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Abstract—Mobile devices have become powerful and popular.
Most internet applications are ported to mobile platform. 
Confidential personal information such as credit card and 
passwords are stored in mobile device for convenience. Therefore, 
mobile devices become the attack targets due to financial gain. 
Mobile applications are published in many market platforms 
without verification; hence malicious mobile applications can be 
deployed in such marketplaces.

Two approaches for detecting malware, dynamic and static 
analysis, are commonly used in the literature. Dynamic analysis 
requires is that analyst run suspicious apps in a controlled 
environment to observe the behavior of apps to determine if the 
app is malicious or not. However, Dynamic analysis is time 
consuming, as some mobile application might be triggered after 
certain amount of time or special input sequence. In this paper 
static analysis is adopted to detect mobile malware and sensitive 
information is tracked to check if it is been released or used by 
malicious malware. 

In this paper, we present a mobile malware detection 
approach which is based on data flow of the reversed source code 
of the application. The proposed system tracks the data flow to 
detect and identify malicious behavior of malware in Android 
system. To validate the performance of proposed system, 252
malware form 19 families and 50 free apps from Google Play are 
used. The results proved that our method can successfully 
detecting malicious behaviors of Android APPs with the TPR 
91.6%.

Keywords—Android, Mobile malware, Static analysis, Data 
flow 

I. INTRODUCTION

As Internet-connected mobile device like smartphone or 
tablet have become popular, they have become new target for 
attackers for financial gain. For example, FakeInstaller, a
widespread mobile malware family, sends SMS messages to 
premium rate numbers without the user’s consent [4]. Some 
mobile malware use botnet techniques that not only send SMS 
messages to premium rate numbers, but also include a 
backdoor to receive commands from a remote server. 
FakeInstaller.S a variants of FakeInstaller used “Android Cloud 
to Device Messaging” to register the infected devices in a 

database and send them messages (URLs) from malware 
authors’ Google accounts. [4].  

Among platform of mobile device, Android holds 79.3% of 
the total market share [2] in mobile phones and tablet devices 
in 2013. The great volume of Android devices now becomes 
targets for attacker. According to F-Secure’s report in 3Q 2013, 
there are 252 new Android threat families and new variants of 
existing families are discovered. No malware has been yet to 
be recorded in 2013 on the other platforms (Blackberry, iOS, 
Windows Phone) [3]. F-Secure’s investigation (see figure 1) 
also shows that profit-motivated threats is increasing, which 
typically make monetary profit by sending premium-rate SMS 
messages from infected devices, without the users consent. 
This rise could be attributed to the continued growth in large 
SMS-sending trojan families such as FakeInst, OpFake, 
PremiumSms and SmsSend, whose developers keep churning 
out new variants. [3] 

 Figure 1: Comparison between new threats discovered in Q3 
2013 that are profit-motivated versus non-profit-motivated 

ones [3] 

    In the Android Market, accumulated number of applications 
and games is over 1 million. In December 2013, there are over 
80,000 new android apps were released [1]. A challenge for the 
detection of malware is that the count of apps in market grow 
so fast that a quick scan mechanism is needed.  

There are two ways used to detect malware, they are 
dynamic and static analysis approach. Dynamic analysis first 
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executes malware in a controlled environment (in most case, in 
a virtual machine), then, analysts observe and record malware’s 
behavior for further analysis. However, authors of malware 
now use anti-VM technique to evade detecting. Besides, to 
observe and record malware’s behavior, dynamic analysis 
systems need a lot of resource (Memory space, disk space and 
computational resource). Either in a powerful workstation or in 
a smartphone does not have enough resource to run dynamic 
analysis for the great volume of apps. Rather than executing 
malware, static analysis analyzes malware itself without 
executing it. The advantage of static analysis is that it can scan 
and check malware quickly. Due to this reason, we use static 
analysis approach to detect malware in Android system. 

