
Systematic Analysis and Detection of Misconfiguration
Vulnerabilities in Android Smartphones

Zhihui Han, Liang Cheng, Yang Zhang, Shuke Zeng, Yi Deng, Xiaoshan Sun
Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences

Email: hanzhihui@tca.iscas.ac.cn

Abstract—Android is a modern and popular software plat-
form for smartphones. To manage information and features on
smartphones, Android employs intent-based mechanism for inter-
application or intra-application communication and provides a
permission-based security model that requires each application
to explicitly request permissions in its manifest file. However,
misconfiguration defined in manifest files and that embedded
in application code may result in vulnerabilities due to devel-
oper confusion and general misuse of the features provided by
Android. In this paper, we propose a logic-programming-based
approach to analyze smartphones and discover misconfiguration
vulnerabilities in Android manifest file and application code. To
enable misconfiguration vulnerability analysis and detection, we
develop a static technique to extract security related information
from application code, and employ logic predicates to describe
various vulnerabilities. Based on this approach, we developed a
tool called SADroid to systematically analyze and detect miscon-
figuration vulnerabilities in Android smartphones. Our results
with two representative phones show that the inherent weakness
of Android permission model and developers’ programming
errors make Android vulnerable to some attacks.

Keywords—Android smartphone, static analysis, misconfigura-
tion vulnerability, logic programming

I. INTRODUCTION

Android smartphones are increasingly prevalent in recent
years. The tremendous popularity can be attributed to phones’
evolution from simple devices used for phone calls and SMS
messages to powerful communication and entertainment plat-
forms for web surfing, social networking, GPS navigation, and
online banking. End users can customize their smartphones by
installing third-party applications(or simply apps) from mar-
kets that host hundreds of thousands of applications. Abundant
functionalities and useful features of smartphone make users
relying on smartphones to store and handle personal data, such
as emails, photos, contact information and even bank accounts.
Increasing personal and sensitive data stored in smartphones
attracts attackers to target mobile smartphones.

There are many attacks and threats on Android, such as
privilege escalation [18], [11], remote control [30], phishing
[26], intent spoofing [10] and component hijacking [24]. These
attacks and threats are caused by different vulnerabilities.
Some are caused by users’ incaution, such as phishing and
component hijacking. Some result from bugs in application
code, such as privilege escalation caused by an application
with a heap overflow vulnerability. And some are results
of misconfiguration, such as privilege escalation and intent
spoofing.

Although previous works [12], [25], [28] have implied
that Android’s permission-based model is not strong enough

to completely protect Android from permission re-delegation
attack, developers and vendors can make their effort to reduce
security threats through using Android features correctly and
securely in app and phone image development. Unfortunately,
although lots of security develop notes are provided in Android
document, most of app developers, who are lack of security
knowledge, do not realize the importance of these notes and do
not configure their apps to use Android features securely. The
misconfiguration makes apps and Android system vulnerable
to some threats and attacks. For example, developers always
use the default configuration set by develop tools, e.g. Eclipse
with ADT, which often lead to vulnerabilities, such as intent
spoofing [10] and confused deputy attack [23].

In this paper, we propose a logic-based approach to sys-
tematically analyze and detect misconfiguration vulnerabilities
and threats in Android smartphone images coming from some
leading manufactures, including Google and Samsung. Our
work focuses on the vulnerabilities which are caused by app
developers who do not follow Google’s security notes and mis-
configure their apps, especially the apps developed by Android
manufactures and pre-installed in Android phone images. Two
types of configuration are analyzed in our work. The first type
is the configuration defined in app’s manifest file, including
components, enforced permissions, exported attribute value
and intent filters. The second type is dynamically defined in
app code, which consists of dynamic receiver constructors,
intents, and privileged Android APIs. Our approach lever-
ages well-studied static analysis to extract the two types of
configuration for each pre-installed apps, and then use logic
programming to emulate Android’s inter-component commu-
nication (ICC) mechanism to examine how pre-installed apps
interact with each other under the constrain of the extracted
configuration and generate an ICC graph of the whole image.
By modeling some security rules provided by security notes
in Android document and some security threats derived from
attacks with logic predicates, we can check security rules and
detect security threats over the computed ICC graph. With the
help of check and detection results, developers can secure their
apps by modifying and recompiling source code and Android
manufactures can fix the vulnerabilities in their phone images
with binary rewriting.

We have implemented a SADroid prototype to analyze
and detect misconfiguration vulnerabilities in Android smart-
phones. Its main components are Static Analyzer, which per-
forms static analysis on each pre-installed apps to extract
security configuration, and Logical Checker, which logically
specifies security rules and security threats with logic pred-
icates and check them with logical inference. We have used
our prototype to analyze four smartphone images for Google

2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications

978-1-4799-6513-7/14 $31.00 © 2014 IEEE

DOI 10.1109/TrustCom.2014.56

432

Li LI

Li LI

Li LI

Li LI

Li LI

Li LI

Li LI

Nexus 4 and Samsung Galaxy S3. SADroid finds out many
violations of security rules and some potential attacks in all of
the four phone images. Our results also show that all of the
four images have misconfiguration and some components are
incorrectly protected in some ways by intent-filters instead of
protected by permissions. Our contributions are the followings:

• We describe a static analysis based method to discover
exhaustive security-related configuration of Android apps.

