
Multi-App Security Analysis with FUSE: Statically
Detecting Android App Collusion

Tristan Ravitch
tristan@galois.com

Galois, Inc

E. Rogan Creswick
creswick@galois.com

Galois, Inc

Aaron Tomb
atomb@galois.com

Galois, Inc

Adam Foltzer
acfoltzer@galois.com

Galois, Inc

Trevor Elliott
trevor@galois.com

Galois, Inc

Ledah Casburn
lcasburn@galois.com

Galois, Inc

ABSTRACT
Android’s popularity has given rise to myriad application
analysis techniques to improve the security and robustness
of mobile applications, motivated by the evolving adversarial
landscape. These techniques have focused on identifying
undesirable behaviors in individual applications, either due
to malicious intent or programmer error. We present a
collection of tools that provide a static information flow
analysis across a set of applications, showing a holistic view
of all the applications destined for a particular device. The
techniques we present include a static binary single-app
analysis, a security lint tool to mitigate the limits of static
binary analysis, a multi-app information flow analysis, and
an evaluation engine to detect information flows that violate
specified security policies.
We show that our single-app analysis is comparable with

the leading approaches on the DroidBench benchmark suite;
we present a brief listing of lint-like heuristics used to show
the limits of the single-app analysis in the context of an ap-
plication; we present a multi-app analysis, and demonstrate
information flows that cannot be detected by single-app
analyses; and we present a policy evaluation engine to auto-
matically detect violations in collections of Android apps.

General Terms
Security

Keywords
Security, Android, Java, Static Analysis

1. INTRODUCTION
The Android operating system powers a wide variety of

mobile devices and provides a comprehensive set of services
supporting a plethora of applications. Android’s capabil-
ities have enabled a large number of software authors to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPREW 2014 New Orleans, Louisiana USA
Copyright 2014 ACM 978-1-60558-637-3/14/12 ...$15.00.
http://dx.doi.org/10.1145/2689702.2689705.

Figure 1: Users must agree to grant this app access to their
contacts list in order to install the app; however, this screen
does not depict the full set of capabilities due to potential
collusion.

contribute to the application ecosystem, often with little
professional training. However, there is little assurance that
these applications behave as advertised.
Even well-intentioned application authors may not fully

understand the complete behavior of their own applications–
due to the inherent complexity of software development,
or as is often the case, due to their dependency on third
party libraries. Many such dependencies are only available
in binary form, such as libraries that enable ad-supported
revenue1.
Android does enforce a security model based on permis-

sions that is intended to prevent applications from accessing
capabilities that the user has not approved. Each applica-
tion must statically declare the set of permissions required,
and the runtime system only allows the application access
to behaviors protected by those declared permissions. The
runtime throws exceptions if the application attempts to
access any other permissions, preventing access.
Android presents a summary of the requested permissions

to the user through the user interface depicted in Figure 1.
Users who do not accept the requirements cannot install the
application.
1Many free applications use advertising as a primary rev-
enue stream, but the libraries to distribute advertisements
frequently receive executable code that describes the way
the content is displayed, and how the user can interact with
that ad.

Figure 2: Two example applications colluding; Sends Message
provides an API that effectively elevates the permissions of
Contacts List, allowing access to the SEND_SMS permission.

Even assuming that users understand this information
before approving installation, the permissions that an appli-
cation requests are not sufficient to characterize the informa-
tion and resources that an application can actually access
or manipulate. For example, an application could retrieve
contact details directly by requesting just one permission
as shown on line 6 of listing 1. That application can then
send those details to another application through standard
inter-application communication channels, as on line 17. An-
other application, such as the one shown in listing 2, could
then leak the information (via SMS–line 15) that it would
otherwise not have been able to access. Figure 2 depicts this
information flow, using the multi-app visualization that is
generated by our tools. Circles indicate applications, con-
tent providers, or permissions, and arcs indicate potential
information flow.
The goal of our work is to help identify undesirable or sus-

picious communication patterns within curated collections of
applications, also called appkits. Each appkit can be thought
of as a communication graph with applications as nodes
and information flows between applications as edges. Our
analysis tools infer the communication graph and present
it to analysts graphically. We have also developed a pol-
icy language and evaluation engine with which analysts can
express information flow policies over the communication
graph. The primary class of vulnerabilities or attacks we
are concerned with are multiple application collusion infor-
mation disclosures. In this type of information disclosure,
an application with no or limited permissions can obtain
sensitive information and then leak it to the outside world
simply by communicating with other applications that have
more privileges and are benign in isolation.
Since application source is not always available, and in

any case cannot be trusted to create the binary running
on devices, we analyze binary Android applications at the
bytecode level using an IR in SSA form [6]. At a high level,
our analysis is divided into two parts. First, we analyze

