
Information Processing Letters 114 (2014) 620–627
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A type and effect system for activation flow of components

in Android programs

Kwanghoon Choi a,1, Byeong-Mo Chang b,∗,2

a Yonsei University, Wonju, Republic of Korea
b Sookmyung Women’s University, Seoul, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 August 2013
Received in revised form 23 March 2014
Accepted 22 May 2014
Available online 27 May 2014
Communicated by M. Yamashita

Keywords:
Android
Java
Program analysis
Control flow
Formal semantics

This paper proposes a type and effect system for analyzing activation flow between
components through intents in Android programs. The activation flow information is
necessary for all Android analyses such as a secure information flow analysis for Android
programs. We first design a formal semantics for a core of featherweight Android/Java,
which can address interaction between components through intents. Based on the formal
semantics, we design a type and effect system for analyzing activation flow between
components and demonstrate the soundness of the system.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Android is Google’s new open-source platform for mo-
bile devices, and Android SDK (Software Development Kit)
provides the tools and APIs (Application Programming In-
terfaces) necessary to develop applications for the platform
in Java [1]. An Android application consists of components
such as activities, services, broadcast receivers and content
providers. In Android applications, components are acti-
vated through intents. An intent is an abstract description
of a target component and an action to be performed. Its
most significant use is in the activation of other activi-
ties. It can also be used to send system information to any

* Corresponding author.
E-mail addresses: kwanghoon.choi@yonsei.ac.kr (K. Choi),

chang@sookmyung.ac.kr (B.-M. Chang).
1 This research was supported by Basic Science Research Program

through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (NRF 2011-0009225).

2 This research was supported by the Sookmyung Women’s University
(Research Grants 1-1403-0212).
http://dx.doi.org/10.1016/j.ipl.2014.05.011
0020-0190/© 2014 Elsevier B.V. All rights reserved.
interested broadcast receiver components and to commu-
nicate with a background service.

Many static analyses of Android programs [2–5] have
adopted the existing Java analyses unaware of Android-
specific features like components or intents, which are,
however, essential for correctness of the Android program
analyses. Such Android features make implicit the flow of
execution, hiding it under Android platform. Therefore, the
plain Java analyses cannot figure out all sound properties
from Java programs running on Android platform. To ad-
dress this problem, some Android analysis [5] attempted
to introduce “wrapper”s modeling the Android features.
However, one has never formalized the soundness of the
existing Java analyses with such an Android extension.

The main contribution is to introduce a new feather-
weight Android/Java semantics, an analysis system for ac-
tivation flow between components through intents, and its
soundness proof with respect to the semantics. This activa-
tion flow analysis is important because the flow informa-
tion is necessary for all Android analyses such as a secure
information flow analysis. This formalization can be a basis
for proving the soundness of the existing Android analyses.

http://dx.doi.org/10.1016/j.ipl.2014.05.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:kwanghoon.choi@yonsei.ac.kr
mailto:chang@sookmyung.ac.kr
http://dx.doi.org/10.1016/j.ipl.2014.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.05.011&domain=pdf

K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627 621
We present our activation flow analysis as a type and
effect system [6], and the key idea is to regard as an ef-
fect each occurrence of component activation through an
intent. We first design a formal semantics for a core of
featherweight Android/Java, which can address interaction
between components through intents (Section 3). We de-
sign a type and effect system for analyzing activation flow
between components (Section 4). Our system extends a
Java type-based points-to analysis [7] with Android fea-
tures, which demands us to introduce a simple string anal-
ysis [8] and the notion of effects [6]. The system records
in the effects the name of Android components to activate,
which the string analysis extracts from intents. We demon-
strate the soundness of the system based on the formal
semantics (Section 5). We discuss related work and sketch
an implementation of our system (Section 6).

2. Overview of Android/Java

An Android program is a Java program with APIs in
Android platform. Using the APIs, one can build mobile de-
vice user interfaces to make a phone call, play a game,
and so on. An Android program consists of components
whose types are Activity, Service, Broadcast Receiver, or
Content Provider. Activity is a foreground process equipped
with windows such as buttons and text areas. Service is
responsible for background jobs, and so it has no user in-
terface. Broadcast Receiver reacts to system-wide events
such as notifying low power battery or SMS arrival. Con-
tent Provider is an abstraction of various kinds of storage
including database management systems.

Components interact with each other by sending events
called Intent in Android platform to form an application.
The intent holds information about a target component to
which it will be delivered, and it may hold data together.
For example, a user interface screen provided by an activ-
ity changes to another by sending an intent to the Android
platform, which will destroy the current UI screen and will
launch a new screen displayed by a target activity specified
in the intent.

The following table lists component types and some of
the methods for activating components of each type [1].

