevant information in one application s-
tarts the exported components with sensitive behaviors in
other applications.
Personal information stealing is another functionality that

is mostly related with malware motivations. In personal in-
formation stealing, malware are interested in collecting pri-
vacy information. Since information collecting and sending
are the two main aspects in these malware, we can put these
two procedures into two applications to reduce requested

permissions in each one and crack the complete semantic. It
is a typical scenario of data cooperation.

4. EVALUATION
In this section, we demonstrate the effect of our malware

transfromation techniques against traditional methods on
VirusTotal [1] and the evaluation results of DroidAlarm. We
present our experiment results in Section 4.1. Furthermore,
we put forward case studies for how to utilize unintentional
leak in malware and how to construct privilege-escalation
malware in Section 4.2.

Our test set picks up 49 malware from Android Malware
Genome Project [20]. All experiments of DroidAlarm are
performed on Ubuntu 10.04, which has a 512MB of RAM.

4.1 Result Overview
Firstly, we check each existing malware on VirusTotal [1]

and their detection ratio is 61% on average. Secondly, we run
DroidAlarm on these samples and verified the correctness
manually. Thirdly, we recheck transformed malware.

Table 1 shows our progressive analysis results. Suspicious
analysis module reports 33 samples are suspicious, which
means they have both sensitive permissions and public inter-
faces. But sensitive permissions can be used independently
from public interfaces in many scenarios. So in order to re-
duce false positive, we filter the results by building concrete
paths from sensitive resources protected by permissions to
public interfaces.

According to the results, we found the leak paths for three
malware, namely AnserverBot, Bgserv and NickyBot. On
one hand, most malware use sensitive resources internally.
On the other hand, some malware send sensitive data to a
fixed remote destination, and do not provide an open inter-
face for other local applications. Compared with 67% alarm
rate before leak path analysis to 6% after it, the number
of false positive cases is largely reduced. For all leak paths
in these three malware, we confirm them. Since we do not
think they are actually designed that way, we define them as
unintentional paths, which may also lead to privilege escala-
tion attack. NickyBot will be discussed in detail in Section
4.2 to explore the potential exploitation.

In our experiments, we construct privilege-escalation mal-
ware by dispersing sensitive operations into multiple appli-
cations with three models introduced in Section 3.2. This
transformation evade part of detections on VirusTotal [1],
and Table 1 has showed detection ratios after our transfor-
mation. Because most of these methods only target a single
application and cannot get a complete malicious pattern.

Based on transformable functionalities, we choose Fake-
Player, GPSSMSSpy, DroidDream and GamblerSMS to per-
form all the three transformation models. From Table 1, we
find the detection ratios have really declined a lot, which
shows the techniques are very effective. We will describe
the leak paths of DroidDream in detail in the following case
studies. In order to compare different specific implementa-
tion techniques, we do further experiments, such as reducing
the number of APIs, and removing auxiliary classes or its
host app. And we find the detection ratios have different
changes as shown in Table 1.

Some previous research works [12, 6] do detect part of
transformed malware we build, by analyzing public interface
forms of Intent and component. However, through analysis,
we find that the forms of network sockets and file system are

356

also used frequently. So these two forms cannot be ignored.
As we recognize public interfaces on all the communication
channels, we can easily find these public interfaces, and build
concrete paths to show the capability leaks.

Table 1: Results on Existing Malware
Malware O.r. S.p. P.i. C.p. F.m. T.r. Detected