1 public class ReadsContactApp extends Activity {
2 public void onCreate(Bundle b) {
3 super.onCreate(b);
4 Cursor cur =
5 managedQuery(People.CONTENT_URI, ...);
6 String nameNumber = extractQueryData(cur);
7 sendData(encode(nameNumber));
8 }
9

10 private void sendData(String d) {
11 Intent i = new Intent();
12 i.setAction(Intent.ACTION_MAIN);
13 i.addCategory(Intent.CATEGORY_LAUNCHER);
14 i.setClassName("SendsMessageApp",
15 "SendsMessageApp");
16 i.putExtra("Example.CovertDataChannel", d);
17 startActivity(i);
18 }
19

20 private String extractQueryData(Cursor cur){
21 String name = "empty contacts";
22 String phoneNumber = "empty contacts";
23 if (cur.moveToFirst()) {
24 int nameCol =
25 cur.getColumnIndex(People.NAME);
26 int phoneCol =
27 cur.getColumnIndex(People.NUMBER);
28 name = cur.getString(nameCol);
29 phoneNumber = cur.getString(phoneCol);
30 }
31 return (name + ":" + phoneNumber);
32 }
33 }

Listing 1: The code for Contacts List in Figure 2

1 public class SendsMessageApp extends Activity {
2 private static final String CHANNEL =
3 "Example.CovertDataChannel";
4

5 public void onCreate(Bundle b) {
6 super.onCreate(b);
7 String d = extractExampleCovertData();
8 if (d == null) return;
9 sendSMS("xxx-xxxx", d);

10 finish();
11 }
12

13 private void sendSMS(String num, String msg) {
14 SmsManager sms = SmsManager.getDefault();
15 sms.sendTextMessage(num, null, msg, null, null);

16 }
17

18 private String extractExampleCovertData() {
19 return getIntent().getStringExtra(CHANNEL);
20 }
21 }

Listing 2: The code for Sends Message in Figure 2

System Image

Boundaries

Sink Description Permission
DescriptionAPK

Single App

Extended Manifest

Multi App Graph

Figure 3: Architecture diagram for FUSE

each application in isolation (Section 3) to recover the call
graph of the application and find the reachable sources and
sinks of each component. We consider sources to be any
source of sensitive information, including IPC details used to
start the component (the Intent–described in Section 2) and
information obtained from permission-protected APIs. Sinks
are places that sensitive information can flow to, and typically
take the form of inter-process communication performed by
a component (instances where the subject application sends
information to another application or external source such
as network destinations via SMS, IP, or the local file system,
for example). After we have identified all of the sources and
sinks in a collection of applications, we construct a graph
representing the communication patterns of the collection
(Section 4). Analysts can then interactively explore the
graph to identify problematic information flows between
applications. The full architecture of our system is depicted
in Figure 3.
The Android ecosystem has developed a number of inherent

complexities in the pursuit of simplified software development;
unfortunately, some of these features and common practices
pose significant difficulties for static analysis. To combat
that, we have also implemented a separate lint-like tool for
Android applications (Section 6) to notify analysts of points
where an application uses techniques that are outside of
the scope of our single-app analysis. For example, native
code and runtime systems—such as JavaScript evaluation—
operate outside of our single-app information flow analysis,
but these features can often be detected by the linter, helping
to identify the limits of our static analysis in the context
of the specific application under analysis. Despite these
mitigations, our approach shares many of the same limits
to soundness and completeness that plague static binary
analysis tools in general. We therefore cannot claim that
the results generated are either sound or complete, but the
combination of tools can provide a reasonably full picture

of an application’s behavior (and thus, the behavior of an
entire appkit). Section 7 describes an evaluation of our
single-app analysis to provide a more quantitative view of
its capabilities.

