
MIGDroid: Detecting APP-Repackaging Android

Malware via Method Invocation Graph
Wenjun Hu†, Jing Tao†∗, Xiaobo Ma†‡, Wenyu Zhou§, Shuang Zhao¶, Ting Han†

†MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an, 710049, China
‡Xian Jiaotong University Suzhou Academy, Suzhou, 215123, China

§ShaanXi Banking Regulatory Commission Office, Xi’an, 710049, China
¶Institute of Information Engineering, CAS, Beijing, 10000, China

Email: {wjhu, jtao, xbma}@sei.xjtu.edu.cn, wcf1987@gmail.com, zhaoshuang@iie.ac.cn, than@sei.xjtu.edu.cn

Abstract—With the increasing popularity of Android plat-
form, Android malware, especially APP-Repackaging malware
wherein the malicious code is injected into legitimate Android
applications, is spreading rapidly. This paper proposes a new
system named MIGDroid, which leverages method invocation
graph based static analysis to detect APP-Repackaging Android
malware. The method invocation graph reflects the “interaction”
connections between different methods. Such graph can be
naturally exploited to detect APP-Repackaging malware because
the connections between injected malicious code and legitimate
applications are expected to be weak. Specifically, MIGDroid first
constructs method invocation graph on the smali code level, and
then divides the method invocation graph into weakly connected
sub-graphs. To determine which sub-graph corresponds to the
injected malicious code, the threat score is calculated for each
sub-graph based on the invoked sensitive APIs, and the sub-
graphs with higher scores will be more likely to be malicious.
Experiment results based on 1,260 Android malware samples
in the real world demonstrate the specialty of our system
in detecting APP-Repackaging Android malware, thereby well
complementing existing static analysis systems (e.g., Androguard)
that do not focus on APP-Repackaging Android malware.

Keywords-Android; malware; static analysis, method invoca-
tion graph

I. INTRODUCTION

With the rapid development of smartphones, Android OS-

based system becomes the most popular platform for mobile

devices. According to the data from IDC [1], In the third quar-

ter of 2013, Android accounted 81.01% of the smart-phones

OS market with 139.9 million shipments. The popularity is

also partially propelled with the large number of feature-rich

Android applications in various markets. Until July 2013, the

official Android market Google Play held more than 1,000,000

applications and hit 50 billion downloads [2]. In addition to

Google Play, a number of third-party alternative markets (e.g.,

Amazon Appstore, SlideMe), further boost the popularity of

Android.

Despite its popularity, the Android platform is a prime

target for attackers due to the openness of Android markets.

∗ Corresponding Author. The research presented in this paper is sup-
ported in part by the National Natural Science Foundation (61103240,
61103241, 61221063, 91118005), the Application Foundation Research Pro-
gram of SuZhou (SYG201311) and Huawei Cooperation Research Pro-
gram(YB2013110125).

As stated in [3], Android malware has dominated the mo-

bile threat landscape with an exponential growth. A recent

research shows that malicious applications exist in both the

official and unofficial marketplaces with a rate of 0.02% and

0.2% respectively [4]. Currently, except Google’s Bouncer

[5], which provides automated scanning of Google Play for

potentially malicious applications, other alternative markets

take no effective security vetting processes. Even for Google’s

Bouncer, the attackers still have a chance to bypass the security

vetting processes in practice [6] .

The absence of effective and strict security vetting processes

renders it feasible for attackers to upload malicious apps to

various markets. To make the malicious apps less suspicious

and meanwhile easy to spread, the attackers usually trick users

into downloading malware disguised as popular apps that have

a large number of interested users. To be specific, the attackers

first repackage popular apps by inject the malicious code into

them, and then upload these APP-Repackaging malware to

various markets. In fact, it’s technically easy to repackage

apps with malicious code. As reported in [7], 100% of top

paid Android applications have been hacked and attackers

successfully inject malicious code. W. Zhou’s study [8] shows

a worrisome fact that 5% to 13% of applications hosted on

the alternative markets are APP-Repackaging malware. For

example, Geinimi, a bot-like malware, which was publicly

reported in January 2011, just repackages itself into legitimate

applications like Monkey Jump2 [9], Sex Positions Social and

spreads by uploading to alternative markets and app-sharing

forums.

