
Detecting Mobile Application Malicious Behaviors
Based on Data Flow of Source Code

Chia-Mei Chen
Department of Information

Management
National Sun Yat-sen University

Kaohsiung, Taiwan
cchen@mail.nsysu.edu.tw

Je-Ming Lin
Department of Information

Management
National Sun Yat-sen University

Kaohsiung, Taiwan
lin.13k@gmail.com

Gu-Hsin Lai
Department of Information

Management
Chinese Culture University

Taipei, Taiwan
Lgx4@ulive.pccu.edu.tw

Abstract—Mobile devices have become powerful and popular.
Most internet applications are ported to mobile platform.
Confidential personal information such as credit card and
passwords are stored in mobile device for convenience. Therefore,
mobile devices become the attack targets due to financial gain.
Mobile applications are published in many market platforms
without verification; hence malicious mobile applications can be
deployed in such marketplaces.

Two approaches for detecting malware, dynamic and static
analysis, are commonly used in the literature. Dynamic analysis
requires is that analyst run suspicious apps in a controlled
environment to observe the behavior of apps to determine if the
app is malicious or not. However, Dynamic analysis is time
consuming, as some mobile application might be triggered after
certain amount of time or special input sequence. In this paper
static analysis is adopted to detect mobile malware and sensitive
information is tracked to check if it is been released or used by
malicious malware.

In this paper, we present a mobile malware detection
approach which is based on data flow of the reversed source code
of the application. The proposed system tracks the data flow to
detect and identify malicious behavior of malware in Android
system. To validate the performance of proposed system, 252
malware form 19 families and 50 free apps from Google Play are
used. The results proved that our method can successfully
detecting malicious behaviors of Android APPs with the TPR
91.6%.

Keywords—Android, Mobile malware, Static analysis, Data
flow

I. INTRODUCTION

As Internet-connected mobile device like smartphone or
tablet have become popular, they have become new target for
attackers for financial gain. For example, FakeInstaller, a
widespread mobile malware family, sends SMS messages to
premium rate numbers without the user’s consent [4]. Some
mobile malware use botnet techniques that not only send SMS
messages to premium rate numbers, but also include a
backdoor to receive commands from a remote server.
FakeInstaller.S a variants of FakeInstaller used “Android Cloud
to Device Messaging” to register the infected devices in a

database and send them messages (URLs) from malware
authors’ Google accounts. [4].

Among platform of mobile device, Android holds 79.3% of
the total market share [2] in mobile phones and tablet devices
in 2013. The great volume of Android devices now becomes
targets for attacker. According to F-Secure’s report in 3Q 2013,
there are 252 new Android threat families and new variants of
existing families are discovered. No malware has been yet to
be recorded in 2013 on the other platforms (Blackberry, iOS,
Windows Phone) [3]. F-Secure’s investigation (see figure 1)
also shows that profit-motivated threats is increasing, which
typically make monetary profit by sending premium-rate SMS
messages from infected devices, without the users consent.
This rise could be attributed to the continued growth in large
SMS-sending trojan families such as FakeInst, OpFake,
PremiumSms and SmsSend, whose developers keep churning
out new variants. [3]

 Figure 1: Comparison between new threats discovered in Q3
2013 that are profit-motivated versus non-profit-motivated

ones [3]

 In the Android Market, accumulated number of applications
and games is over 1 million. In December 2013, there are over
80,000 new android apps were released [1]. A challenge for the
detection of malware is that the count of apps in market grow
so fast that a quick scan mechanism is needed.

There are two ways used to detect malware, they are
dynamic and static analysis approach. Dynamic analysis first

2014 International Conference on Trustworthy Systems and their Applications

978-1-4799-6566-3/14 $31.00 © 2014 IEEE

DOI 10.1109/TSA.2014.10

1

executes malware in a controlled environment (in most case, in
a virtual machine), then, analysts observe and record malware’s
behavior for further analysis. However, authors of malware
now use anti-VM technique to evade detecting. Besides, to
observe and record malware’s behavior, dynamic analysis
systems need a lot of resource (Memory space, disk space and
computational resource). Either in a powerful workstation or in
a smartphone does not have enough resource to run dynamic
analysis for the great volume of apps. Rather than executing
malware, static analysis analyzes malware itself without
executing it. The advantage of static analysis is that it can scan
and check malware quickly. Due to this reason, we use static
analysis approach to detect malware in Android system.

Security tools need to know which values in a program an
attacker could potentially control. Using dataflow to determine
what an attacker can control is used to validate quality of
software. It requires knowing where information enters the
program and how it moves through the program. Data flow is
the key to identifying many input validation and representation
defects [11]. In this paper, we observe Android malware’s
behavior and use the concept of data flow of source code to
build attack pattern. The proposed system uses these pattern to
check if the suspicious apps are malicious or not.