1.1 Attack Model and Assumptions
We assume that an adversary can provide one or more

applications containing arbitrary valid Dalvik bytecode. Fur-
thermore, we assume that the dynamic permission checks in
the Android system are correct and that applications can-
not circumvent them through exploits to access permission-
protected resources not specified in their manifests. Our
approach also assumes that no information flows are enabled
by native code.

2. STRUCTURE OF ANDROID
APPLICATIONS

Android applications are distributed as binaries in a regular
format based on zip files. While Android applications are
written in Java, they run on a custom virtual machine called
the Dalvik VM, which has its own register based bytecode
format. Each application can contain:

• a manifest describing required permissions and available
components (AndroidManifest.xml);
• a Dalvik executable (classes.dex), which contains the
bytecode of the program;
• (optional) resources including string literals, their trans-
lations, and references to binary resources; and
• (optional) XML layouts describing user interface ele-
ments.

Each application is made up of a set of communicating
components; each component has multiple entry points that
are invoked by the Android system as callbacks in response to
system events. Moreover, components can run concurrently
with each other. Each application runs in its own OS level
process, offering a degree of isolation between applications.
While components of the same application give the impression
of executing separately, they actually share a single address
space by default. This allows components to communicate
through both standard inter-process communication (IPC)
mechanisms and through global variables. Furthermore,
applications from the same developer (which is indicated by
being signed with the same cryptographic key) can actually
share a single address space, with one injecting code into the
other. Application components are one of:

• Activities, which represent screens visible to the user;
• Services, which can perform background computation;
• Content Providers, which act as database-like data
stores; and
• Broadcast Receivers, which handle notifications sent
to multiple targets.

Being an event driven system, events from the user in-
terface result in callbacks from the Android system into
application code. These events come from native code and,
for the most part, do not originate in Java code. While these
callbacks are delivered to a standard set of interfaces by
default, users can specify additional event handlers in XML
layouts declaratively. Layouts are accessible at run time
through View objects, which represent trees of user interface
widgets.

Components can communicate with each other, both within
the same process and between processes, through two An-
droid specific interfaces: 1) an inter-process communication
system embodied by the Intent and 2) content providers,
which act as data stores. An Intent is a Java class that
contains a small set of semi-structured data that determines
the intended receiver. Additionally, Intents can carry a data
payload containing any serializable values. Each intent can
be either explicit or implicit. Explicit intents specify an exact
package and component as their recipient. Implicit intents
specify their recipient by a general action they expect the
receiver to be able to perform on their behalf; the Android
system routes implicit intents to the first component that
claims to be able to handle them. Each application declares
the set of intents that each of its components can handle in
its manifest by defining intent filters—simple predicates over
the data contained by intents.
Android protects sensitive information and services through

permissions. Most sensitive information sources, such as sys-
tem content providers and GPS hardware, have an associated
permission that an application must be granted in order to
access it, as mentioned in Section 1. The required permis-
sions are declared in the Android manifest, and are used to
populate the approval dialog shown in Figure 1. Applications
can also define their own permissions beyond those provided
by the Android system and individual components in an
application can restrict their APIs, only responding to apps
that have been granted specific permissions.

3. SINGLE-APP ANALYSIS
We first individually analyze each application in an appkit

to produce an extended manifest—a data structure that
builds on the standard Android manifest included with each
app. The extended manifest records the sources and sinks in
an application, as well as the information flows between them.
In essence, the extended manifest represents the internal
information flow graph from application inputs (sources) to
application outputs (sinks). Sources are:

• the inputs to each component, or
• permission protected resources.

Sinks represent the means by which a component can send
(possibly sensitive) information to another component or to
the outside world, including:

• sending broadcasts,
• starting activities,
• communicating with a service (start, stop, or bind),
• reading from, or writing to, a content provider,
• reading from, or writing to, internal (non-private) stor-
age,
• sending data to a permission protected method, or
• writing data to the system log.