• We propose a scalable approach to analyze and detect
vulnerabilities and potential threats caused by misconfig-
uration due to developer confusion and general misuse of
Android features.

• We implemented a prototype tool called SADroid, and
used our tool to analyze four mainstream Android phone
images. Our tool finds out various misconfiguration and
illustrates that it is common for a developer to ignore
permission protection and use intent filters instead of
permissions to protect his components .

The rest of the paper is organized as follows. In section
II we present an overview of Android, focusing on Android
configuration and intent-based inter-component communica-
tion. Section III and section IV describe our system design
and implementation. In section V, we present and discuss
our experiment results when applying SADroid to analyze
four popular Android phone images. Section VI provides
discussions of SADroid. Section VII is dedicated to related
work, and in section VIII we conclude.

II. ANDROID OVERVIEW

A. Android Manifest File

Every app must have an AndroidManifest.xml file (with
precisely that name) in its root directory. The manifest file
presents essential security-related information about the app
to the Android system, and this information constitutes the
static configuration of the app. First, the manifest describes
the components of the application - the activities, services,
broadcast receivers and content providers that the application
is composed of. It names the classes that implement each of the
components and publishes their capabilities through exported
attribute value and intent filters (except content provider).
A broadcast receiver can also be dynamically declared with
registerReceiver() API in the runtime. Second, the manifest
declares which permissions the app must have in order to
access protected parts of the API and interact with other apps,
which must be granted in order to complete the installation.
Third, the manifest also declares the permissions that others are
required to have in order to interact with the app’s components.

B. Intent-Based Inter-Component Communication

Android applications are written in Java, and Android
defines four types of app components to build applicaitons:
activities, services, broadcast receivers and content providers.
Three of the four component types - activities, services, and
broadcast receivers - are activated by an asynchronous message
called Intent, and intents can be sent between these three types
of components. Intents can be used to start activities; start,
stop or bind services; and broadcast information to broadcast
receivers. There are two primary forms of intents: explicit
intents and implicit intents. An explicit intent specifies an

Fig. 1. Overview of SADroid

exact component to which it should be delivered, and explicit
intents are typically used to start a component in the same app.
Whereas an implicit intent does not name a specific component
but includes enough information for the system to determine
which of the available components is best to run for that intent.
To advertise which implicit intents an app can receive, it is
need to declare one or more intent filters for components in
its manifest file. The system will deliver an implicit intent to
the app component only if the intent can pass through one
of the intent filters. Using an explicit intent guarantees that
the intent is delivered to the intended recipient, while implicit
intents allow for runtime matching between different apps.
It is important for developers to realize that the intent-filter
mechanism does not provide any security guarantees but only
a matching mechanism between components and intents.

III. SYSTEM DESIGN

We aim to analyze and detect vulnerabilities and threats due
to developers’ misconfiguration. Fig. 1 provides an overview of
our system named SADroid. SADroid consists of two primary
components: Static Analyzer and Logical Checker. For the
Android phone to analyze, SADroid first extracts all the pre-
installed apps and system framework files, where the set of
pre-installed apps is our analysis target and the framework files
provide essential assistant information of the target Android
system.

Then for each pre-installed app, Static Analyzer parses its
manifest file to extract the static configuration, including app
declared permissions, app enforced permissions, component
declarations, component permissions and some other informa-
tion. There is also some dynamic configuration in app code
which is constructed in the runtime, such as dynamic receivers,
intents and privileged API employment. To save analysis cost
and time in getting the dynamic configuration, we do not run
each pre-installed app, but apply well-studied static analysis
technique on each of them to gain approximate but overall
results. All the configuration is encoded as logic predicates
and input into Logical Checker.

Based on the encoded configuration, Logical Checker for-
mally describes Android intent-based mechanism and permis-
sion model with logic predicates, and then examines how
components interact with each other to generate an overall ICC
graph. Finally, Logical Checker makes some logical inference
on the formal description or ICC graph to check security rules
and detect potential attacks, which we will present later.

A. Static Analyzer

Given each pre-installed app in the phone image to inspect,
most of its configuration is defined in its manifest file, so
our system first extracts the binary app manifest file from

433

the application package suffixed by apk, and decompiles the
manifest file to a textual XML representation. By parsing
the XML file, we can get the app’s static security configu-
ration. Such information includes application’s name, declared
permissions, application enforced permissions, exported flag
attribute value, sharedUserId attribute value, components and
associated enforced permissions, and intent filters.

Besides the static configuration, some other security infor-
mation is defined in app’s Dalvik bytecode (either classes.dex
or its odex variant), including dynamic broadcast receivers,
intents or broadcasts, content provider access, and uses of priv-
ileged permissions. To obtain this information, Static Analyzer
performs static analysis on app’s Dalvik bytecode.

Dynamic broadcast receivers can be dynamically cre-
ated and registered in app’s code by calling registerReceiv-
er(BroadcastReceiver receiver, IntentFilter filter) or register-
Receiver(BroadcastReceiver receiver, IntentFilter filter, String
broadcastPermission, Handler scheduler). The intent filter or
broadcast permission is specified at registration time and can
be changed each time registerReceiver is invoked, so we
consider each registration of a receiver as a unique component
and label it with the location where it is registered. For intent
filter and permission parameters associated with registered
receivers, our system first builds a control-flow-graph (CFG)
and gains their values by identifying and tracking their class
constructors, instantiations and setting methods on this CFG.