II. RELATED WORK

In this section, prior works about detection of malware of
mobile apps are reviewed and discussion.

Kim et al. proposed a power-aware malware detection
framework to monitor, detect, and analyze energy-greedy
threats. Kim’s system first collected power samples and builds
a power consumption history with the collected samples, and
the latter generates a power signature from the power
consumption history. The data analyzer then detects an
anomaly by comparing the generated power signature with
those in a database [5]. Chekina et al. proposed a system to
detect abnormal network traffic in mobile device for malware
detection [6]. Shabtai et al. proposed a system which use
knowledge-based, temporal abstraction method to detect
previously unknown malware. In the proposed approach, time-
stamped security data is continuously monitored within the
target mobile device (i.e., smartphones, PDAs) and then
processed by the knowledge-based temporal abstraction
(KBTA) methodology. K-means, logical regression and
histograms are used as training tools [7]. These researches used
dynamic analysis approach for malware detection. Dynamic
analysis does not suitable for mobile device because most
mobile devices just have limited power capability. If author of
malware use anti-VM technology, the abnormal could not be
triggered. In addition, the purpose of attacker is financial gain.
Malware just cause small traffic and resource (send credit card
number or premium-rate SMS messages), it is difficult for
traditional dynamic analysis to detect state-of-art mobile
malware. Therefore, it seems that static analysis is a better
approach for mobile malware detection.

Apvrille1 and Strazzere present a heuristics engine which
used 39 different flags of different nature such as Java API
calls, presence of embedded executables, code size, URLs.
Each flag is assigned a different weight, based on statistics we

computed from the techniques mobile malware authors most
commonly used in their code. The engine outputs a risk score
which highlights samples which are the most likely to be
malicious [8]. However, the proposed system had a bad
detection rate. Grace et al. proposed a system called
RiskRanker to spot zero-day Android malware by sifting
through the large number of untrusted apps in existing Android
markets. The proposed system used vulnerabilities in the OS
kernel to detect high-risk apps and used some privilege-related
API like permission-group. COST_MONEY as features to
detect mid-risk apps [9]. Wu et al. proposed a system called
DroidMat, it’s a feature-based mechanism to provide a static
analyst paradigm for detecting the Android malware. The
mechanism considers the static information including
permissions, deployment of components, Intent messages
passing and API calls for characterizing the Android
applications behavior [10]. Prior researches used API or other
feature to classify Android which could just identify if an app
is malicious or not. These works could not tell you why the app
is belong to malicious. In this paper, we use concept of
dataflow to detect Android malware, by means of data flow
based approach, we could examine the dataflow of Android
app to check if the app is malicious or not.

III. PROPOSED APPROACH

To detect malicious mobile apps, the proposed system
consists of three components. Figure 2 illustrates the process of
proposed system. The proposed system first use reservse
engineering technology to generate source code from
suspicious APK files. Structure mapping compoent then builds
structure tree of class and dependency of variables in APK file.
Finally we use concept of data flow to build several threat
patterns, and use them to detect mobile malware. The details of
these component will be described in following.

Figure 2: System Process
Figure 3 illustrates how reservse engineering works. In the

first step, all APK files will be unpacked using APKTool. In
step 2, we use dex2jar tool to transfer .dex file into .jar file.
After uncompress .jar file, we could get several .class files.
After decompiling process, several java source codes will be
re-built in step 3.

Figure 3: Reservse Engineering Component

2

The second component is Structure mapping compoent.
The purpose of this component is to build the relationship for
each class, attribute, method and variable from suspicious
source code. Figure 4 illustrates relationships among nodes
from a APK file. In figure 4, we could know each APK node
consists of several class, and one class consists of several class
methods and attributes. Each method contains at least one
parameters and varibales.

Figure 4: Relationships among nodes

In the proposed system, three type of nodes are defined,
they are ClassNode, MethodNode and VariableNode.

ClassNode is used describe information of single java class.
For each ClassNode we store the following information:

� className: Name of this class.

� classFilePath: The path of this class in jad file.

� attributesList: All attributes in this class, every
elements in this list belong to VariableNode.

� methodsList: All method in this class, every elements
in this list belong to MethodNode.

MethodNode describes information of one method within a
class. Every MethodNode contains the following
information.

� methodName: Name of this method.

� rawCode: Source code of this method.

� parametersList: All parameters in this method, every
elements in this list belong to VariableNode.

� resultsList: Every variables that may be returned.

� variablesList: All variables in this method, every
elements in this list belong to VariableNode

� parentNode: The parent node of this method.