Each sink records its type, from the list above, and the
list of sensitive information sources that can flow to it.
The core of our single-app analysis is a pointer analysis

with which we compute a call graph and determine the
reachable methods in each application. We use a version
of Andersen’s analysis [2], which is field-sensitive but flow-
and context-insensitive. Our implementation provides on-
the-fly call graph construction and uses type filters [8], which
keep points-to set sizes manageable. We provide summaries

1 class MyTitle implements CharSequence {
2 private Context context;
3 MyTitle(Context ctx) {
4 context = ctx;
5 }
6

7 public String toString() {
8 context.startActivity(...);
9 }

10 }
11

12 class MyActivity extends Activity {
13 void onCreate(Bundle b) {
14 CharSequence title = new MyTitle(this);
15 DownloadManager m =
16 new DownloadManager(null, "");
17 Request r = new Request(...);
18 r.setTitle(title);
19 m.enqueue(r);
20 }
21 }

Listing 3: A code sample requiring framework analysis

1 class DownloadManager {
2 class Request {
3 private CharSequence mTitle;
4 public Request setTitle(CharSequence title) {
5 mTitle = title;
6 }
7

8 ContentValues toContentValues(String pkg) {
9 ContentValues values = new ContentValues();

10 values.put(Downloads.Impl.COLUMN_TITLE,
11 mTitle.toString());
12 }
13 }
14

15 public long enqueue(Request request) {
16 ContentValues values =
17 request.toContentValues(...);
18 }
19 }

Listing 4: Relevant framework code referenced by listing 3

of the core Java collection classes to improve scalability
and precision: the summaries enable us to treat collections
context-sensitively. Aside from these summaries, we analyze
each application with the complete Android framework and
core Java libraries. We then employ a taint analysis to
determine where sensitive information in each application
can flow. We introduce taint labels at each source in the
application. Any taint labels that reach sinks reveal the
information flows that the application enables. We record
these flows as a list of sources connected to each sink in the
extended manifest.
We analyze application code along with the full frame-

work because some information flows can be hidden through
framework code, as demonstrated in listing 3. In this ex-
ample, MyActivity is an Android Activity implementing
the standard Activity entry point onCreate. The most
important feature of this code is that the class MyTitle
has an implementation of toString on line 7 that starts an
Activity. Furthermore, the Activity never explicitly calls
this toString method. An instance of MyTitle is passed

to the Android framework on line 18; even at this point,
there are no adverse effects. However, by consulting the
relevant framework code in listing 4, it is apparent that the
subsequent call to enqueue indirectly calls the duplicitous
toString method, thus launching an Activity. Analyzing
the application code without the framework code that it
depends on is insufficient to determine what methods defined
in the application are really called, and summaries are not
sufficient to construct the complete call graph. Treating all
application code as reachable is a safe approximation, but it
sacrifices precision when applications include large libraries
while only using a small portion of the included function-
ality. Furthermore, naively including all of the code in an
application might uncover all IPC calls, but again sacrifices
precision in determining what information can flow to the
affected sinks. Conservatively assuming that all information
can flow to a sink is normally too pessimistic to report to
users because such an approach generates an overwhelming
number of false positives.

3.1 Android Lifecycle Model
Unlike most applications, Android apps do not begin ex-

ecuting from a single main method. Instead, Android ap-
plications are composed of multiple components, each of
which has multiple entry points (called the Android Lifecy-
cle Methods). Some examples are Activity.onCreate and
Service.onBind. User interface event handlers, including
those specified in layouts, are additional entry points called
by the Android system at unpredictable times.
We model an application by creating a synthetic main

method that, for each active component C from the manifest:

1. allocates an object o of type C,
2. calls the default constructor for C on o,
3. sets the Context of o to a unique instance of ContextImpl,

and
4. calls each of the lifecycle methods of o.

We manually set the Context of component objects be-
cause it is not populated by the object constructor. Instead,
the Android framework explicitly assigns one shortly after
reflectively creating the object. Because our analysis is flow
insensitive, we do not need to impose any specific ordering on
the calls to the lifecycle methods, nor do we need to model
the interleaved execution of components. We similarly instan-
tiate layouts defined in application resources and set up calls
from the synthetic main method to: 1) setContentView for
the components that instantiate the layout, 2) the standard
user interface callback methods, and 3) any extra callbacks
specified in application layouts. Our pointer analysis begins
exploring the call graph from the synthetic main method.