Security tools need to know which values in a program an 
attacker could potentially control. Using dataflow to determine 
what an attacker can control is used to validate quality of 
software. It requires knowing where information enters the 
program and how it moves through the program. Data flow is 
the key to identifying many input validation and representation 
defects [11]. In this paper, we observe Android malware’s 
behavior and use the concept of data flow of source code to
build attack pattern. The proposed system uses these pattern to 
check if the suspicious apps are malicious or not.

II. RELATED WORK

In this section, prior works about detection of malware of 
mobile apps are reviewed and discussion. 

Kim et al. proposed a power-aware malware detection 
framework to monitor, detect, and analyze energy-greedy 
threats. Kim’s system first collected power samples and builds 
a power consumption history with the collected samples, and 
the latter generates a power signature from the power 
consumption history. The data analyzer then detects an 
anomaly by comparing the generated power signature with 
those in a database [5].  Chekina et al. proposed a system to 
detect abnormal network traffic in mobile device for malware 
detection [6].  Shabtai et al. proposed a system which use 
knowledge-based, temporal abstraction method to detect 
previously unknown malware. In the proposed approach, time-
stamped security data is continuously monitored within the 
target mobile device (i.e., smartphones, PDAs) and then 
processed by the knowledge-based temporal abstraction 
(KBTA) methodology. K-means, logical regression and 
histograms are used as training tools [7]. These researches used 
dynamic analysis approach for malware detection. Dynamic 
analysis does not suitable for mobile device because most 
mobile devices just have limited power capability. If author of 
malware use anti-VM technology, the abnormal could not be 
triggered. In addition, the purpose of attacker is financial gain. 
Malware just cause small traffic and resource (send credit card 
number or premium-rate SMS messages), it is difficult for 
traditional dynamic analysis to detect state-of-art mobile 
malware. Therefore, it seems that static analysis is a better 
approach for mobile malware detection. 

Apvrille1 and Strazzere present a heuristics engine which 
used 39 different flags of different nature such as Java API 
calls, presence of embedded executables, code size, URLs.
Each flag is assigned a different weight, based on statistics we 

computed from the techniques mobile malware authors most 
commonly used in their code. The engine outputs a risk score 
which highlights samples which are the most likely to be 
malicious [8]. However, the proposed system had a bad 
detection rate. Grace et al. proposed a system called 
RiskRanker to spot zero-day Android malware by sifting 
through the large number of untrusted apps in existing Android 
markets. The proposed system used vulnerabilities in the OS 
kernel to detect high-risk apps and used some privilege-related 
API like permission-group. COST_MONEY as features to 
detect mid-risk apps [9]. Wu et al. proposed a system called 
DroidMat, it’s a feature-based mechanism to provide a static 
analyst paradigm for detecting the Android malware. The 
mechanism considers the static information including 
permissions, deployment of components, Intent messages 
passing and API calls for characterizing the Android 
applications behavior [10]. Prior researches used API or other 
feature to classify Android which could just identify if an app 
is malicious or not. These works could not tell you why the app 
is belong to malicious. In this paper, we use concept of 
dataflow to detect Android malware, by means of data flow 
based approach, we could examine the dataflow of Android 
app to check if the app is malicious or not. 

III. PROPOSED APPROACH

To detect malicious mobile apps, the proposed system 
consists of three components. Figure 2 illustrates the process of 
proposed system. The proposed system first use reservse 
engineering technology to generate source code from 
suspicious APK files. Structure mapping compoent then builds 
structure tree of class and dependency of variables in APK file. 
Finally we use concept of data flow to build several threat 
patterns, and use them to detect mobile malware. The details of 
these component will be described in following. 

Figure 2: System Process 
Figure 3 illustrates how reservse engineering works. In the 

first step, all APK files will be unpacked using APKTool. In 
step 2, we use  dex2jar tool to transfer .dex file into .jar file. 
After uncompress .jar file, we could get several .class files. 
After decompiling process, several java source codes will be 
re-built in step 3.   

Figure 3: Reservse Engineering Component 
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The second component is Structure mapping compoent. 
The purpose of this component is to build the relationship for 
each class, attribute, method and variable from suspicious 
source code.  Figure 4 illustrates relationships among nodes 
from a APK file. In figure 4, we could know each APK node 
consists of several class, and one class consists of several class 
methods and attributes. Each method contains at least one 
parameters and varibales. 