Component type Method for launching

Activity startActivity(Intent)
Service startService(Intent)
Broadcast Receiver sendBroadcast(Intent)

Note that each occurrence of the above methods in an
Android program is evidence for an interaction between a
caller component and a callee component to be specified
as a target in the intent parameter.

This paper focuses more on Activity than the other
types because Activity is the most frequently used compo-
nent type in Android programs. The proposed methodology
in this paper will be equally applicable to the other types
of components.

This paper uses an Android-based game program shown
in Figs. 1 and 5 using the APIs shown in Fig. 2, whose
details will be explained later.
class Score extends A c t i v i t y {
void onCreate () {

this . addButton (1) ;
/ / d i s p l a y the score screen

}
void onClick (int button) {

L1 : Intent i = new Intent () ;
L2 : i . setTarget ("Main") ;
L3 : this . s t a r t A c t i v i t y (i) ;

}
}

Fig. 1. Score class in a game program.

Let us examine a Java class of the Android program in
Fig. 1.

• Activity is a class that represents a screen in the An-
droid platform, and Score extending Activity is also a
class representing a screen.

• Once the Android platform creates a Score object, it
invokes the onCreate method to add a button whose
integer identifier is 1.

• Now a user can press the button 1, and then the
onClick method is invoked to perform some action for
the button.

• Intent is a class that represents an event to launch a
new screen. It specifies the name of an activity class
that represents the new screen.

• The onClick method sets “Main” as a target activity in
the new intent object and requests launching by in-
voking startActivity.

• Android accepts the request and changes the current
UI screen from Score to Main, which we call an activa-
tion flow of components.

The purpose of our type and effect system is to collect
from an Android program all activation flows such as the
above one from Score to Main by regarding Main as the ef-
fect of Score. The system needs to employ a form of string
analysis [8] to infer classes (Main) from strings (“Main”)
stored in intents.

3. A semantic model for the Android platform

The syntax of a featherweight Android/Java is defined
by extending the featherweight Java [9].

N ::= class C extends C {C̄ f̄ ; M̄}
M ::= C m(C̄ x̄) { e }
e ::= x | x. f | new C() | x. f = x | (C)x | x.m(x̄)

| if e then e else e | Cx = e; e | prim(x̄)

A list of class declarations N̄ denotes an Android pro-
gram. A block expression C x = e; e′ declares a local bind-
ing of a variable x to the value of e for later uses in e′ . It
is also used for sequencing e; e′ by assuming omission of
a dummy variable C x. The conditional expression may be
written as ite e e e for brevity. We write a string object as a
“string literal.” Also, x.m(“...”) means String s = “...”; x.m(s)
in shorthand. A recursive method offers a form of loops.

622 K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627
class A c t i v i t y {
Intent intent ;
Intent get Intent () { this . intent ; }
void onCreate () { }
void onClick (int button) { }
void addButton (int button)

{ primAddButton (button) ; }
void s t a r t A c t i v i t y (Intent i)

{ pr imStartAct iv i ty (i) ; }
}
class Intent {

Str ing target ;
Object data ;
Str ing action ;
/ / The s e t t e r and g e t t e r methods
/ / f o r the above f i e l d s

}

Fig. 2. Android classes: activity and intent.

The primitive functions prim(x̄) are interfaces between an
Android program and the Android platform, which will be
explained later.

Using the syntax defined above, we can define a small
set of Android class libraries in Fig. 2 to model component-
level activation flow in Android programs. In Activity, the
member field (intent) will hold an intent object who acti-
vates this activity object. In Intent, the target field will be
a target component to be activated, the data field will be
an extra argument to the target component, and the action
field will describe a service that any activity activated by
this intent will provide. For notation, {void} is a block in-
tending to return nothing, denoted by void, and it may be
written simply as { }.

We write an object of class C as C{ f̄ = l̄} with the
fields f̄ and their values l̄. For example, Intent{target = l,
data = l′,action = l′′} denotes an intent object. l is a String
reference for the name of a target component, l′ is another
object as an argument, and l′′ is another String reference
for an action description. Following the convention, an ob-
ject may be denoted by its reference.

As a formal model of Android programs, we define an
operational semantics for the featherweight Android/Java.
A quadruple (l̄, w, q, h) of an activity stack l̄, a set w of
button windows, an intent reference q, and an object heap
h forms the configuration of a screen in an Android pro-
gram. l̄, w, q, h �⇒ l̄′, w ′, q′, h′ denotes an activation flow
between the two top activity components l1 and l′1, which
is activated by the intent q. l̄ and l̄′ may be the same. �⇒∗
denotes zero or more steps.

A stack of activities [1] is a list l̄ in the first element of
each quadruple:

(l1 · · · ln, w, q, h)

Each new activity reference piles up on the stack in the
order of activation. Only the top activity l1 is visible to a
user and the next activity l2 becomes visible when the top
activity is removed.