This paper proposes a new system named MIGDroid, which

leverages method invocation graph based static analysis to

detect APP-Repackaging Android malware. The method in-

vocation graph reflects the “interaction” connections between

different methods. Such graph can be naturally exploited to

detect APP-Repackaging malware because the connections

between injected malicious code and legitimate applications

are expected to be weak. In order to guarantee the legiti-

mate application’s integrity, most APP-Repackaging Android

malware is realized by injecting independent components

(e.g., a Broadcast Receiver) rather than new methods into the

legitimate application. These injected components can listen

for a specific event to initiate and run the malicious code

upon the event occurs. For example, attackers can inject a

978-1-4799-3572-7/14/$31.00 ©2014 IEEE

Broadcast Receiver which listens for the BOOT COMPLETE

broadcast into a legitimate application; when the compromised

device rebooted, the Broadcast Receiver is triggered and

attackers definitely can perform malicious behaviors in this

Broadcast Receiver component. Due to such kind of APP-

Repackaging implementation, the part of injected malicious

code has weak connections with the legitimate application

from the perspective of method invocation graph.

To exploit the method invocation graph for detecting APP-

Repackaging Android malware, we first disassemble Android

applications and construct method invocation graph on the

smali code level. Then, the method invocation graph is further

divided into weakly connected sub-graphs. Since many sen-

sitive APIs such as sendTextMessage are invoked in Android

malware to perform malicious behaviors, we can determine

which sub-graph contains malicious code by calculating its

threat score based on the invoked sensitive APIs. The sub-

graph whose threat score exceeds the given pre-defined thresh-

old will be labeled as malicious.

We summarize our contributions as follows:

• We propose a novel approach to effectively detect APP-

Repackaging Android malware. To the best of our knowl-

edge, MIGDroid is the first system that utilizes method

invocation graph to detect malware on Android. The

proposed system falls into the category of static anal-

ysis techniques, and thus is lightweight compared with

dynamic analysis techniques.

• Experiment results based on 1,260 Android malware

samples in the real world demonstrate the specialty of

our system in detecting APP-Repackaging Android mal-

ware, thereby well complementing existing static analysis

systems (e.g., Androguard) that do not focus on APP-

Repackaging Android malware.

The rest of the paper is organized as follows. We first

provide a brief background about Android and related stuffs

in Section II. We then give the motivation of our work in

Section III, followed by system design in Section IV. Section

V presents the evaluation of our system and present a real-

world case study in Section VI. After that, we provide some

related work in Section VII. Finally, we conclude our work in

Section VIII.

II. BACKGROUND

In this section, we give an overview of the basic structure

of an Android application [10].

An Android application exists as an APK file which is

actually an zip archive. It contains a dex file and a set

of resources such as graphs, user interface layouts, media

files, etc. There is also an important configuration file called

AndroidManifest.xml which consists of some meta-information

about the application such as package name, version name,

version code, permissions required and other attributes. An

APK file must be digitally signed with the developer’s own

signing key or Android system will not accept the installation

requirement. According to the Android design, the developer’s

signing certificate can be self-signed and is included in the

folder META-INF. Fig. 1 presents an overview of the APK

structure.

AndroidManifest.xml

META-INF

res

resources.arsc

classes.dex

APK

Package Name

Version

Permissions

...

Class

Method

Fig. 1. The APK Structure

The functionality of an application is achieved by compo-

nents which are logical application building blocks. There are

four types of components defined in Android system:

• Activity component provides interaction with end users.

They are often presented to the user as full-screen

windows, floating windows or other forms. Each ap-

plication may need one main activity which starts first

when launches the application. This kind of activ-

ity should be explicitly declared in the AndroidMan-

ifest.xml under intent node with attribute value an-

droid.intent.action.MAIN. Activities are started with In-

tents, and can return data back to their invoking compo-

nents upon completion.

• Service component runs in the background and doesn’t

interact with end users compared with activity. A service

can perform a longer-running operation or supply func-

tionality for other applications to use. Android malware

usually performs malicious behaviors in the background

as services in order to hide themselves from users’ sight.