3.2 Permissions
We use the summaries produced by the PScout tool of

Au et al. [4] to determine what permissions are used by an
application. Permission-protected methods can be either
information sources or information sinks; however, PScout
does not differentiate. We make the following assumptions
about the PScout summaries:

• permission protected methods that return a reference
type are sources, and
• other permission protected methods serve as sinks for
their arguments.

Furthermore, we treat a number of interfaces related to
permission protected resources specially to capture their
semantics as sources of sensitive information. For example,
we have a summary of the onLocationChanged method of the
android.location.LocationListener interface that marks
location information as sensitive for any type implementing
the interface. While we rely on the PScout summaries, FUSE
can be easily adapted to any suitable descriptions of Android
system permissions.

3.3 Taint Analysis
We introduce a taint label for each source in an applica-

tion in order to track information flows through an appli-
cation from sources to sinks. Permission protected source
methods are annotated with the permission required to in-
voke that method. For example, calls to the getDeviceId
method of the TelephonyManager class are labeled with the
android.permission.READ_PHONE_STATE permission. Param-
eters to methods of permission protected interfaces (e.g.,
android.location.LocationChanged) receive taint labels in
a similar fashion. We also label each Intent that starts a com-
ponent with the class name of the component it started. In-
puts to components must be tainted so that we can track their
flow to sinks. If a component passes its inputs on to other
components through IPC, it can enable subtle flows from
unprivileged applications to more privileged applications—
possibly allowing the unprivileged application to control the
execution of code in a privileged application. We formulate
our taint analysis as a system of set constraints [1] with
taint labels as values in sets and program points and heap
locations as set variables. We use the results of our pointer
analysis to propagate taint labels through heap locations.

3.4 Finding IPC Sinks
With a call graph in hand, our single-app analysis next

finds IPC sinks, which are method calls that send informa-
tion to other components (possibly other applications) in the
system. To find sinks, we rely on sink descriptions that we
extract from the Android platform. Each new version of the
Android platform introduces new APIs for IPC, requiring
limited updates. Our tools are designed to track Android
development while attempting to minimize the manual an-
notation burden for each new Android release.
We manually annotated the basic set of IPC methods in

the IActivityManager and IContentProvider2 interfaces,
which are implemented by or used by all other current IPC
mechanisms. These annotated interfaces are generally not
used directly by Android applications; rather, applications
invoke methods that eventually delegate to these interfaces.
We have a separate tool that propagates these IPC annota-
tions up the call graph of the Android framework code to
create a list of sink methods that can be used for IPC. This
process minimizes the manual annotation effort while still
covering the wide API that applications use in practice.
When a new version of the Android platform is released,

we can re-run this discovery algorithm without having to
manually annotate all of the new methods introduced in the
release. The manual annotations on the IActivityManager
and IContentProvider interfaces need to be updated if they
change from version to version, but they change much less
frequently than the rest of the platform.
2We also include ContentProvider and ContentResolver,
which are also base classes for content provider IPC.

We find sinks by iterating over all of the reachable call
instructions c in an application. If c is a call to a sink method,
we examine its arguments. Each type of sink can expose
one or more of its arguments to the outside world through
IPC, file access, or permission protected resources. For IPC
sinks, that parameter is an Intent, which is the basic unit of
IPC in Android. Each Intent specifies its recipient and can
hold an extra payload of arbitrary data. For each Intent we
record:

• details related to the destination of the IPC3.
• the taint labels reaching the Intent being sent, and
• the name of the calling method.

We record each of these triples in the extended manifest.
This is enough to tell us where each application can send
sensitive information. If no taint labels reach a sink, we know
that the sink cannot expose sensitive information through
IPC.

3.4.1 String Analysis
The destinations of IPC calls are specified through strings.

While these are often string literals, they are sometimes
constructed dynamically at run time. We make an effort
to statically approximate the relevant strings with a string
analysis. Our string analysis is based on def-use chains,
and is thus intraprocedural. However, it is augmented with
information from the points-to analysis to resolve string
values loaded from the heap.
In the cases where we cannot statically approximate a

string determining the destination of an IPC call, we con-
servatively assume it can be sent to any component in the
system.