Intents or broadcasts are used as parameters of some
Android ICC APIs, such as startActivity(Intent intent). In this
paper, we call such ICC APIs intent sink methods. In order to
get the Intent parameter’s value, Static Analyzer first traverses
the app bytecode to locate each intent sink method. Next, Static
Analyzer backtracks app bytecode from the location of each
intent sink method, and builds a control-flow-graph. Based on
the control-flow-graph, Static Analyzer computes each Intent
parameter’s value by tracking each Intent object’s construction,
instantiation, and transition until the sink location. For each
Intent parameter, not only the value is needed to record, but
also the location of intent sink method must be record, includ-
ing app’s package name, class and method name invoking the
intent sink method in user app. A broadcast is a special intent
associated with a certain receiver permission. So we can obtain
a broadcast’s value in the similar way with an intent.

Content provider access can be issued by a component in
the form of Uri, and Android system can address the Uri to the
requested content provider. Content provider access is security
sensitive, so we should identify all the content accesses in user
app. A component can request a content access through calling
methods in android.content.ContentResolver class with an Uri
as its parameter, including delete, insert, query and update.
Static Analyzer computes each Uri parameter’s value similarly
to Intent parameters.

Security-sensitive APIs are such APIs that are protected
by permissions providing for apps to access private user data
or certain device components(e.g., Bluetooth) [22]. There are
more than one hundred permissions defined by Android system
[6], and developers can also define their own permissions. We
choose 28 representative permissions in our study considering
three principles: (1)The permission must be frequently used in
apps [17], (2) The protection level of the permission is dan-

gerous, signature, or systemorsignature, (3) The permission
may compromise users or system if misused. For each chosen
permission, we identify the list of related Android APIs that
exercise the permission. However, such a list is not easy to
come by because Android API document is incomplete about
the relationship between APIs and permissions. Fortunately,
Felt’s work [17] gives out permission-API mapping result,
although their target platform is Android 2.3 which is old
for our system. Our system aims at Android 4.2 (API level
is 17) or higher versions, so based on the mapping result, we
remove some deprecated APIs, and add some new related APIs
to generate a new permission-API mapping file.

Finally, Static Analyzer builds a call graph for each entry
point, and searches the call graph to uncover paths from the
entry point to intent sink methods, content provider access and
security-sensitive APIs. Entry points we focus on are the call-
backs defined by Android to be implemented by developers to
handle notifications when some component life-cycle changes,
which are used for component interaction. Such entry points
are standard and can be determined by the type of components
contained within the app. Specially, there are in total four types
of components, and each type has some predefined interfaces to
other components or system. For example, onReceive method
in BroadcastReceiver class or its subclasses is an entry point.
The paths are attack surface which can be accessed by other
components to achieve some unauthorized behaviors, such as
privilege escalation.

All information Static Analyzer uncovers is encoded and
saved in the form of logic predicates.

B. Logical Checker

Formal methods help us confirm whether a certain security
rule holds in Android system or detect whether a potential
security threat exists in the system. We first use predicate
logic to model Android intent-based ICC mechanism and
permission-based protection mechanism, which is the kernel
of Logical Checker. And this model can be instantiated when
applying the extracted configuration as input of it, where
the model instance formally describes the security state of
Android phone. Additionally, Logical Checker also generates
and maintains an overall ICC graph for the system over the
model instance by logically examining all possible intent-based
component interaction. The ICC graph consists of edges and n-
odes: each node indicates the call graph for a component, each
edge is an intent or a broadcast to connect two components
who can communicate with each other through this intent or
broadcast.

Inputting formal specifications of security rules and threats
into Logical Checker, we can drive Logical Checker to make
logical inference to check the security properties and detect
the threats over the model instance and ICC graph. Logical
Checker will report all violations of security rules and all
scenarios of threats.

Logical Checker enables our approach scalable, and users
or analysts can specify and check security rules or threats
which they are interested in. Security rules and threats are
described in terms of predicate logic. Next, we will present
some samples embedded in Logical Checker.

We first define some symbols:

434

- APPS, the set of apps
- COMPS, the set of components
- PERMS, the set of permissions
- ACTIVITIES, the set of activities
- SERVICES, the set of services
- INTENTS, the set of all extracted intents
- APIS, the set of privileged APIs we select
- CERTS, the set of certificates
- SUIDS, the set of sharedUserId values

1) Security Rules: Android document provides many Notes
and Cautions to guide developers how to build a secure app.
If developers follow the guidance, they can effectively reduce
apps’ attack surface. Unfortunately, lots of developers ignore
these Notes and Cautions, which makes their apps vulnerable.
We will give some samples to illustrate how to derive security
rules from Android document in terms of predicate logic.