Take Geinimi [11] for example, it will launch its own

service prior to the launch of the main activity. Then

the service allows the Trojan to start while the host

application appears to function normally.

• Broadcast Receiver component can receive broadcast

messages from other components or applications. There

are two major classes of broadcasts that can be received,

which are normal broadcasts and ordered broadcasts.

Broadcast receivers can be either dynamically registered

or statically declared in the AndroidManifest.xml.

• Content Provider component encapsulates data and pro-

vides itself to applications through the ContentResolver

interface. It’s database addressable by their application-

defined URIs. Content provider allows data sharing be-

tween multiple applications.

III. MOTIVATION

In this section, we present an example to better demonstrate

the method invocation graph based approach to detect APP-

Repackaging Android malware.

A. A Motivating Example: The Geinimi Trojan

Geinimi is a notorious Trojan that targets Android system.

This Trojan can compromise a significant amount of personal

privacy data on a user’s Android device and then send it to

remote servers. It can receive commands from a remote server

that allow the owner of that server to control the device.

Geinimi effectively utilizes repackage technique to inject

the malicious code into legitimate applications. Take a sample

(MD5:08E4A73F0F352C3ACCC03EA9D4E9467F) as an ex-

ample, from the AndroidManifest.xml file, we can figure out

that the package name of the legitimate application is named

com.splGUI. The author of Geinimi Trojan adds a launcher

activity named com.geinimi.custom.Ad3072 30720001 which

can perform privacy collection when the application starts.

Also, a receiver named com.geinimi.AdServiceReceiver is

added to listen to the BOOT COMPLETED broadcast. When-

ever the device reboots, this receiver is triggered to start

working. Since Android adopts the permission system to

manage resource access, some sensitive permissions such as

ACCESS FINE LOCATION, SEND SMS are added in the

AndroidManifest.xml to guarantee that Geinimi can work

properly.

Fig. 2. Method Invocation Graph of Geinimi

Fig. 2 shows the method invocation graph of the Geinimi

sample. Each node represents a method and the directed-edge

between nodes shows the invocation relationship. The top-left

bunch of nodes are from the package com.splGUI, while nodes

at the bottom-right are methods implemented by Geinimi.

Sensitive APIs (refer to Section V) invoked which can access

constrained resources are labeled in red. From the method

invocation graph we can find that in the legitimate part of the

sample, there are no sensitive APIs invoked. While Geinimi

invokes a bundle of sensitive APIs to perform malicious

behaviors. It is obvious that this sample is mainly divided into

two parts, namely, legitimate application and Geinimi Trojan.

Meanwhile, there are no connections between the Geinimi

Trojan and the legitimate application.

B. Overview of Our Detection Approach

Our approach mainly includes two stages: a method invo-

cation graph construction stage and a malware identification

stage. The method invocation graph construction stage is

responsible for generating corresponding graph structure from

smali code. After that, in the malware identification stage,

we can determine if there exists malicious code based on the

generated method invocation graph.

In the method invocation graph construction stage, we first

convert the classes.dex to .smali files using baksmali tool

[12]. We traverse all the smali files and extracts the method

call sequences. Since the overload and override techniques

are frequently used in Object Oriented language like Java,

we identify each method by its name, return value type

and parameter type. Then the extracted method invocation

sequences are aggregated to generate a method invocation

graph. In the stage of method invocation graph construction,

there is a need to remove noises such as code fragments and

advertisement modules. We then divide the method invocation

graph into sub-graphs.

In the malware identification stage, the threat score is

calculated for each sub-graph. We extract sensitive APIs and

each API is given a specific threat score based on the statistics

on a collection set of known Android malware in the wild

collected from [13]. The procedure of calculating the threat

score of each sub-graph is: (1) Add each sensitive API’s threat

score in the sub-graph to get the whole threat score; (2) Divide

the whole threat score by the total number of all invoked

methods in the sub-graph to get the final threat score. If the

final threat score of a sub-graph exceeds a given threshold,

then it’s labeled as malicious.

IV. SYSTEM DESIGN

MIGDroid’s architecture and workflow is depicted in Fig.