ADRD 59% 3 3 7 2 - -

AnserverBot 70% 3 3 3 2,3 - -

Asroot 45% 3 7 7 1 - -

BaseBridge 86% 3 3 7 1,2,3 - -

BeanBot 39% 3 3 7 2,3,4 - -

Bgserv 70% 3 3 3 2,3,4 - -

CoinPirate 61% 3 3 7 2,3,4 - -

CruseWin 70% 3 7 7 2,3,4 - -

DogWars 75% 3 3 7 3 - -

DroidC. 34% 3 3 7 1,2 - -

DroidDeluxe 73% 3 7 7 1 - -

DroidDream 79% 3 7 7 1,4 0%-77% 3

DDlight 59% 3 3 7 2,4 - -

DroidK.F.1 64% 3 3 7 1,2,4 - -

DroidK.F.2 66% 3 3 7 1,2,4 - -

DroidK.F.3 61% 3 3 7 1,2,4 - -

DroidK.F.4 64% 3 3 7 2 - -

DroidK.F.S. 32% 3 3 7 1,2,4 - -

DroidK.F.U. 33% 3 3 7 - - -

Endofday 68% 3 3 7 2,3,4 - -

FakeNetflix 68% 3 7 7 4 - -

FakePlayer 70% 3 7 7 3 25%-38% 3

GamSMS 46% 3 7 7 3 20% 3

Geinimi 61% 3 3 7 2,3,4 - -

GGTracker 73% 3 7 7 3,4 - -

GinMaster 80% 3 3 7 1,2,4 - -

GoldDream 61% 3 7 7 2,3,4 - -

Gone60 48% 3 3 7 4 - -

GPSSMSSpy 55% 3 3 7 2,3,4 5% 3

HippoSMS 50% 3 3 7 3 - -

Jifake 70% 3 7 7 3 - -

jSMSHider 66% 3 3 7 2,3,4 - -

Kmin 73% 3 7 7 2,3 - -

LoveTrap 66% 3 3 7 3 - -

NickyBot 45% 3 3 3 2,3,4 - -

NickySpy 61% 3 3 7 2,3,4 - -

Pjapps 58% 3 3 7 2,3,4 - -

Plankton 59% 3 3 7 2 - -

RogueLemon 33% 3 3 7 2,3,4 - -

RogueSPP. 71% 3 3 7 3 - -

SMSRep. 58% 3 7 7 3,4 - -

SndApps 59% 3 3 7 4 - -

Spitmo 69% 3 7 7 2,3,4 - -

Tapsnake 50% 3 7 7 4 - -

Walkinwat 72% 3 7 7 3 - -

YZHC 59% 3 3 7 2,3,4 - -

zHash 56% 3 3 7 1 - -

Zitmo 73% 3 7 7 4 - -

Zsone 64% 3 3 7 3 - -

S.p., P.i., C.p., F.m., O.r., T.r. and Detected mean sensitive
permissions, public interfaces, certain path and functionali-
ty model, original ratio, transformed ratio and detected by
DroidAlarm respectively.
1, 2, 3 and 4 mean root exploit, remote control, financial
charges and personal information stealing respectively.
DroidK.F.U. is not malicious itself, but wheedles the user to
install a malicious update, which is not included in our models.

4.2 Case Studies
To have a profound understanding of our work, we discuss

two cases in depth. NickyBot is used to show unintention-
al capability leak in existing malware. And DroidDream
variants demonstrate the practical pattern of personal in-
formation stealing.

4.2.1 NickyBot
NickyBot [14] records the surrounding sounds and stores

audio files on SDcard. The lack of protection against SD-
card files leads to the capability leak. The left part of the
broken line in Fig. 4 included in the malware illustrates the
capability leak path from RECORD AUDIO permission to
storing files on SDcard. An unprivileged attack app with-
out the RECORD AUDIO permission may obtain the au-
dio files on SDcard and sends them out. It is a special

RECORD_AUDIO permission

this.recorder.start();

this.recorder.stop();

 this.path = "/sdcard/LyyService/
environment/";

new File(this.Path).mkdirs();
this.recorder.setOutputFile(this.recName);

File path =
Environment.getExternalSto

rageDirectory();

File[] files = path.listFiles();
Send(files);

Figure 4: Capability Leak Path of NickyBot

READ_PHONE_STATE
permission

aobj[2]=adbRoot.getIMEI(...);
aobj[3]=adbRoot.getIMSI(...);

formatter.format(" ", aobj);

abyte0 = formatter.toString().getBytes();
LocalSocket sender = new LocalSocket();
sender.getOutputStream().write(abyte0);

readed = input.read();
bytes[size++] = (byte)readed;

out.write(bytes);

send();

Figure 5: Capability Leak Path of DroidDream Vari-
ant

case that an API with sensitive behavior generates sensi-
tive data. The file type can be changed to one of other
three forms mentioned before with an operation mode as
MODE WORLD READABLE.

4.2.2 DroidDream Variant
DroidDream [15] collects users’ IMEI and IMSI, and sends

them through URL network socket connection. It is a behav-
ior of personal information stealing. As using URL network
socket connection needs INTERNET permission, which is
too loud and may be easily caught by traditional methods,
we change it to LocalSocket that does not need such a per-
mission. The leak path is demonstrated in Fig. 5. When
the attack app obtains IMEI and IMSI, it codes and sends
them through a LocalSocket. The unprivileged app without
READ PHONE STATE permission receives the data from
a same SOCKET ADDRESS LocalSocket and sends them
to our ftp server. The sensitive data can be also transmitted
through other public interfaces.