Inside each activity component, the evaluation of an
expression e under an environment E (mapping variables
into references) results in a value, which is an object ref-
erence l in the final heap, and this is denoted by the form
E � e, w, q, h −→ l, w ′, q′, h′.
(run)

∅ � e,∅,∅,∅ −→ l, w,q,h
e = (C x = new C(); x.onCreate(); x)

run C �⇒ l, w,q,h

(launch)

C = target(q,h)

e = (C x = new C();
x.intent = intent; x.onCreate(); x)

{intent �→ q} � e,∅,∅,h −→ l′, w ′,q′,h′

l̄, w,q,h �⇒ l′ · l̄, w ′,q′,h′

(button)

i ∈ w, e = x.onClick(b)

{x �→ l,b �→ i} � e, w,q,h −→ void, w ′,q′,h′

l · l̄, w,q,h �⇒ l · l̄, w ′,q′,h′

(back-1)

e = x.onCreate()
{x �→ l2} � e,∅,∅,h −→ void, w ′,q′,h′

l1 · l2 · l̄, w,q,h �⇒ l2 · l̄, w ′,q′,h′
(back-2) l1 · ∅, w, q, h �⇒ ∅, ∅, ∅, h

Fig. 3. Semantic rules for the Android platform.

A set w of button windows is merely a set of integer
identifiers for buttons appearing on the screen being dis-
played. This is the minimal machinery to allow users to
interact with Android programs. We write an intent refer-
ence in a quadruple as q to denote either ∅ or a reference
where ∅ means no intent reference is set yet. A heap h is
a mapping of references into objects.

Android platform allows each intent to specify a tar-
get activity either explicitly by giving a target class name
or implicitly by suggesting only actions. The former is
called explicit intents, useful for the intra-application com-
ponents, and the latter is called implicit intents, useful for
the inter-application components [1]. Our Android seman-
tics models both of explicit and implicit intents.

To pick a target activity class from an explicit/implicit
intent reference, we define a function target(l, h) as: Sup-
pose h(l) = Intent{target = lt , action = la, ...}, and then the
function returns

• Class(h(lt)) if lt
= null
• IntentFilter(h(la)) if lt = null and la
= null

where Class(“C”) = C such that C is an activity class,
and where IntentFilter(“actioni”) = Ci , a mapping table of
actions (strings describing services) onto activity classes
that are capable of supporting the services. When the
target(l, h) fails to find any activity class, it is defined to
return activity-not-found error.

Every Android program accompanies a manifesto file
declaring various kinds of properties of the classes includ-
ing such intent filters. In this paper, such a manifesto file is
assumed to exist in a simplified form as IntentFilter func-
tion for our purpose.

In Fig. 3, our Android platform is modeled in the form
of non-deterministic semantic rules. (run) starts an An-
droid program by creating an activity object of the main
class C to return x to be bound to l after invoking the
onCreate method. (launch) makes an activation flow from
the top activity of l̄ to a new one l′ through the intent
by q. The rule begins when q is an intent reference(q
= ∅).
The rule takes the intent reference whose target is a new
activity of class C and sets q to the intent field of the ac-
tivity. Subsequently, the rule invokes the onCreate method
for initialization and returns the activity reference. (button)
invokes the onClick method of the current activity when

K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627 623
(var) E � x, w, q, h −→ E(x), w, q, h

(field)
E(x) = lx h(lx) = C{ f̄ = l̄}

E � x. f i , w,q,h −→ li , w,q,h

(assign)

E(x) = lx , h(lx) = C{ f̄ = l̄}, E(y) = l y

h′ = h{lx �→ C{ f̄ = l̄1,i−1l y l̄i+1,n}}
E � x. f i = y, w,q,h −→ void, w,q,h′

(new)

fields(C) = D̄ f̄ , l fresh
h′ = h{l �→ C{ f̄ = ¯null}}

E � new C(), w,q,h −→ l, w,q,h′

(cast)
E(x) = l, h(l) = D{ f̄ = l̄}, D <: C

E � (C)x, w,q,h −→ l, w,q,h

(if)

E � e0, w,q,h −→ b0, w0,q0,h0

if b0 then i = 1 else i = 2.
E � ei , w0,q0,h0 −→ l′, w ′,q′,h′

E � ite e0 e1 e2, w,q,h −→ l′, w ′,q′,h′

(block)

E � e0, w,q,h −→ l0, w0,q0,h0

E{x �→ l0} � e, w0,q0,h0 −→ l, w ′,q′,h′

E � C x = e0; e, w,q,h −→ l, w ′,q′,h′

(invoke)