Figure 4: Relationships among nodes 

In the proposed system, three type of nodes are defined, 
they are ClassNode, MethodNode and VariableNode.

ClassNode is used describe information of single java class. 
For each ClassNode we store the following information: 

� className: Name of this class.  

� classFilePath: The path of this class in jad file. 

� attributesList: All attributes in this class, every 
elements in this list belong to VariableNode. 

� methodsList: All method in this class, every elements 
in this list belong to MethodNode. 

MethodNode describes information of one method within a 
class. Every MethodNode contains the following 
information. 

� methodName: Name of this method. 

� rawCode: Source code of this method. 

� parametersList: All parameters in this method, every 
elements in this list belong to VariableNode. 

� resultsList: Every variables that may be returned. 

� variablesList: All variables in this method, every 
elements in this list belong to VariableNode 

� parentNode: The parent node of this method. 

VariableNode is the description of single variable, it 
contains: 

� variableName: Name of this variable. 

� type: Data type of this variable.  

� taintTagList: TaintTags which this variable receives. 

� ancestorList and descendantList: Dependence relation 
of this variable. Every elements in this list belong to 
VariableNode. 

� groundApiList: It store API from android framework 
or constant variable.  

� parentNode: Parent node of this variable, it might be a 
MethodNode or ClassNode. 

The first step of structure mapping compoent is Class 
Property Mapping(CPM). Figure 5 shows the process of 
CPM. 

Figure 5:  Process of CPM 

    The task of CPM is to build ClassNode, MethodNode 
and VariableNode from an APK file. The proposed system 
first examines all source codes to build ClassNode. We 
develop a parser to handle inner class and local class. When 
examining source code, if keyword “interface” is found in a 
class, we ignore the file because an interface is a group of 
related methods with empty bodies. After all ClassNode are 
defined, the elements of MethodNode and VariableNode 
could be extracted from ClassNode. 

   The second step of structure mapping component is
Method Variables Mapping(MVM). Figure 6 shows the 
process of MVM. 
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Figure 5:  Process of MVM 

    The purpose of this step is to define VariableNode from 
each MethodNode. The component first check every 
variables in rawCode from MethodNode. The found 
VariableNodes will be added in variablesList of
MethodNode.

    Once all VariableNodes are found, the third step, Node 
Dependence Building(NDB), is used to re-build dependent 
relationships among all ClassNode, MethodNode and 
VariableNode. Figure 6 shows the process of NDB. In this 
step, the proposed system re-scan all fragment in rawCode 
attribute to build dependent relationships.  

Figure 6:  Process of NDB
Up to now, all nodes, and relationships in APK file are 

defined. Data flow is used to track the data flow to detect and 
identify malicious behavior of malware in Android system.
Original usage of data flow thinks that the threat come is 
outside the software. But in malicious mobile apps, the threat 
is inside the software. Figure 7 illustrates the difference 
between original data flow based approach and data flow 
approach in our system. 

Figure 7:  Difference between the proposed system and 
original data flow. 

There are three data flow rules used in the proposed 
system, they are [11]: 

� Source rules: Define program locations where tainted 
data enter the system. 

� Sink rules: Define program locations that should not 
receive tainted data. For example, SQL injection in 
Java, Statement.executeQuery() is a sink. In mobile 
apps, sendTextMessage, is a sink. 

� Pass-through rules define the way a function 
manipulates tainted data. For example, a pass-through 
rule for the java.lang.String method trim() might 
explain “if a String s is tainted, the return value from 
calling s.trim() is similarly tainted. 

 In this paper, we define eight different patterns. We refer to 
Spreitzenbarth [13] and Apvrille’s [8] researches which 
summarize the behavior of malware families. After we 
examine a great number of malicious apps. Eight different 
threat patterns are defined and illustrated in table 1. 