VariableNode is the description of single variable, it
contains:

� variableName: Name of this variable.

� type: Data type of this variable.

� taintTagList: TaintTags which this variable receives.

� ancestorList and descendantList: Dependence relation
of this variable. Every elements in this list belong to
VariableNode.

� groundApiList: It store API from android framework
or constant variable.

� parentNode: Parent node of this variable, it might be a
MethodNode or ClassNode.

The first step of structure mapping compoent is Class
Property Mapping(CPM). Figure 5 shows the process of
CPM.

Figure 5: Process of CPM

 The task of CPM is to build ClassNode, MethodNode
and VariableNode from an APK file. The proposed system
first examines all source codes to build ClassNode. We
develop a parser to handle inner class and local class. When
examining source code, if keyword “interface” is found in a
class, we ignore the file because an interface is a group of
related methods with empty bodies. After all ClassNode are
defined, the elements of MethodNode and VariableNode
could be extracted from ClassNode.

 The second step of structure mapping component is
Method Variables Mapping(MVM). Figure 6 shows the
process of MVM.

3

Figure 5: Process of MVM

 The purpose of this step is to define VariableNode from
each MethodNode. The component first check every
variables in rawCode from MethodNode. The found
VariableNodes will be added in variablesList of
MethodNode.

 Once all VariableNodes are found, the third step, Node
Dependence Building(NDB), is used to re-build dependent
relationships among all ClassNode, MethodNode and
VariableNode. Figure 6 shows the process of NDB. In this
step, the proposed system re-scan all fragment in rawCode
attribute to build dependent relationships.

Figure 6: Process of NDB
Up to now, all nodes, and relationships in APK file are

defined. Data flow is used to track the data flow to detect and
identify malicious behavior of malware in Android system.
Original usage of data flow thinks that the threat come is
outside the software. But in malicious mobile apps, the threat
is inside the software. Figure 7 illustrates the difference
between original data flow based approach and data flow
approach in our system.

Figure 7: Difference between the proposed system and
original data flow.

There are three data flow rules used in the proposed
system, they are [11]:

� Source rules: Define program locations where tainted
data enter the system.

� Sink rules: Define program locations that should not
receive tainted data. For example, SQL injection in
Java, Statement.executeQuery() is a sink. In mobile
apps, sendTextMessage, is a sink.

� Pass-through rules define the way a function
manipulates tainted data. For example, a pass-through
rule for the java.lang.String method trim() might
explain “if a String s is tainted, the return value from
calling s.trim() is similarly tainted.

 In this paper, we define eight different patterns. We refer to
Spreitzenbarth [13] and Apvrille’s [8] researches which
summarize the behavior of malware families. After we
examine a great number of malicious apps. Eight different
threat patterns are defined and illustrated in table 1.

Table 1: Threat Patterns

Threat type Source Sink
Send premium-rate
SMS
messages(String)

String constant sendTextMessage()

sendMultipartTextMes
sage()

Send premium-rate
SMS
messages(int)

int constant

toString()

Send premium-rate
SMS
messages(URL)

HttpClient.execute()

HttpResponse.getEntity()

toString()

Steal hardware or
software
information

TelephonyManager.getDeviceId() HttpClient.execute()

TelephonyManager.getSimSerial
Number() URL.openStream()

TelephonyManager.getDeviceSoft
wareVersion()

URL.openConnection(
)

TelephonyManager.getLine1Num
ber() URL.getContent()

TelephonyManager.getSubscriber
Id()
Build.*

Steal information-
call record getContentResolver()

"CallLog.*"

Steal information-
contact list getContentResolver()

ContactsContract.*

Steal information-
SMS message getContentResolver()

4

"content://sms/" or
"content://mms-sms/"
ContentResolver.query()

Execute external
program AssetManager.getAssets() Runtime.exec()

AssetManager.open()

FileOutputStream.write()

IV. SYSTEM VALIDATION

To validate the performance of the proposed system, two
experiments are conducted. In the first experiment, we use the
same samples with Zhou et al.’s research [12]. There are 252
samples with 19 families are used in this experiment. Table 2
illustrates the profile of samples used in this experiment.

Table 2: Profile of Malicious Samples

Family Samples
ADRD 22
Asroot 8
BeanBot 8
Bgserv 9
CoinPirate 1
DogWars 1
FakePlayer 6
Geinimi 65
GingerMaster 4
GPSSMSSpy 6
HippoSMS 4
Jifake 1
LoveTrap 1
NickiSpy 3
Pjapps 56
RogueSPPush 9
SndApps 10
YZHC 22
Zsone 12

Due to space limitation, we just describe some popular
families in this paper.