3. The system consists of two key modules: the Method Invo-

cation Graph Construction module and the Malware Detection

module. The Method Invocation Graph Construction module

constructs the method invocation graph from a given Android

application. The Malware Detection module can determine

whether the given Android application contains malicious code

based on the method invocation graph.

Malware Detection

Calculate Threat Score Identify Malware

Method Invocation Graph Construction

Disassemble
Extract API Call

Sequences

Construct Method

Invocation Graph

Process Sub-

Graph

smali

codeAPK

Fig. 3. The Architecture and Workflow of MIGDroid

A. Method Invocation Graph Construction

Four steps (i.e., disassembling the APK, extracting API

call sequences, constructing method invocation graph and

processing sub-graphs) will be elaborated on the following

to illustrate how the method invocation graph is constructed.

1) Disassembling The APK: Before constructing the

method invocation graph, we must inspect all the methods

used in a given Android application. In order to extract

the information of methods invoked, we disassemble the

application. Considering the accuracy of existing “Dalvik

bytecode-to-Java bytecode” translators, we prefer operating

and analyzing directly on the Dalvik bytecode. The smali

code is an intermediate representation of the Dalvik byte-code.

So we choose to do static analysis on the smali code level.

Meanwhile, it is easy to get the smali code of an APK with

off-the-shelf tools.

2) Extracting API Call Sequences: With disassembled

smali files, we extract all the API call sequences. To this

end, we exhaustively search all possible API call sequences

by starting from every method. The return value type and

parameter type of methods are also extracted. Note that indi-

rect calls and event-driven calls are ubiquitous in an Android

applications and thus should not be ignored. However, these

calls can not be identified by exhaustively searching. To solve

this, we use the methods proposed by Woodpecker [14], which

uses a conservative method for indirect function calls and

adds links by semantics for event-driven calls. Finally, we can

obtain all the API call sequences.

3) Constructing Method Invocation Graph: Considering

that code in an Android application is organized by class, we

aggregate all the extracted API call sequences based on class

to generate the method invocation graph. In Android system,

calling sensitive APIs requires corresponding permissions. So

we can identify the position of sensitive invocation in smali

code according to high sensitive permissions. Finally, we can

outline the method invocation graph.

4) Processing Sub-Graphs: We adopt the depth-first traver-

sal algorithm to generate sub-graphs. After the process of

graph traversal, we can cluster all the methods into different

sub-graphs. The methods within each sub-graph are closely

connected, while the methods between two distinct sub-graphs

are weakly connected. To further identify the sub-graph that

contains malicious code, there exist two challenges. One is

the code fragment existing in the Android application. The

other is the existence of advertisement modules. To be specific,

from the view of the method invocation graph, there exist

fragments which have no practical functionality. In Fig. 2,

nodes scattering between com.splGUI and Geinimi belong to

this condition. Since the number of such fragments is really

considerable and most of them are useless, we argue that

labeling these fragments is one of the most effective way to

exclude the impact on malicious code identification. As far as

we know, there is no labeling mechanism for Android code

fragments currently. We present a simple yet effective method

to identify these fragments.

1) Label a sub-graph with only one class which has no

sensitive method invocation and no more than 4 methods

as a fragment sub-graph.

2) Label a sub-graph with empty method body as a frag-

ment sub-graph.

Most Android developers tend to insert advertisements in

the application with the help of advertisement SDKs. Devel-

opers can import these advertisement SDKs without modifying

the application’s own code due to the flexible implementation

of advertisement modules. The implementation mechanism of

advertisement module makes the methods of advertisement

code an independent sub-graph. On the other hand, most

advertisement SDKs will invoke many sensitive APIs so as to

collect users’ privacy information for accurate advertisement

recommendation. Fig. 4 shows the method invocation graph

that contains advertisement module. The top left sub-graph

represents advertisement module called Wooboo [15]. We can

observe that the advertisement module contains sensitive APIs.

Therefore, the advertisement modules are similar to APP-

Repackaging malware, which might result in false positives.