Rule 1. There is a Note in Android document as follows
[5]: “Note: In order to receive implicit intents, you must
include the CATEGORY DEFAULT category in the intent filter.
The methods startActivity() and startActivityForResult() treat
all intents as if they declared the CATEGORY DEFAULT
category. If you do not declare it in your intent filter, no
implicit intents will resolve to your activity.” From this Note,
we can derive that if an activity’s intent filters do not specify
CATEGORY DEFAULT category, this activity can only re-
ceive explicit intents. Since explicit intents are mostly used in
intra-application communication, we assume that this activity
should be private, and its exported flag should be false. This
rule can be encoded with logic formula as follows:

∀activity ∈ ACTIV ITIES. (¬launcher(activity) ∧
¬contain category(activity, CATEGORY DEFAULT))→
public(activity, false)

Rule 2. Android document notes that “Caution: To ensure
your app is secure, always use an explicit intent when starting
a Service and do not declare intent filters for your services”
[5]. Since services run in the background, using an implicit
intent to start a service is security hazard because you cannot
be certain what service will respond to the intent. And in this
case, a malicious service may be started instead of the intended
service, and performs some dangerous actions, such as stealing
private data. We use following formula to model whether an
Android phone satisfies this rule:

∀service ∈ SERV ICES, ∀intent ∈ INTENTS.
(parameter(intent, startService)→ explicit(intent)) ∧
¬has filter(service)

Rule 3. Android API document advises that “You’ll typically
use an explicit intent to start a component in your own app”
[5]. Based on this advise, we assume that if an intent can be
resolved to a component within the same app, this intent is very
possibly intended for intra-application communication and
should be explicit type. Using explicit intents is an effective
measure to reduce the risk of data leakage caused by implicit
intents. This rule can be specified with following formula:

∀intent ∈ INTENTS, ∃{comp1, comp2} ∈ COMPS, ∃app ∈
APPS.(source(intent, comp1)∧resolve to(intent, comp2)∧
component(comp1, app) ∧ component(comp2, app))→
explicit(intent)

where, source(intent, comp1) means that intent comes from
comp1, resolve to(intent, comp2) states that intent can be
resolved to comp2.

2) Security Threats: Android faces various security threats,
including data leakage, unauthorized intent receipt, intent
spoofing, and privilege escalation. We will present some com-
mon threats and formally describe them with logic predicates,
and analysts can use our system to examine more threats.

Threat 1. An implicit intent can have key-value pairs that carry
additional information required to accomplish the requested
action in its extra filed. Sometimes, extra field may contain
some very secret information, such as username, password,
even online bank account information. However, a malicious
app can intercept any implicit intent without permission protec-
tion and access the privacy information stored in the extra field.
Therefor, implicit intents with extra information may lead to
data leakage, and we specify this threat scenario with following
formula:

∃intent ∈ INTENTS. implicit(intent) ∧ has extra(intent)

Threat 2. Explicit privilege escalation in Android is a kind
of confused deputy attack[23]. In this attack, an app called
requester lacks a certain permission which another app called
deputy has. The requester can invoke the deputy’s public
interface directly or indirectly, causing the deputy to call a
privileged API method. In this case, the API call will success
since the deputy has the required permission, and the requester
is successful in executing a privileged action, which also
violates principle of least privilege. We formally describe this
scenario by following logic predicate:

∃{comp1, comp2} ∈ COMPS, ∃app1 ∈ APPS, ∃api ∈ APIS,
∃permission ∈ PERMS. invoke(comp1, comp2) ∧
path(comp2, api) ∧ api permission(api, permission) ∧

component(comp1, app1)∧¬has permission(app1, permission)

Informally, invoke(comp1, comp2) means that comp1 can com-
municate with comp2 based on intents directly or indirectly,
e.g., an activity starts anther activity. Predicate path(comp2,
api) says that there is a call path from comp2’s entry point
to a sensitive api. Predicate api permission(api, permission)
implies permission is required to invoke this privileged api.
This formula describes not only one-step privilege escalation,
but also multi-step escalation called chained capability leaks
[20].

Threat 3. Contrast to explicit privilege escalation, there is
another type of privilege escalation called implicit privilege
escalation, which arises from the abuse of an optional attribute
in the manifest file, i.e. “sharedUserId”. Multiple apps singed
by the same developer certificate will share the union of all
the permissions granted to each app if they have the same
“sharedUserId” value. If one of these apps uses a certain
permission that is not granted to itself but to other apps, an
implicit privilege escalation happens. We specify this threat
with following formula:

∃{comp1, comp2} ∈ COMPS, ∃{app1, app2} ∈ APPS, ∃id ∈
SUIDS, ∃cert ∈ CERTS, ∃api ∈ APIS, ∃permission ∈
PERMS. component(comp1, app1) ∧ signed(app1, cert) ∧
component(comp2, app2) ∧ signed(app2, cert) ∧

435

userid(app1, id) ∧ userid(app2, id) ∧ path(comp2, api) ∧
api permission(api, permission) ∧
has permission(app1, permission) ∧
¬has permission(app2, permission)

Threat 4. Similar to explicit privilege escalation, an app with
a ceratin permission can access a content provider on behalf
of another app who does not have this permission, which can
be called content leakage. Since content leakage in not only
an explicit privilege escalation but also a kind of data leakage,
we specify this threat separately.