� ADRD: It steal information from compromised
device, encrypt these information and then send
out to attackers.

� Asroot: The malicious binary files are contained in
this APK file. After installation, the malicious
binary files will be executed and the device will be
compromised.

� Geinim: Create a back door on compromised device,
then send out information to remote server via
URL.

� Pjapp: It was spread in 3rd party market. Once a
device is compromised, it will retrieval attack
command from remote server. Compromised
device could also send SMS message to specific

number.

� YZHC: It will steal information form compromised
device. It could also send premium-rate SMS
messages. This malicious had ever found in
Google play.

Table 3 show the detection rate for the sample. In our
system, we have 91.6 detection rate. The result shows that our
system could detect mobile malware effectively.

Table 3: Result of experimrnt1
Family Samples Detected

Samples
Detection

Rate
ADRD 22 10 45.5%

Asroot 8 7 87.5%

BeanBot 8 8 100%

Bgserv 9 9 100%

CoinPirate 1 1 100%

DogWars 1 1 100%

FakePlayer 6 6 100%

Geinimi 65 65 100%

GingerMas
ter

4 4 100%

GPSSMSS
py

6 6 100%

HippoSMS 4 4 100%

Jifake 1 1 100%

LoveTrap 1 0 0%

NickiSpy 3 2 66%

Pjapps 56 51 91%

RogueSPP
ush

9 8 88%

SndApps 10 10 100%

YZHC 22 22 100%

Zsone 12 12 100%

Overall 252 231 91.6%

V. CONCLUSION AND FUTURE WORK

As mobile device become powerful, most smartphone
could handle complex task and be capable of Internet
connection. To install application on Android system, user
must download apps form google play or 3rd markets. If
authors of malware spread malicious app on market, a great
number of mobile device will be compromised.

In this paper, according to behavior of malware, we
define eight threat patterns. A malware detection system is
also developed which uses static analysis approach and
concept of data flow. The experiment results show that the

5

proposed system could not only detect mobile malware but
also could identify advertising software with potential risk.

However, in this paper, the threat patterns are created
manually. If new type of attack approaches are developed
which have a different threat pattern, our system will not
detect them. In the future, an auto threat pattern generation
should be developed to detect zero day attacks.

REFERENCES

[1] Appbrain, 2013, Number of Android applications,
http://www.appbrain.com/stats/number-of-android-apps

[2] IDC, 2013, Apple Cedes Market Share in Smartphone Operating System
Market as Android Surges and Windows Phone Gains, According to
IDC, http://www.idc.com/getdoc.jsp?containerId=prUS24257413

[3] F-Secure, 2013, Mobile Threat Report, http://www.f-
secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_
2013.pdf

[4] McAfee Lab , 2012, FakeInstaller’ Leads the Attack on Android Phones,
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-
android-phones

[5] H. Kim, J. Smith, K. G. Shin, “Detecting Energy-Greedy Anomalies and
Mobile Malware Variants” in Proceedings of the 6th international
conference on Mobile systems, 2008, pp.239-252

[6] L. Chekina, D. Mimran, L. Rokach, Y. Elovici, B. Shapira, “Detection
of Deviations in Mobile Applications Network Behavior”, CoRR
abs/1208.0564, 2012

[7] A. Shabtai, U. Kanonov, Y. Elovici, “Intrusion detection for mobile
devices using the knowledge-based, temporal abstraction method”,
Journal of Systems and Software, Vol. 83, No. 8, 2010, pp. 1524-1537

[8] A. Apvrille, T. Strazzere, “Reducing the window of opportunity for
Android malware Gotta catch 'em all”, Journal in Computer Virology,
Vol.8, No. 1-2, 2012, pp.61-71

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, “RiskRanker: scalable
and accurate zero-day android malware detection”, The 10th
international conference on Mobile systems, applications, and services,
2012, pp.281-294

[10] D.J. Wu, C.H. Mao, T.E Wei, H.M. Lee, K.P. Wu, “DroidMat: Android
Malware Detection through Manifest and API Calls Tracing”, in
Proceedings of 7th Asia Joint Conference on Information Security, 2012.
Pp.62-69

[11] B. Chess, J. West, Secure Programming with Static Analysis, 1st ed.,
Addison-Wesley Professional (June 29, 2007)

[12] Y. Zhou, X. Jiang, “Dissecting Android Malware: Characterization and
Evolution”, in Proceedings of 33rd IEEE Symposium on Security and
Privacy, 2012, pp.95-109

[13] M. Spreitzenbarth, “forensic blog, mobile phone forensics and mobile
malware”.

[14] http://forensics.spreitzenbarth.de/android-malware/

.

6