Fig. 4. Method Invocation Graph of Application Containing Advertisement
Module

To distinguish the advertisement modules from APP-

Repackaging malware, we need to label these advertisement

modules like the way we process fragment code. Each adver-

tisement module has its own package name which can be used

as a feature to detect the existence of the advertisement. We

build a whitelist based on the package name of advertisement

modules. Table. I shows several examples of the advertisement

modules’ package name. We can figure out the advertisement

module if the package name exists in the whitelist to avoid

further analysis.

TABLE I
EXAMPLES OF THE ADVERTISEMENT MODULE WHITELIST

Advertisement Vendor Package Name

Admob [16] com.google.ads
Millennial Media [17] com.millennialmedia.android

InMobi [18] com.inmobi.andoridsdk
Chartboost [19] com.chartboost.sdk

AppBrain AppLift [20] com.appbrain.AppBrain
Mopub [21] com.mopub.mobileads

B. Malware Detection

After generating method invocation graph and processing

sub-graphs, we need to determine if the Android application

contains malicious code. The method we use to detect ma-

licious code includes two steps: calculating the threat score

of each sub-graph and identifying the sub-graph that contains

malicious code.

1) Calculating The Threat Score: Android malware per-

forms malicious behaviors by calling sensitive APIs which

can access restricted resources such as reading files, accessing

network, collecting device information. We make a statistics

based on 1,000 Android malware samples collected from [13]

and generate a sensitive API list. Fig. 5 shows the top 10 most

used APIs in these Android malware samples plus the number

of each API’s invocation. Each sensitive API is assigned a

threat score based on its potential damage and the invocation

count by malware samples.

For each sub-graph, we calculate the whole threat score

based on the invoked sensitive APIs (each invocation of the

same sensitive API will also be added to the whole threat

score).

4217

3821

2745

2311

1736

1559

1468

1011

931

813

0 500 1000 1500 2000 2500 3000 3500 4000 4500

ContentResolver.query

URL.openConnection

Runtime.exec

SmsManager.sentTextMessage

File.createNewFile

FileOutputStream.write

TelephonyManager.getDeviceId

provider.Telephony.SMS_RECEIVED

BroadcastReceiver.onReceiveIntent

BroadcastReceiver.abortBroadcast

Fig. 5. Top 10 Most Used APIs Invoked

2) Identifying The Malware: After calculating threat score

for sub-graphs of 100 Android malware samples, we find that

sub-graphs containing malicious code have higher threat score

and smaller number of method invocation, while legitimate

sub-graphs have lower threat score and larger number of

method invocation. So we can determine whether the sub-

graph contains malicious code based on the sub-graph score,

which equals the sum of the sensitive API calls’ scores divided

by the total number of methods in the sub-graph.

If the higher the sub-graph score is, the more likely the

sub-graph contains malicious code. When the threshold of sub-

graph score is set higher than 0.4, there exists false negatives

when detecting sub-graphs containing malicious code. That is

to say, sub-graphs containing malicious code are recognized

as legitimate sub-graphs. While if the threshold is set lower

than 0.4, there exists false positives when detecting legitimate

sub-graphs. In this paper, we set the threshold to 0.4. When

the sub-graph score is higher than 0.4, then this sub-graph

will be identified as malicious.

V. EVALUATION

In this section, we evaluate the detection efficacy of

MIGDroid as compared with Androguard based on 1,260

Android malware samples. Table II shows the detection results

for APP-Repackaging Android malware samples while Table

III presents the detection results for Non-APP-Repackaging

ones. Since Androguard utilizes a signature based mechanism

to detect Android malware, we label those malware samples

which don not exist in Androguard’s signature database with

an asterisk.

The experiment result shows that MIGDroid has a much

higher detection rate than Androguard on APP-Repackaging

Android malware. From Table II and III, we can find that

Androguard can not detect any of the samples without cor-

responding signature. While our system can detect Android

malware without any signature except the extracted sensitive

APIs. Since most Android malware must invoke sensitive

APIs to perform malicious behaviors and these APIs are

steady to a certain extent, the method invocation graph based

approach is much more stable and can detect both known and

unknown Android malware. Androguard detects none of the

samples whose signature is not in the database, while even for

some Android malware samples like DroidDreamLight, Plank-

ton and DroidKungFu2 which exist in Androguard signature

database, Androguard does not show a better detection rate

than MIGDroid.