∃{comp1, comp2} ∈ COMPS, ∃app1 ∈ APPS, ∃api ∈
APIS, ∃permission ∈ PERMS.invoke(comp1, comp2) ∧
path(comp2, api) ∧ api permission(api, permission) ∧
content access(api) ∧ component(comp1, app1) ∧
¬has permission(app1, permission)

Predicate content access(api) means that api is a method
to access content provider, e.g., query, insert, etc. Informally,
this formula states that if comp1 can invokes comp2’s public
interfaces directly or indirectly, and comp2 has a path from
a entry point to a content-access api, content leakage takes
place.

IV. IMPLEMENTATION

We have developed a SADroid prototype with a mixture
of Java code, shell scripts and Prolog code. Two primary
components constitute SADroid: Static Analyzer and Logical
Checker. SADroid works on Android phone image, i.e., An-
droid ROM. To analyze vulnerabilities existing in an Android
phone, SADroid first employs ext4-unpacker tool [2] to
extract all of the pre-installed apps and framework files from
phone image. Since some manufactures may odex their pre-
installed apps and remove the classes.dex from apk files, e.g.,
Samsung, we write a shell script file to convert .odex files to
.dex files with the help of smali/baksmali tool [7].

A. Static Analyzer

For each pre-installed app, Static Analyzer adopt-
s apktool [1] to decompress the related apk file to
extract its manifest file (AndroidManifest.xml). Parsing
the textual manifest file, SADroid obtains static con-
figuration knowledge for each app and stores the re-
sults as Prolog facts, e.g., component/2, public/2,
has_permission/2, signed/2.

The core of Static Analyzer bases on WALA [8], which
is an open-source libraries for Java code analysis providing a
framework to parse a set of Java classes and generate a call
graph over all reachable methods. For each .dex file standing
alone or .apk file containing a classes.dex file, Static Analyzer
first translates dex instructions to WALA’s intermediate repre-
sentation based on dexlib library [4] which is used in smali
tool, and further analysis is performed on the intermediate
representation. For each entry point, we generate a call graph,
and extract the information mentioned in section III-A. Finally,
all of the results are encoded to Prolog facts.

B. Logical Checker

The input of Logical Checker consists of two parts: Prolog
facts and deriving rules. Prolog facts are collected by Static

TABLE I. FOUR ANALYZED ANDROID PHONES

Vendor Distribution Android Version # of Apps
Google Nexus 4 4.3 87
Samsung Galaxy S3 4.2 196

CyanogenMod CM11 for Nexus 4 4.4 81
CM11 for Galaxy S3 4.4 83

Analyzer to generate a model instance, and security rules
and security threats mentioned in section III-B are encoded
to Prolog deriving rules. Each rule contains two parts:(1)an
evaluation part that evaluates the pre-conditions (2)a logging
part that logs the evaluation if the evaluation succeeds. For
each component, Logical Checker checks whether it can
communicate with any other component with an intent, if so,
there is a directed edge from the source component to the
destination component. By logging all of the edges,Logical
Checker generates a general ICC graph for all of the pre-
installed apps, which describes the communication relationship
between components based on intent mechanism. Based on the
ICC graph, Logical Checker detects possible vulnerabilities by
checking the security rules and security threats, and logs all
the violation of each security rule and all the scenarios of
each threats. For example, the deriving rule for threat 1 can
be programmed as follows:

i n t e n t l e a k a g e (I n t e n t) :−
% e v a l u a t i o n p a r t
i m p l i c i t i n t e n t w i t h e x t r a (I n t e n t) ,

% l o g g i n g p a r t
u n i q u e a s s e r t (l o g i n t e n t l e a k a g e (I n t e n t))

The predicate implicit intent with extra(Intent) checks
whether an intent contains extra field. log intent leakage is a
dynamic term, if implicit intent with extra(Intent) succeeds,
a log intent leakage term will be asserted and this threat
instance is logged.

The following Prolog rule detects all instances of threat 1,
and checks for other Prolog rules are nearly the same:

f i n d a l l i n t e n t l e a k a g e :−
i n t e n t (AppName , Value) ,
I n t e n t = i n t e n t (AppName , Value) ,
i n t e n t l e a k a g e (I n t e n t) ,
f a i l .

To speed up the execution and avoid infinite loops, we use
tabling evaluation provided by Prolog implementation XSB
[21]. All the predicates used to generate the ICC graph and the
predicates to check the security rules and threats are declared
as tabled predicates.

V. EVALUATION

In this section, we present the evaluation results of applying
SADroid to some real Android smartphones. In order to assess
misconfiguration vulnerabilities posed in the wild, we selected
four representative smartphone images from three vendors,
including some flagship phones billed as having significant
additional bundled functionality and some mainstream third-
party images optimized by CyanogenMod (CM) [3]. Table I
shows the phone images and their versions we analyzed using
SADroid. For each phone image, we apply SADroid to check
the security rules and threats mentioned in Section III-B to
uncover misconfiguration vulnerabilities and demonstrate its
effectiveness.

436

A. Results

SADroid reports all violations of the security rules and
possible threats mentioned in Section III-B. Table II presents
the total number of different types of components on the four
images, e.g., data ’809/70’ means there are 809 activities in
official Nexus4 and all of these activities come from 70 apps.
In order to make the statistics more clearly, we list activity
alias and dynamic receiver separately.