E(x) = l, h(l) = C{ f̄ = l̄′}, ¯E(yi) = l̄i

mbody(m, C) = B̄ z̄.e
E0 = {this �→ l, z̄ �→ l̄i}

E0 � e, w,q,h −→ l′, w ′,q′,h′

E � x.m(ȳ), w,q,h −→ l′, w ′,q′,h′

(prim-1)
prim is primStart Activity

E � prim(x), w,q,h −→ void, w,E(x),h

(prim-2)
prim is primAddButton w ′ = w ∪ {E(x)}
E � prim(x), w,q,h −→ void, w ′,q,h

Fig. 4. Semantic rules for expressions.

a button i of a window set w is pressed. The invocation
returns nothing, denoted by void. (back-1) and (back-2)
simulate the behavior when a user presses the Back but-
ton to remove the top activity l1 to resume the next top
activity l2 by calling the onCreate method.

Although the semantics considers only the onCreate
method of Activity class for simplicity, it can be easily ex-
tended to support the whole life cycle of Activity [1]. For
example, in (launch), the onStop method of the top activ-
ity (l1) may be called before it is hidden by a new one (l′).
In (back-1) and (back-2), the onDestroy method of the top
activity l1 may be called before it is removed from the ac-
tivity stack. Also, instead of calling the onCreate method in
(back-1), we may call the onResume method of the activity
l2 to prepare the reappearance of the hidden activity (l2).

The semantic rules for evaluating expressions are de-
fined as in Fig. 4, which is mostly standard [9,7]. The main
difference is an introduction of a window set and an intent
reference to the semantic rules as our Android runtime
system. The standard Java constructs such as variable, field,
and method invocation do not access nor change them.
primStartActivity(x), which we introduce, replaces the cur-
rent intent reference q with a new intent reference bound
to x. Also, primAddButton(x) adds a new button whose
identifier is bound to x.

Due to the lack of space, we omit the semantic rules for
handling null pointer reference, casting errors, and other
errors such as the absence of methods or fields and type
errors in Figs. 3 and 4.

The semantic rules use some auxiliary functions de-
fined in [9]. mbody(m, C) returns the body expression of
the method of the class, and fields(C) gathers all fields
belonging to the class, if necessary, following up the in-
heritance tree.

The proposed semantics is capable of making run an
Android game program in Figs. 1 and 5. The program con-
sists of four activities: Main, Game, Help, and Score. The
entry activity Main offers a user three buttons each for ac-
tivating Game, Score, and Help. During playing a game, a
user can check out game instruction through Help activity.
After the game is finished, the score is displayed by Score
activity and then the user moves to Main activity. Note that
Help can be activated by both Main and Game. In either
case, Help goes back to its caller activity properly because
both caller activities set their name to the argument of an
intent to activate Help with. Note that using activity stack
allows to omit setting one’s own name for coming back.

4. A type and effect system

This section proposes a type and effect system to ana-
lyze activation flow between components through intents.
Our system is a type-based points-to analysis system [7,10]
extended with a simple string analysis [8] and effects [6].

Our system abstracts objects by an annotated type S ,
which has the form of C{R}, where C is a class or primitive
type and R is a set of program points. We are particularly
interested in program points for an object creation expres-
sion in a program. The type C{R} represents objects of C ,
which are created at one of program points in R .

For example, in Line 22 of Fig. 5, the intent variable j
has (annotated) type Intent{r10, r14}. This is because the
reference in j points to either an intent object created in
Line 10 (denoted by a program point r10) or one in Line 14
(denoted by another r14). For convenience, this paper uses
mostly line numbers for program points.

Each effect represents a set of components, which can
be activated through intents in Android programs. The ef-
fect ϕ is defined by

ϕ ::= {C} | ϕ1 ∪ ϕ2 | ∅
where C denotes a component name, which is actually a
class name. So ϕ will be a set of component (class) names.

Using effects, a method type is defined to be the form
of S̄

ϕ−→ T , denoting that calling a method of the type may
make effect ϕ .

In our type and effect system, typing judgments for ex-
pressions have the form of

Γ � e : C{R},ϕ
where, under the typing environment Γ (mapping vari-
ables to annotated types), an expression e evaluates to an
object of C , which is created at a program point in R , and
during computation, side effects (activation of other com-
ponents) expressed by ϕ might occur.

Our typing rules for expressions in Fig. 6 depend
on field and method typings F and M . A field typing
F (C, r, f) assigns a type to each field f of class C in
objects created at a program point r. A method typing
M(C, r, m) associates a method type of form S̄

ϕ−→ T with
each method m of class C in objects created at a program
point r. We will discuss how to get field and method typ-
ings later.