TABLE II
DETECTION EFFECTIVENESS BETWEEN MIGDroid AND

ANDROGUARD FOR APP-REPACKAGING SAMPLES

Malware Family MIGDroid Androgurad Samples

ADRD 100.00% 59.09% 22
AnserverBot 100.00% 0.00%* 187
BeanBot 100.00% 0.00%* 8
Bgserv 100.00% 0.00%* 9
DroidDream 100.00% 93.75% 16
DroidDreamLight 100.00% 28.26% 46
DroidKungFu1 97.06% 0.00% 34
DroidKungFu3 99.35% 0.00% 309
DroidKungFu4 72.92% 0.00%* 96
Geinimi 100.00% 97.10% 69
GoldDream 100.00% 0.00% 47
jSMSHider 100.00% 0.00% 16
Pjapps 72.41% 41.38% 58
Plankton 100.00% 18.18% 11
YZHC 100.00% 95.45% 22
Zsone 100.00% 100.00% 12
Others 89.29% 21.43% 56

Average 95.94% 32.63% 1018

We manually analyze some of the samples on which our

method does not perform well and detail the reasons.

1) SndApps: SndApps actually has no serious security

threat to Android devices since it only injects a number

of advertisement modules into legitimate applications,

while our method removes all the advertisement modules

before performing malware detection as stated in IV.

So it is obvious that MIGDroid detects none of such

samples like SndApps.

2) zHash: zHash has different variants by adding garbage

code and it realizes functionality which is useful for end

users. So, the parts which perform malicious behaviors

TABLE III
DETECTION EFFECTIVENESS BETWEEN MIGDroid AND

ANDROGUARD FOR NON-APP-REPACKAGING SAMPLES

Malware Family MIGDroid Androgurad Samples

Asroot 50.00% 0.00%* 8
BaseBridge 44.26% 0.00% 122
DroidKungFu2 60.00% 0.00% 30
KMin 21.15% 78.86% 52
RogueSPPush 55.56% 100.00% 9
SndApps 0.00% 100.00% 10
zHash 0.00% 0.00%* 11

Average 33.00% 39.84% 242

have strong connections with the legitimate ones. This

kind of malware implementation requires high cost and

definitely increases the difficulty to identify correctly.

3) Asroot: Asroot has the capacity to acquire root privilege

of the device. Some samples of this malware family does

not inject the malicious code into legitimate applications.

Rather, they perform malicious behaviors by implement-

ing a complete Android application by themselves. Like

zHash, MIGDroid cannot detect this kind of Android

malware correctly.

To demonstrate the false positive rate, we randomly choose

1,000 Android applications which are collected during October

2013 and contain no malicious code from Google Play. From

Table IV, we can conclude that MIGDroid labels 89 samples as

containing malicious code. So, the false positive rate is 8.9%.

While after investigation, we found that most of the

packages labeled as malicious are advertisement or third

party modules. For example, com.smaato.SOMA is from an

advertisement module called SMAATO [22]. the package

com.phonegap comes from the third party module named

PhoneGap [23] which provides APIs to easily create apps us-

ing the web technologies such as HTML, CSS and JavaScript.

Hence, we can definitely decrease the false positive rate by

extend the whitelist.

TABLE IV
DETECTION RESULTS ON 1,000 ANDROID APPLICATIONS

FROM GOOGLE PLAY

Package Contains “Malicious” Code Samples

com.phonegap 20
org.acra 16
com.airpush.android 14
com.facebook.android 11
com.smaato.SOMA 10
com.mobfox.sdk 5
com.mobclix.android.sdk 4
com.Leadbolt 3
com.wiz.bell 83199293g 1
com.jankroearing 1
com.ironsource.mobilcore 1
lu.luxair.android 1
com.jiubang.goscreenlock.theme.loveunlockr 1
com.fest.wall.thanksgiving 1

Total 89

VI. REAL-WORLD CASE STUDY

As stated above, our approach does not depend on An-

droid malware signature. So, MIGDroid has the capacity

of detecting malware without any training sample or sig-

natures. The example below shows that MIGDroid suc-

cessfully detects a Trojan which has the “phone-home”

behavior and listens to commands from a remote com-

mand and control (C&C) server. The MD5 of the sample

is 8FC95259D0C648B7C087CC9CAED87DAB. MIGDroid

identifies that this sample contains malicious code which

is embedded in the classes such as com.nl.MyService,

com.nl.MyReceiver. The detailed report can be accessed

through our system’s URL [24].