TABLE II. STATISTICS OF TOTAL COMPONENTS

component Nexus4 GalaxyS3 CM-Nexus4 CM-GalaxyS3
activity 809/70 2170/146 510/63 513/65
activity-alias 79/15 59/5 51/13 51/13
service 284/64 381/143 161/55 161/55
provider 85/45 125/62 57/31 57/31
receiver 229/52 489/127 146/43 149/45
dynamic-receiver 268/42 777/116 123/34 123/34

For simplicity, we name violation of security rule 1 as
improper-exported-activity, violation of security rule 2 as
service-with-filter and implicit-intent-for-service, violation of
security rule 3 as local-implicit-intent, threat 1 as intent-
leakage, threat 2 as explicit-privilege-escalation, threat 3 as
implicit-privilege-escalation, threat 4 as content-leakage.

In Table III, we list the results for improper-exported-
activity(IEA), service-with-filter(SWF), implicit-intent-for-
service(IIFS), local-implicit-intent(LII) and intent-leakage(IL).
The data in every cell means number of vulnerabilities/number
of apps with that kind of vulnerabilities(percentage of
vulnerable objects out of the total number of the same type
objects/the frequency of vulnerable apps out of the total apps),
e.g., the data 122/36(0.15/0.42) for improper-exported-activity
implies that exported flag values of 122 activities from 36
apps are improperly specified, and the vulnerable activities
account for 15% out of the total activities, and 42% of apps
contain at least one vulnerable activity.

Explicit privilege escalation is a multi-step attack. SADroid
searches the generated ICC graph to find out all the attack paths
leading to explicit privilege escalation. We call the component
who starts an explicit privilege escalation source, and the
component whose permission is obtained by the source is
called goal. We compute the distribution of source components
and goal components, and additionally we examine the number
of goal components without permission protection. The results
are listed in Table IV. Although the number of attack paths
is huge, the fraction of involved components out of all the
components is limited. Source components account for about
20%, and the frequency of goal components is much less than
10%. Furthermore, more than half of goal components are
unprotected by any permission.

TABLE III. STATISTICS OF SOME VULNERABILITIES

vulnerability Nexus4 GalaxyS3 CM-Nexus4 CM-GalaxyS3

IEA 122/36 224/52 89/29 91/31
(0.15/0.41) (0.10/0.27) (0.17/0.36) (0.18/0.37)

SWF 122/45 195/99 69/28 69/28
(0.43/0.52) (0.51/0.51) (0.43/0.35) (0.43/0.34)

IIFS 164/33 256/80 71/22 71/22
(0.42/0.38) (0.33/0.41) (0.34/0.27) (0.34/0.27)

LII 621/38 1016/73 252/39 252/39
(0.65/0.44) (0.51/0.37) (0.54/0.48) (0.54/0.47)

IL 199/29 589/57 111/29 111/29
(0.21/0.33) (0.30/0.29) (0.24/0.36) (0.24/0.35)

TABLE IV. STATISTICS OF EXPLICIT PRIVILEGE ESCALATION

Nexus4 GalaxyS3 CM-Nexus4 CM-GalaxyS3
of paths 37269 547116 26930 26930
of sources 374 938 228 228
of goals 85 274 76 76
% of sources 21.3% 23.4% 21.8% 21.8%
% of goals 4.8% 6.8% 7.3% 7.3%
% of unprotected goals 71.8% 59.9% 65.8% 65.8%

Implicit privilege escalation arises from the abuse of an
optional attribute in the manifest file, i.e. “sharedUserId”,
which may lead to collusion attack. Fortunately, we do not find
any implicit privilege escalation in the four phone images.

Content leakage can be considered as a special class of
explicit privilege escalation, which only focuses on the per-
missions used to access content providers. Similar to explicit
privilege escalation, we examine the paths of content leakage
in Table V. Here, we call the components accessing content
providers goal components. Only a few components can be
exploited to leak content data, but most of these components
are not protected by any permission, which is the root cause
leading to content leakage.

TABLE V. STATISTICS OF CONTENT LEAKAGE

Nexus4 GalaxyS3 CM-Nexus4 CM-GalaxyS3
of paths 6843 201655 7441 7441
of sources 377 927 240 240
of goals 15 64 16 16
% of sources 21.4% 23.2% 22.9% 22.8%
% of goals 0.8% 1.6% 1.5% 1.5%
% of unprotected goals 73.3% 84.3% 75% 75%

B. Discussion on Results

Developers are expected to build secure apps or secure
system following security tips in Android document. However,
it is not the fact. Our results reveal that many developers
do not understand Android permission mechanism very well,
especially the usage of permission mechanism provided for
inter-component-communication, which leads developers to
mis-configuring their apps and results in some vulnerabili-
ties. Although Android permission model is not perfect to
provide security protection, developers’ misconfiguration make
Android’s security much worse. Unfortunately, it is common
for a developer to mis-configure his app.

Although Android document recommends that developers
should neither declare intent filters for a service nor use an
implicit intent to start a service, many developers do not follow
these security recommendations. About half of developers add
intent filters to a service that listen for intents with their
action, which has the undesirable side effect of making the
component public. It is reasonable to assume that they are
not aware that they should make the service private. Using
implicit intents to start a service violates Android document’s
recommendation, since the system determine which service to
start when multiple services match the implicit intent, and
users could not realize which service is running. However,
More that 30% of developers use implicit intents to start
services.