624 K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627
class Main extends A c t i v i t y {
void onCreate () {

this . addButton (1) ; / / f o r Game
this . addButton (2) ; / / f o r Score
this . addButton (3) ; / / f o r Help
/ / i n i t i a l i z e the main screen

}
void onClick (int button) {

i f (button == 1) {
L4 : Intent i = new Intent () ;
L5 : i . setTarget ("Game") ;
L6 this . s t a r t A c t i v i t y (i) ;

} else i f (button == 2) {
L7 : Intent i = new Intent () ;
L8 : i . setTarget ("Score") ;
L9 : this . s t a r t A c t i v i t y (i) ;

} else i f (button == 3) {
L10 : Intent i = new Intent () ;
L11 : i . setTarget ("Help") ;
L12 : i . setArg ("Main") ;
L13 : this . s t a r t A c t i v i t y (i) ;

} else {
/ / do nothing

}
}

}
class Game extends A c t i v i t y {

void onCreate () {
this . addButton (1) ; / / f o r Help
this . addButton (2) ; / / f o r Score
this . addButton (3) ; / / f o r p lay ing
/ / d i s p l a y the game screen

}

void onClick (int button) {
i f (button == 1) {

L14 : Intent i = new Intent () ;
L15 : i . setTarget ("Help") ;
L16 : i . setArg ("Game") ;
L17 : this . s t a r t A c t i v i t y (i) ;

} else i f (button == 2) {
L18 : Intent i = new Intent () ;
L19 : i . setTarget ("Score") ;
L20 : this . s t a r t A c t i v i t y (i) ;

} else i f (button == 3) {
/ / play the game

} else {
/ / do nothing

}
}

}
class Help extends A c t i v i t y {

void onCreate () {
this . addButton (1) ; / / f o r Back
/ / d i s p l a y the help screen

}
void onClick (int button) {

L21 : Intent i = new Intent () ;
/ / S t r i n g s= (S t r i n g)
/ / t h i s . g e t I n t e n t () . getArg () ;

L22 : Intent j = this . get Intent () ;
L23 : Object o = j . getArg () ;
L24 : Str ing s = (Str ing) o ;
L25 : i . setTarget (s) ;
L26 : this . s t a r t A c t i v i t y (i) ;

}
}

Fig. 5. A game program.
For example, the field intent of class Help in objects
created at rhelp gets a field typing as

• F (Help, rhelp, intent) = Intent{r10, r14}

by the reason explained previously. Note that rc is a pro-
gram point of an object creation expression “new C()” in
(launch). For example, rhelp is a program point of the ex-
pression in (launch) creating a Help activity (by replacing
C with Help).

For example, the onClick method of Score in objects cre-
ated at rscore gets a method typing:

• M(Score, rscore, onClick) = int{rbutton} {Main}−−−−→ void{}

where rbutton is another program point to identify integers
i created at (button). In Line 2, the setTarget method sets
“Main” to the target component name of an intent i (cre-
ated at Line 1) to activate Main in Line 3, so the effect of
the onClick method is {Main} obviously.

However, target component names set by the setTarget
method are not always obvious. In Line 25 (the onClick
method of Help), the target component name is given by a
variable s. The target component names will become obvi-
ous only after some string analysis is employed to uncover
strings to which s will evaluate.

Our system with annotated types includes a simple
form of string analysis by having a string table Ω(r), map-
ping each program point r onto either a set of string lit-
erals or � (denoting a set of all string literals). Every ex-
pression of type String{R} will evaluate to some string in
the union of sets of strings Ω(r) for all r ∈ R . For example,
Ω(r12) = {“Main”} and Ω(r16) = {“Game”} since the two
strings occur at Line 12 and 16, respectively. The type of
the variable s in Line 25 turns out to be String{r12, r16},
and so s will evaluate to a string in {“Main”, “Game”}.

The string analysis in our system explained until now
can be regarded as [7]. In addition, our system extends
it to deal with Android activation flow with new typing
rules using the notion of effect. Without the new rules,
the string analysis will lose some data flow among activi-
ties in Android programs and so will be unsound, as will
be explained later.

Now we present a set of typing rules in Fig. 6. The
system needs subtyping relations defined in the stan-
dard way. C <: D if C is the same as D or its de-
scendant class; C{R1} <: D{R2} if C <: D and R1 ⊆ R2;
S̄ i

ϕ1−−→ S <: T̄ i
ϕ2−−→ T if Ti <: Si for all i, S <: T , and

ϕ1 ⊆ ϕ2. For convenience, the notation F (C, R, f) <: S
means that F (C, r, f) <: S for all r ∈ R . The reverse di-
rection of the notation and M(C, R, m) <: S̄ i

ϕ−→ T can be
defined similarly.