This sample comes with the package name

com.android.XWLauncher. A bundle of high sensitive

permissions declared in the AndroidMainfest.xml,

including SEND SMS, CALL PHONE, INTERNET

and INSTALL PACKAGES etc. These high sensitive

permissions indicates that this sample has the ability to

send premium text messages and install packages without

users’ knowledge. A receiver named com.nl.MyReceiver

is defined to intercept received SMS and listens to the

boot complete event. In order to intercept received SMS

in the first place, the author set the highest priority value

2147483647 to the intent filter. After the device rebooted,

com.nl.MyReceiver will start a service which is also defined in

the AndroidManifest.xml with the name com.nl.MyService.

This service will try to download Android applications

through http://www.nnetonline.com/mobile/softad, and then

install the downloaded applications with root privilege

utilizing the command pm install. Users are not aware of the

applications’ installation under such condition. In addition to

downloading applications from the specified web server, this

sample will also send the installed-application information of

the compromised device back to the remote server.

As mentioned earlier, this sample has the ability to send

SMS messages. After our analysis, we found that it will

fetch the destination phone number and SMS message from

http://www.nnetonline.com/mobile/sms2 before sending out a

SMS message. When a SMS message is received, the sample

will intercept the message which contains 83589523 and

other key words. Any SMS message sent from the number

10658166, which is actually a premium service number, will

also be blocked. Fig. 6 represents the code snippet of blocking

received SMS message according to the source phone number

and SMS message content. It is obvious that this sample can

send out fraudulent premium SMS messages from compro-

mised devices for financial gains.

Fig. 6. Code snippet for blocking received SMS message

At the time of writing, the web server mentioned

above is still accessible. We find there exists a

a phishing URL that provides a registration entry

http://www.nnetonline.com/U/Reg.aspx on the web server.

This registration process requires a lot of private information

about users including telephone number, bank account, bank

name, etc. We searched this sample on VirusTotal [25] and

find it is labeled as Fjco Trojan by most of the anti-virus

products. This result confirmed that MIGDroid has the power

to detect Android malware without any training sample or

signatures.

VII. RELATED WORK

A. Static Analysis

Several static analysis on detecting Android malware have

been proposed. For example, Yajin Zhou et al. presented a

systematic study for the detection of malicious applications

on popular Android markets [4]. They propose a permission-

based behavioral footprinting scheme to detect Android mal-

ware. With their heuristics-based detection engine, two zero-

day malware is successfully detected. D.Wu et al. proposed

a static feature-based mechanism for detecting the Android

malware [26]. They first extract the information including

required permissions, deployment of components, Intent mes-

sages, etc. Then, K-means algorithm is applied to enhance

the malware modeling capability. To determine the number of

clusters, they utilize Singular Value Decomposition method.

After that, kNN algorithm is used to classify the application

as benign or malicious. RiskRanker [27] proposed by Grace

et al. aims to detect zero-day Android malware using a

set of vulnerability specific-signatures combined with control

flow and intra-method data flow analysis. They successfully

uncovered 718 malware samples out of 118,318 total Android

applications and 322 of them are zero-day. MIGDroid belongs

to the static analysis category to detect APP-Repackaging

Android malware by leveraging the method invocation graph.