Table 1: Threat Patterns 

Threat type Source Sink
Send premium-rate 
SMS 
messages(String)

String constant sendTextMessage()

sendMultipartTextMes
sage()

Send premium-rate 
SMS 
messages(int)

int constant

toString()

Send premium-rate 
SMS 
messages(URL)

HttpClient.execute()

HttpResponse.getEntity()

toString()

Steal hardware or 
software 
information

TelephonyManager.getDeviceId() HttpClient.execute()

TelephonyManager.getSimSerial
Number() URL.openStream()

TelephonyManager.getDeviceSoft
wareVersion()

URL.openConnection(
)

TelephonyManager.getLine1Num
ber() URL.getContent()

TelephonyManager.getSubscriber
Id()
Build.*

Steal information-
call record getContentResolver()

"CallLog.*"

Steal information-
contact list getContentResolver()

ContactsContract.*

Steal information-
SMS message getContentResolver()
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"content://sms/" or 
"content://mms-sms/"
ContentResolver.query()

Execute external 
program AssetManager.getAssets() Runtime.exec()

AssetManager.open()

FileOutputStream.write()

IV. SYSTEM VALIDATION

To validate the performance of the proposed system, two 
experiments are conducted. In the first experiment, we use the 
same samples with Zhou et al.’s research [12]. There are 252 
samples with 19 families are used in this experiment. Table 2 
illustrates the profile of samples used in this experiment. 

Table 2: Profile of Malicious Samples 

Family Samples
ADRD 22
Asroot 8
BeanBot 8
Bgserv 9
CoinPirate 1
DogWars 1
FakePlayer 6
Geinimi 65
GingerMaster 4
GPSSMSSpy 6
HippoSMS 4
Jifake 1
LoveTrap 1
NickiSpy 3
Pjapps 56
RogueSPPush 9
SndApps 10
YZHC 22
Zsone 12

Due to space limitation, we just describe some popular 
families in this paper. 

� ADRD: It steal information from compromised 
device, encrypt these information and then send 
out to attackers.

� Asroot: The malicious binary files are contained in 
this APK file. After installation, the malicious 
binary files will be executed and the device will be
compromised.

� Geinim: Create a back door on compromised device, 
then send out information to remote server via 
URL.

� Pjapp: It was spread in 3rd party market. Once a 
device is compromised, it will retrieval attack 
command from remote server. Compromised 
device could also send SMS message to specific 

number.

� YZHC: It will steal information form compromised 
device. It could also send premium-rate SMS 
messages. This malicious had ever found in 
Google play.

Table 3 show the detection rate for the sample. In our 
system, we have 91.6 detection rate. The result shows that our 
system could detect mobile malware effectively.

Table 3: Result of experimrnt1
Family Samples Detected 

Samples
Detection 

Rate
ADRD 22 10 45.5%

Asroot 8 7 87.5%

BeanBot 8 8 100%

Bgserv 9 9 100%

CoinPirate 1 1 100%

DogWars 1 1 100%

FakePlayer 6 6 100%

Geinimi 65 65 100%

GingerMas
ter

4 4 100%

GPSSMSS
py

6 6 100%

HippoSMS 4 4 100%

Jifake 1 1 100%

LoveTrap 1 0 0%

NickiSpy 3 2 66%

Pjapps 56 51 91%

RogueSPP
ush

9 8 88%

SndApps 10 10 100%

YZHC 22 22 100%

Zsone 12 12 100%

Overall 252 231 91.6%

V. CONCLUSION AND FUTURE WORK

As mobile device become powerful, most smartphone 
could handle complex task and be capable of Internet 
connection. To install application on Android system, user 
must download apps form google play or 3rd markets. If 
authors of malware spread malicious app on market, a great 
number of mobile device will be compromised. 

In this paper, according to behavior of malware, we 
define eight threat patterns. A malware detection system is 
also developed which uses static analysis approach and 
concept of data flow. The experiment results show that the 
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proposed system could not only detect mobile malware but 
also could identify advertising software with potential risk.   

However, in this paper, the threat patterns are created 
manually. If new type of attack approaches are developed 
which have a different threat pattern, our system will not 
detect them. In the future, an auto threat pattern generation 
should be developed to detect zero day attacks.
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