(T-var) looks up the type of a variable from the typing
environment. (T-field) directs the flow of objects stored in
the field to the reader by x. f by the subtyping relation.
(T-assign) specifies the flow of objects from the right-hand

K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627 625
(T-var) Γ {x : S} � x : S, ∅
(T-field)

F (C, R, f) <: S

Γ {x : C{R}} � x. f : S,∅
(T-assign)

S <: F (C, R, f)

Γ {x : C{R}, y : S} � x. f = y : void{},∅
(T-new) Γ � new C() : C{r}, ∅ for unique r
(T-cast)

C1 <: C2 or C2 <: C1

Γ {x : C1{R}} � (C2)x : C2{R},∅

(T-if)

Γ � e0 : boolean{R},ϕ0

Γ � ei : S,ϕi (i = 1,2)

Γ � ite e0 e1 e2 : S,ϕ0 ∪ ϕ1 ∪ ϕ2

(T-block)

Γ � e1 : C{R},ϕ1

Γ {x : C{R}} � e2 : S,ϕ2

Γ � C x = e1; e2 : S,ϕ1 ∪ ϕ2

(T-invoke)
M(C, R,m) <: S̄ i

ϕ−→ T

Γ {x : C{R}, yi : Si} � x.m(ȳ) : T ,ϕ

(T-sub)
Γ � e : S,ϕ1 S <: T ϕ1 ⊆ ϕ2

Γ � e : T ,ϕ2

(T-string)
“s” ∈ Ω(r) for unique r

Γ � “s” : String{r},∅

(T-prim-1)

(x : S) ∈ Γ effect(S) = ϕ
S <: F (C, rc, intent) for all C ∈ ϕ

Γ � primStart Activity(x) : void{},ϕ
(T-prim-2)

(x : int{R}) ∈ Γ

Γ � primAddButton(x) : void{},∅

Fig. 6. A type and effect system.

side y to the field x. f . (T-new) abstracts all objects gen-
erated in each new C() expression with a program point r
by an annotated type C{r}. In (T-var), (T-field), (T-assign),
(T-new), and (T-cast), each expression has no effect. (T-if)
merges data flows of the branches by assigning the same
type to them. In (T-if) and (T-block), the effect of each
expression is the union of all the effects from its sub-
expressions. (T-invoke) defines the type of each method
m is more specific than the method type formed with ac-
tual argument and return types in the caller. The effect of
each invocation expression results from that of the called
method. (T-sub) allows the same expression to have a less
precise type and effect.

(T-string) collects all occurrences of string literals and
their program points in the string table.

The typing rules from (T-var) to (T-string) are ones in
[7] extended with effects in this paper. (T-prim-1) and
(T-prim-2) are new.

(T-prim-1) has two roles as the origin of an effect and
as a (data flow) bridge between caller and callee activi-
ties. First, the effect of this primitive is target component
names that the primitive may activate, and will be com-
puted by the effect function over the type S of intents that
the primitive takes. Second, the rule has a condition as

S <: F (C, rc, intent) for all C ∈ effect(S)

to express passing intents of type S from a caller to
all callee activities in (launch) by a field assignment
“x.intent = intent”.

(T-prim-2) causes no effect.
The function effect(S), collecting a set of potential tar-

get component names from an intent type S , is an ab-
straction of target(q, h) for each intent reference q of type
S in heap h, as will be proved later. We define this
function as the least set ϕ satisfying the following con-
ditions: S is Intent{R} and, for each r ∈ R , there are
Rt and Ra such that F (Intent, r, target) = String{Rt} and
F (Intent, r, action) = String{Ra}. Then,

• Class(Ω(rt)) ⊆ ϕ for all rt ∈ Rt

• IntentFilter(Ω(ra)) ⊆ ϕ for all ra ∈ Ra

For example, intent objects at r10 and r14 are passed
to Help in Line 13 and 17 respectively as:

• M(Main, rmain, startActivity) = Intent{r10} {Help}−−−−→ void{}
• M(Game, rgame, startActivity) = Intent{r14} {Help}−−−−→ void{}

Due to the intent passing, (T-prim-1) forces both Intent{r10}
and Intent{r14} to be a subtype of F (Help, rhelp, intent),
which is Intent{r10, r14}. In Line 26, the type of i is
Intent{r21}. effect(Intent{r21}) is {Main, Game} if the tar-
get component of i set by the setTarget method in Line 25,
i.e., s, evaluates to “Main” or “Game”. The evaluation is an-
alyzed to be so by the condition of (T-prim-1) as follows.
In Line 23 and 24, s is from the data field of another in-
tent j. In Line 22, j is from the intent field of Help, and it
is of type Intent{r10, r14}. The data field of intents of the
type evaluates to “Main” or “Game” because of

• F (Intent, r10, data) = String{r12} and
• F (Intent, r14, data) = String{r16}.