Our results for security rules also show that most devel-
opers prefer an implicit intent for component communication

437

Li LI

even if the intent is intended for inter-application communica-
tion, in which case an explicit intent should be preferred.

From Table IV, we can conclude that only a few com-
ponents are exploited to escalate privileges, however these
components are distributed in more than half of apps and most
of these components are not protected with any permissions,
which is a universal phenomenon. Privilege escalation is a
logical vulnerability, and developers can not foresee all the
ways of communication, so the privilege escalation vulnerabil-
ity is difficult to avoid. But developers can reduce this kind of
vulnerabilities through declaring proper permissions for related
components.

Content providers are protected best, however, some con-
tent leakages still exist. We find these leakages are caused by
the app components who access content providers directly, and
these components are not protected by proper permissions. By
enforcing proper permissions on these components, developers
can effectively reduce this kind of data leakage.

By examining the results, we conclude that most of vulner-
abilities result from components lack of permission protection.
There are some reasons why developers often ignore to declare
permission protection:(1) most of development tools use none
permission protection for components as default policy, where
some developers lack of security knowledge do not change the
default policy, (2) some developers use intent filters instead of
permissions to prevent other components from communicating
with their components, however, this measure is incorrect.
Intent filters are designed to address implicit intents, and
not for security protection. Without permission protection, a
malicious app can always access your component by declaring
an intent filter with all of the listed actions, categories and data.

Our experiment shows that smartphones with more pre-
installed apps tend to be more vulnerable, and CM-Nexus4 and
CM-GalaxyS3 nearly have the same evaluation results, because
the two images have the same pre-installed apps except a small
one.

VI. DISCUSSION

SADroid is a well scalable tool to find violation of security
rules recommended by Android document and detect security
threats based on known threat patterns. Our tool focuses
on vulnerabilities caused by security misconfiguration. We
consider 28 representative privileged permissions which are
commonly used for developers. To involve more permissions,
new permissions and related APIs should be added to Static
Analyzer. There are many recommendations for developers
to build more secure apps, and we just extract and formally
specify some typical suggestions. Users and analysts can spec-
ify more security rules and input them into Logical Checker
to detect vulnerabilities which they are interested in. Our
tool only detects local-implicit-intent, intent-leakage, explicit-
privilege-escalation, implicit-privilege-escalation and content-
leakage, but more threat specifications can be added. SADroid
serves as a prototype to demonstrate the effectiveness of our
analysis model, therefor it only includes the representative
rules and well-known threats.

SADroid not only detects vulnerabilities, but also assesses
deveolpers’ misconfiguration in Android system. The result is

worrisome. Our result shows that it is common for a developer
to misconfigure his app, mainly including lack of protection
permissions, misuse of implicit intents, and abuse of intent
filters.

The accuracy of SADroid depends on the accuracy of static
analysis on each app, especially the values of intents which are
difficult to get precise values. So SADroid can benefit from
more accurate static analysis method, which consumes much
more time.

VII. RELATED WORK

A lot of research works focus on Android security. From
the perspective of attacks and malwares, Vidas et al. [29]
provide a taxonomy of attacks to the platform. Davi et al. [11]
show that it is possible to mount privilege escalation attacks
on the well-established Android platform, and implement a
privilege escalation attack with return-oriented programming
without returns. Felt et al. [18] demonstrate that permission
re-delegation attack can help a less privilege app to perform
a privilege task through another third-party app with higher
privilege. Zhou et al. [30] present a systematic characterization
of existing Android malwares consisting of 1260 samples in
49 different families.

There are a number of works focusing on analyzing and
improving the Android permission model, including privacy
and capacity leak detection. Kirin [15], [16] develops a logic-
based tool to determine whether the permissions declared
by an application meet a certain global policy invariants to
ensure only policy compliant applications will be installed.
Shin et al. [27] present a formal model of Android permission
scheme, which enables users to express authorization and
permission-protected interactions among app components, to
check whether the system meets given security requirements.
However, these logic-based works only consider the policy
defined in manifest file, which is not enough to construct a
complete model. SADroid also uncovers the dynamic security
policy defined in app’s Dalvik bytecode through static analysis
technique, and build a more precise model to detect vulnera-
bilities, which improves the accuracy of detection.

ScanDroid [19] is the first static tool for Android, which
checks data flow consistency. TaintDroid [13] is an efficient,
system-wide dynamic analysis tool using taint tracking to
simultaneously track multiple sources of sensitive data. Enck
et al. [14] design and implement a Dalvik decompiler, ded, to
recover an application’s Java source code. ComDroid [10] is
a tool that detects application communication vulnerabilities
through examining application interaction and identifying se-
curity risks in application components. Felt et al. [17] develop
a static tool Stowaway to detect over-privilege in Android apps.
PScout [9] builds a permission mapper through static analysis
based on Soot. Han et al. [22] investigate applications that run
on both Android and iOS and examine the difference in the
usage of their security sensitive APIs. Woodpecker [20] stat-
ically analyzes eight popular Android smartphone to identify
capability leak caused by confused deputy attacks. CHEX [24]
is a static analysis method to automatically vet Android apps
for component hijacking vulnerabilities by modeling these
vulnerabilities form a data-flow analysis perspective.