B. Dynamic Analysis

Unlike static analysis, dynamic analysis involves running

the Android application in a controlled and isolated environ-

ment such as Android emulator in order to reveal its execution

behaviors. CrowDroid [28] proposed by I.Burguera et al.

performs clustering algorithms on activity and behavior data

of running Android applications to classify them as benign or

malicious. Rastogi et al. presented the AppsPlayground frame-

work [29] which utilizes dynamic analysis to detect Android

malware. AppsPlayground re-purposes the Android emulator

and is built as a virtual machine environment. Several detection

techniques such as taint tracing, sensitive API monitoring are

adopted to reveal samples’ running behaviors.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a novel approach to detect APP-Repackaging

Android malware. Our method first extracted API calling se-

quences from a given Android application and then constructed

the method invocation graph. After generating sub-graphs

based on the method invocation graph, we calculated each sub-

graph’s threat score according to the sensitive APIs invoked in

the sub-graph. Finally, we labeled the sub-graph whose score

exceeds the given pre-defined threshold as malicious. Our

system evaluation showed that the approach we proposed has

a good performance on APP-Repackaging Android malware.

The real-world case study revealed the power of detecting

Android malware in practical environment without any training

sample or signature. The advantage of our approach is that we

only utilize static analysis that is lightweight. In the future,

we plan to consider analyzing native code, with which the

attackers can invoke the sensitive APIs in C and C++ language.

Java reflection is another challenge in constructing method

invocation graph. We will resort to the symbolic execution

methodology to address these challenges.

REFERENCES

[1] “Android pushes past 80% market share while windows phone shipments
leap 156.0% year over year in the third quarter, according to idc,” http:
//126.am/WmoUv0.

[2] “Google play,” http://en.wikipedia.org/wiki/Google Play.
[3] F-Secure, “Mobile threat report q3 2013,” Tech. Rep., 2013.
[4] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my

market: Detecting malicious apps in official and alternative android
markets,” in Proceedings of the 19th Annual Network and Distributed

System Security Symposium, 2012.
[5] “Bouncer,” http://126.am/8RtSe4.
[6] “To hide android malware apps from google’s ’bouncer’, hackers learn

its name, friends, and habits,” http://126.am/rAVU54.
[7] Arxan, “State of security in the app economy: Mobile apps under attack,”

Tech. Rep., 2013.
[8] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-

phone applications in third-party android marketplaces,” in Proceedings

of the second ACM conference on Data and Application Security and

Privacy, ser. CODASPY ’12. New York, NY, USA: ACM, 2012, pp.
317–326.

[9] “Mokey jump2,” https://play.google.com/store/apps/details?id=com.
dseffects.MonkeyJump2.

[10] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” Security & Privacy, IEEE, vol. 7, no. 1, pp. 50–57, 2009.

[11] “Security alert: Geinimi, sophisticated new android trojan found in wild,”
https://blog.lookout.com/blog/2010/12/29/geinimi trojan/.

[12] “smali,” http://code.google.com/p/smali/, 2013.
[13] “Andromalshare,” http://202.117.54.231:8080/, 2013.
[14] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of

capability leaks in stock android smartphones,” in Proceedings of the

19th Annual Symposium on Network and Distributed System Security,
2012.

[15] “Wooboo,” http://www.wooboo.com.cn/.
[16] “Admob,” http://www.google.com/ads/admob/.
[17] “Millennialmedia,” http://www.millennialmedia.com/.
[18] “Inmobi,” http://www.inmobi.com/.
[19] “Chartboost,” http://www.chartboost.com/support/sdk.
[20] “Appbrain,” http://www.appbrain.com/info/sdk.
[21] “Mopub,” http://www.mopub.com/.
[22] “Smaato,” http://www.smaato.com/.
[23] “Phonegap,” http://phonegap.com/.
[24] “Analysis report of com.android.xwlauncher,” http://126.am/dvlrD4.
[25] “Virustotal report,” http://126.am/sJc414.
[26] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:

Android malware detection through manifest and api calls tracing,” in
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference

on. IEEE, 2012, pp. 62–69.
[27] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-

able and accurate zero-day android malware detection,” in Proceedings

of the 10th international conference on Mobile systems, applications,

and services. ACM, 2012, pp. 281–294.
[28] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-

based malware detection system for android,” in Proceedings of the 1st

ACM workshop on Security and privacy in smartphones and mobile

devices. ACM, 2011, pp. 15–26.
[29] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic security

analysis of smartphone applications,” in Proceedings of the third ACM

conference on Data and application security and privacy. ACM, 2013,
pp. 209–220.