Therefore, so does the target component of i (of type
String{r12, r16}), which cannot be analyzed without
(T-prim-1). In Line 26, we thus have:

• M(Help, rhelp, startActivity)

= Intent{r21} {Main,Game}−−−−−−−−→ void{}

The effect of a class is the union of effects of all meth-
ods in a class C , denoted by effect(C). For example, the
effect of Main, Score, Game, and Help is {Game, Score, Help},
{Main}, {Score, Help}, and {Main, Game}, respectively. In a
well-typed Android program, C will activate one in effect(C)

by the soundness of our system to be shown later.
As in [7], F and M should be well-formed: F (C, r, f) <:

F (D, r, f) and M(C, r, m) <: M(D, r, m) for all r and C <:
D , which are natural extensions of those for Java. This
well-formedness is enforced by having a subtyping rela-
tionship between each pair of overriding/overridden meth-
ods.

Every Android program is well-typed if, for all classes
C , program points r, methods m, method types S̄

ϕ−→ T
such that M(C, r, m) = S̄

ϕ−→ T , we can derive {this :
C{r}, ̄x : S̄} � e : T , ϕ where mbody(m, C) = D C̄ x̄. e (C̄ and
D are S̄ and T without annotations).

5. Soundness of the type and effect system

The soundness of our type and effect system means
that every activity in a well-typed Android program will
activate only the activities in its effect.

626 K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627
For a formal statement of the soundness, we define a
proposition flow(C̄, D̄) for two lists of activity classes C̄
and D̄ to declare that each activity on the stack is acti-
vated by an activity directly under itself. The proposition
is true if

• D̄ = C̄ , D̄ = C0 · C̄ , or D̄ = C̄2..n

such that Ck−1 ∈ effect(Ck) for k ≥ 1.
We extend it to more than two lists of activity classes

as: flow∗(C̄, D̄1, ..., D̄m) is true if flow(C̄, D̄1), ..., and
flow(D̄m−1, D̄m) are all true.

In the following theorem, we associate a stack of activi-
ties l̄ with classes C̄ by a relation l̄ ∼ C̄ where each li is an
activity object of class Ci .

Theorem 1 (Soundness for Android/Java). Suppose an Android
program N̄ is well-typed. For a main activity class C in the pro-
gram,

• run C �⇒ l̄1, w1, q1, h1 �⇒∗ l̄m, wm, qm, hm such that
flow∗(C, D̄1, ..., D̄m) where ̄li ∼ D̄i .

Otherwise, the evaluation stops with null error, cast error, or
activity-not-found error.

Lemma 1 (Intent abstraction). If �h :H and H� l : Intent{R}
for some R then

• target(l, h) ∈ effect(Intent{R}).

Otherwise, the evaluation of target(l, h) returns either null error
or activity-not-found error.

The soundness theorem says that, when an Android
program is well-typed, the execution will have three cases,
all satisfying the activation flow proposition: it may run
normally to stop with ∅, ∅, ∅, h, it may run some infinite
loop, or it may get stuck due to an erroneous event from
one of the null reference error, the casting error, and the
activity not found error (the other kinds of errors will
never happen).

Two soundness lemmas on expressions and quadruples
constitutes the proof of this soundness theorem. The two
lemmas and the proofs are in the extended version [11].

The intent abstraction lemma supports the soundness
theorem in the case with (launch) of the proof on quadru-
ples. In order to satisfy the activation flow proposition, the
effect of the top activity class in the stack of a quadruple
should include a target class C to launch, which is true be-
cause of this: the target activity of the intent in (launch)
is a member of the effect of the intent type by the intent
abstraction lemma, and the effect of the intent type is in-
cluded in the effect of the top activity class by allowing
only well-formed quadruples [11] in the execution.

6. Discussion

There are several relevant systems for Android inter-
component communication analysis to report security
problems. ScanDroid [2] is a security certification tool to
check if data flows in Android programs are consistent
with their specifications. ComDroid [3] searches for pre-
defined patterns of potential vulnerabilities. ScanDal [4]
analyzes data flows between Android security sources and
sinks. EPIC [5] is a scalable inter-procedural analysis for
detecting attacks for Android vulnerabilities.

The existing static analyses of Android programs have
little semantic-based accounts on how their Android spe-
cific analyses interplay with the Java analyses they are
based on. Contrary to this, we formally proved the sound-
ness of our Android analysis. In this respect, our pro-
posed system can be regarded as a theoretical basis for
them.

In practice, one can also implement our system as a
fully automatic analyzer for featherweight Android pro-
grams such as our game example. To support this claim,
our prototype is available at:

http://mobilesw.yonsei.ac.kr/paper/android.html

Our Android analyzer consists of five steps to com-
pute the effect of activities in an Android program. First,
it applies the standard Java type checking procedure to
an Android program to attach Java types to the abstract
syntax tree. Second, it collects all classes declared and re-
ferred in the program and all program points for object
creation sites. Third, it initializes field and method typings
for the classes and program points with the Java types
annotated with new program point set variables and ef-
fect variables. Fourth, it generates subtyping constraints
and activation constraints on the variables by applying the
typing rules to each method typing according to the well-
typedness. Fifth, it solves all the constraints to produce a
solution (mapping of the variables onto ground program
point sets and effects) that completes the field/method
typings.