5. RELATED WORK
There are several detection methods against privilege es-

calation attack. To discover the attack, IPC Inspection [11]
combines call-graph analysis with communication tracking
between applications, while QUIRE [8] tracks the call-chain
of IPC and creates lightweight signatures for applications.
A system-centric solution [5] monitors applications by ex-
tending relevant components in the OS system and decide
whether there is a privilege escalation attack or not by cus-

357

tomized permission policies. Compared to the above three
methods, DroidAlarm does not require modifying the OS
system or applications. And we use static analysis meth-
ods to avoid the low rate of path coverage and input effec-
tiveness in dynamic methods. Woodpecker [12], CHEX [16]
and DroidChecker [6] use static analysis techniques to de-
tect capability leaks only at ICC level but not file system
or network sockets. Woodpecker [12] allows for stock phone
images but not applications. And DroidChecker [6] aims at
source codes of applications, facing the difficulty of obtaining
source codes and unsatisfactory decompiled results. Howev-
er, DroidAlarm analyzes Dalvik bytecode directly. Mean-
while, we concentrate on all the communication channels to
achieve an all-sided analysis.

6. LIMITATIONS AND FUTURE WORK
Our work has two aspects to improve. Firstly, since most

auxiliary resources have a certain version, DroidAlarm is
currently limited to Android 2.2. However, we can add a
module to recognize the version and choose proper resources.
Secondly, DroidAlarm ignores using data through file system
or network sockets from other apps to do sensitive behaviors.
However, we can settle it by building leak paths from pulic
interfaces to sensitive permissions with existing methods.

7. CONCLUSIONS
In this paper, we demonstrate DroidAlarm to alarm priv-

ilege escalation attack by analyzing capability leaks in An-
droid malware statically. Three malware out of 49 are con-
sidered to expose capability leaks. We then transform some
malware with privilege escalation attack technique in three
models to bypass traditional detections on VirusTotal [1].
And the detection ratio decreases in different levels on each
variant. However, these cases can still trigger our alarm.

8. ACKNOWLEDGMENTS
We would like to thank our shepherd, Xuxian Jiang, and

the anonymous reviewers for their comments. This work was
supported in part by grants from the Chinese National Natu-
ral Science Foundation (61073027, 61272078, 90818022, and
61021062), and the Chinese National 863 High-Tech Pro-
gram (2011AA01A202).

9. REFERENCES
[1] Virustotal. https://www.virustotal.com/.

[2] android-apktool. http://code.google.com/p/android-
apktool/, 2011.

[3] androguard. http://code.google.com/p/androguard/,
2012.

[4] Permissions. http://developer.android.com/guide/-
topics/security/permissions.html#arch, 2012.

[5] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer,
A. Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In Proceedings
of the 19th Network and Distributed System Security
Symposium, 2012.

[6] P. P. Chan, L. C. Hui, and S. Yiu. Droidchecker:
Analyzing android applications for capability leak. In
ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2012.

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Proceedings of the 13th Information Security
Conference, 2010.

[8] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and
D. S.Wallach. Quire: Lightweight provenance for
smart phone operating systems. In Proceedings of the
20th USENIX Security Symposium, 2011.

[9] F-Secure. Warning on possible android mobile trojans.
http://www.f-secure.com/weblog/archives/00001852.-
html, 2010.

[10] F-Secure. Mobile threat report q3 2012. http://www.f-
secure.com/static/doc/labs global/Research/Mobile%20
Threat%20Report%20Q3%202012.pdf, 2012.

[11] A. P. Felt, H. Wang, A. Moschuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In Proceedings of the 20th USENIX Security
Symposium, 2011.

[12] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock android
smartphones. In Proceedings of the 19th Network and
Distributed System Security Symposium, 2012.

[13] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: Scalable and accurate zero-day android
malware detection. In Proceedings of the 10th
International Conference on Mobile Systems,
Applications and Services, 2012.

[14] X. Jiang. Security alert: New nickibot spyware found
in alternative android markets.
http://www.csc.ncsu.edu/faculty/jiang/NickiBot/,
2011.

[15] Lookout. Update: Security alert: Droiddream malware
found in official android market. https://blog.mylook-
out.com/2011/03/security-alert-malware-found-in-offi-
cial-android-market-droiddream/, 2011.

[16] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
statically vetting android apps for component
hijacking vulnerabilities. In Proceedings of the 2012
ACM conference on Computer and communications
security, 2012.

[17] D. Maslennikov. First sms trojan for android.
http://www.securelist.com/en/blog/2254/First SMS -
Trojan for Android, 2010.

[18] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In
Proceedings of the 18th Network and Distributed
System Security Symposium, 2011.

[19] V. Svajcer. Deceiving permissions - rules for android
malware detection. In RSA Conference, 2012.

[20] Y. Zhou and X. Jiang. Android malware genome
project. http://www.malgenomeproject.org/, 2012.

[21] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Proceedings of the
33rd IEEE Symposium on Security and Privacy, 2012.

[22] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In
Proceedings of the 19th Network and Distributed
System Security Symposium, 2012.

358