438

Li LI

Li LI

Li LI

Li LI

Li LI

Comparing with previous research, SADroid builds a ab-
stract model to describe Android based-intent communica-
tion and permission mechanism, which can be initialized as
different model instance by inputting different configuration
collected by Static Analyzer on various Android phones.
Besides, SADroid constructs a more precise logical model
instance with more detailed security configuration including
static configuration in manifest files and dynamic configuration
embedded in Dalvik bytecode. SADroid can accept vulnera-
bility specifications encoded with logic predicates as input to
detect vulnerabilities, which enables SADroid well scalable.
Users or analysts could use SADroid to detect vulnerabilities
which they are interested in. We have employed SADroid to
detect seven vulnerabilities.

Instead of analyzing one app, SADroid constructs an over-
all ICC graph for the system with logical inference. The ICC
graph consists of edges and nodes: each node indicates the call
graph for a component, each edge is an intent or a broadcast
to connect two components who can communicate with each
other through this intent or broadcast. Over this ICC graph,
more kinds of vulnerabilities can be detected, especially the
vulnerabilities related to component interaction. Furthermore,
detecting vulnerabilities on ICC graph can effectively improve
the accuracy of detection.

VIII. CONCLUSION

In this paper, we propose a logic-based approach to ana-
lyze and detect the misconfiguration vulnerabilities existing
in Android smartphones and implement a prototype called
SADroid. SADroid adopts static analysis to extract security
configuration from manifest file and app code. SADroid then
specifies some security rules that developers should follow to
build apps and some threats that a phone may face. Based
on the configuration and specifications of security rules and
threats, SADroid reasons about the vulnerabilities. The results
are worrisome: there are programming errors in many apps,
permissions are always misused and developers do not un-
derstand the permission model very well, which may lead to
various vulnerabilities and attacks.

ACKNOWLEDGMENT

This work was supported in part by NSFC grant
No.60970028, NSFC grant No.61100227 and National 863
Program of China under Grant 2011AA01A203.

REFERENCES

[1] “android-apktool,” https://code.google.com/p/android-apktool/.
[2] “Android ics jb ext4 imagefile unpacker,” http://sourceforge.net/projects/

androidicsjbext/.
[3] “Cyanogenmode-android community operating system,” http://www.

cyanogenmod.org/.
[4] “dexlib,” https://code.google.com/p/smali/source/browse/dexlib/src/

main/java/org/jf/dexlib/.
[5] “Intents and intent filters,” http://developer.android.com/guide/

components/intents-filters.html.
[6] “Manifest.permission,” http://developer.android.com/reference/android/

Manifest.permission.html.
[7] “Smali and baksmali,” https://code.google.com/p/smali/.
[8] “T.j. watson libraries for analysis (wala),” http://wala.sourceforge.net.

[9] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 217–228.

[10] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
ACM, 2011, pp. 239–252.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Information Security. Springer, 2011,
pp. 346–360.

[12] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems.” in USENIX
Security Symposium, 2011.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones.” in OSDI, vol. 10, 2010, pp. 1–6.

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security.” in USENIX Security Symposium, 2011.

[15] W. Enck, M. Ongtang, and P. McDaniel, “Mitigating android software
misuse before it happens,” 2008.

[16] W. Enck, M. Ongtang, P. D. McDaniel et al., “Understanding android
security.” IEEE Security & Privacy, vol. 7, no. 1, pp. 50–57, 2009.

[17] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627–638.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses.” in USENIX Security
Symposium, 2011.

[19] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications,” Manuscript, Univ. of
Maryland, http://www. cs. umd. edu/˜ avik/projects/scandroidascaa,
2009.

[20] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock android smartphones,” in Proceedings of the
19th Annual Symposium on Network and Distributed System Security,
2012.

[21] T. Group, “The xsb programming system,” http://xsb.sourceforge.net/.
[22] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng, “Comparing mobile

privacy protection through cross-platform applications,” in Proceedings
of the Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA, 2013.

[23] N. Hardy, “The confused deputy:(or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp.
36–38, 1988.

[24] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 229–240.

[25] R. A. Rimando, “Development and analysis of security policies in
security enhanced android,” Ph.D. dissertation, Monterey, California.
Naval Postgraduate School, 2012.

[26] P. Schulz, “Android security-common attack vectors,” Rheinische
Friedrich-Wilhelms-Universitat Bonn, Germany, Tech. Rep, 2012.

[27] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A formal model
to analyze the permission authorization and enforcement in the android
framework,” in Social Computing (SocialCom), 2010 IEEE Second
International Conference on. IEEE, 2010, pp. 944–951.

[28] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing
flexible mac to android,” in 20th Annual Network and Distributed
System Security Symposium (NDSS’13), 2013.

[29] T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to us:
A survey of current android attacks.” in WOOT, 2011, pp. 81–90.

[30] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy (S&P), 2012 IEEE Symposium
on. IEEE, 2012, pp. 95–109.

439