The method typings thus computed offer information
enough for the analyzer to compute the effect of each Ac-
tivity class, which is our goal.

Note that the analyzer deals not only with the sub-
typing constraints as in [7], but it also introduce a
new form of constraints Intent{S} ⇒ ϕ for each use of
primStartActivity(...) in an Android program. We call this an
activation constraint. Solving each activation constraint is
to generate a new subtyping constraint S <: F (C, rc, intent)
whenever a new class C becomes belong to the effect of
this intent type S , effect(S). Having all the generated sub-
typing constraints will enforce the universally quantified
condition in (T-prim-1).

7. Conclusion

We have proposed a type and effect system for an-
alyzing activation flows between components in Android
programs where each activation of a component through
an intent is regarded as an effect. Also, we have presented
a featherweight Android/Java semantics that the soundness
of our Android analysis is based on. To support the feasi-
bility of our system as a full automatic analyzer, we have

http://mobilesw.yonsei.ac.kr/paper/android.html

K. Choi, B.-M. Chang / Information Processing Letters 114 (2014) 620–627 627
presented a prototype, though we need to extend it fur-
ther to apply to real Android programs, which is a future
work.

References

[1] The Android developers site, http://developers.android.com, 2013.
[2] A.P. Fuchs, A. Chaudhuri, J.S. Foster, Scandroid: automated security

certification of Android applications, Technical Report CS-TR-4991,
Dept. of Computer Science, University of Maryland, 2009.

[3] E. Chin, A.P. Felt, K. Greenwood, D. Wagner, Analyzing inter-
application communication in Android, in: Proceedings of the 9th
Annual Int’l Conference on Mobile Systems, Applications, and Ser-
vices, 2011.

[4] J. Kim, Y. Yoon, K. Yi, J. Shin, SCANDAL: static analyzer for detecting
privacy leaks in Android applications, in: Mobile Security Technolo-
gies, 2012.

[5] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, Y. Le
Traon, Effective inter-component communication mapping in An-
droid with Epicc: an essential step towards holistic security analysis,
in: 22nd USENIX Security Symposium, 2013, pp. 543–558.

[6] T. Amtoft, F. Nielson, H.R. Nielson, Type and Effect Systems: Behav-
iors for Concurrency, World Scientific Publishing Company, 1999.

[7] L. Beringer, R. Grabowski, M. Hofmann, Verifying pointer and string
analyses with region type systems, in: Proceedings of the 16th Int’l
Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning, 2010, pp. 82–102.

[8] A.S. Christensen, A. Møller, M.I. Schwartzbach, Precise analysis of
string expressions, in: Proceedings of the 10th Int’l Static Analysis
Symposium, 2003, pp. 1–18.

[9] A. Igarashi, B.C. Pierce, P. Wadler, Featherweight Java: a minimal core
calculus for Java and GJ, ACM Trans. Program. Lang. Syst. 23 (3)
(2001) 396–450.

[10] A. Milanova, A. Rountev, B.G. Ryder, Parameterized object sensitiv-
ity for points-to analysis for Java, ACM Trans. Softw. Eng. Methodol.
14 (1) (2005) 1–41.

[11] K. Choi, B. Chang, A type and effect system for activation flow of
components in Android programs, Technical Report TR-Mar-2014-1,
Yonsei University, Wonju, 2014.

http://developers.android.com
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6176696Bs1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6176696Bs1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6176696Bs1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib636F6D64726F6964s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib636F6D64726F6964s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib636F6D64726F6964s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib636F6D64726F6964s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6A696E79756E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6A696E79756E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6A696E79756E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6F6374656175s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6F6374656175s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6F6374656175s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6F6374656175s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib616D746F6674s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib616D746F6674s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib737472696E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib737472696E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib737472696E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib737472696E67s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6A7361s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6A7361s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6A7361s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6967617261736869s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6967617261736869s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6967617261736869s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6D696C616E6F7661s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6D696C616E6F7661s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib6D696C616E6F7661s1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib657874656E64656476657273696F6Es1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib657874656E64656476657273696F6Es1
http://refhub.elsevier.com/S0020-0190(14)00106-9/bib657874656E64656476657273696F6Es1

	A type and effect system for activation ﬂow of components in Android programs
	1 Introduction
	2 Overview of Android/Java
	3 A semantic model for the Android platform
	4 A type and effect system
	5 Soundness of the type and effect system
	6 Discussion
	7 Conclusion
	References