3.4.2 Parametric Intents
We introduce the notion of parametric communication to

account for inter-process messages that may themselves come
from outside the application. If the Intent destination is an
input to the component, we cannot know what the possible
targets of the Intent are. Instead, we record that the Intent
is parametric and defer resolution until we construct a graph
of the communication between components in a collection of
applications (as described in Section 4).

3.5 Reflection
Our analysis resolves a subset of object types instantiated

through the reflection API, specifically: Class.newInstance.
This is often used to choose between alternative implementa-
tions of interfaces based on the installed Android platform
version. The vast majority of calls to Class.newInstance
are immediately followed by a checked cast to a specific
type. The casts effectively limit the type of the reflectively-
created object, as long as the reference is not used on any
other paths (that do not have checked casts). We use the
types in the casts as an approximation (unless that type
is Object, which would not limit anything). We currently
ignore reflectively-called methods.
A more sophisticated reflection analysis, such as the work

by Livshits et al. [9], could improve our results in some cases.
While a more precise analysis would reduce the number of
cases that cannot be handled, there could always be uses
3For reasons explained in Section 4, we cannot always identify
IPC destinations at this step.

of reflection that stymie any analysis. Ideally, once the
analysis is precise enough, any uses of reflection that cannot
be resolved could be flagged as suspicious.

4. MULTI-APPLICATION ANALYSIS
The multi-application analysis takes as input an appkit—a

collection of apps, including the extended manifest for each
app in that collection. The multi-app analysis produces a
graph characterizing the flow of information between applica-
tions in the appkit k. We construct the graph G(V, E) with
Vertexes V and Edges E in the following way (the functions
match and enrich are defined in Section 4.1 and Section 4.2
below):

1. Add a vertex V for each permission p used in k.
2. For each application a ∈ k, add a vertex to V for each

of sources(a), and sinks(a).
3. For each sink s ∈ V , for each source or permission

c ∈ flows(s), add an edge c→ s to E.
4. For each sink s ∈ V and each source c ∈ V , add an

edge s→ c to E if match(s, c).
5. Until a fixed point is reached:

(a) For each parametric sink p ∈ V , enrich(p).
(b) For each sink s ∈ V and source c ∈ V , add edge

s→ c to E if match(s, c).

After adding the permissions from the appkit, we add indi-
vidual applications to the graph and model the information
flow within each application. In step 4, we seed the graph
with the initial set of inter-application edges representing
simple inter-process communication. The set flows(s) con-
tains all of the sources (components and permissions) that
can flow to s. Recall from Section 3.4 that the destination
of a parametric IPC message depends on the inputs to a
component and cannot be determined in isolation. In step 5,
we resolve parametric information flows by computing a fixed
point over the parametric sinks in G.

4.1 Matching Sinks to Components
The predicate match(s, c) is true if sink s can send IPC

messages to component c. We implement the same matching
rules as the Android run time system4, with one exception:
IPC targets that our string analysis cannot resolve match
all components, as discussed in Section 3.4.1. If s sends an
implicit intent to another component, Android would route
the message to the first component that could handle it, or
possibly prompt the user; we conservatively route implicit
intents to all matching components.

4.2 Enriching Parametric Sinks
A parametric sink, like any other sink, sends a message

to another component. Unlike most sinks, however, the
target of a parametric sink is determined by an input to the
component hosting the sink, c. To find the target components
of a parametric sink p, we must examine all sinks s′ that
send Intents that can flow to p. enrich(p) modifies p by
merging the intents of s′ into the intents sent from p. For
example, if p sends an explicit Intent, the target class names
of the Intents sent by s′ will be added to the Intents sent
by p. The merged set of components (or other fields) are
disjoined—indicating that the parametric sink could send an
Intent to either of the named components.
4Android Intent Resolution: http://goo.gl/f7ISt9

http://goo.gl/f7ISt9

Figure 4: The multi-app graph of application interactions in
F-Droid, scaled to fit on the page.

5. MULTI-APP POLICY EVALUATION
FUSE generates multi-app graphs that are often over-

whelming in their complexity, such as the graph of all ap-
plications in the F-Droid open-source application repository
depicted in Figure 4.
The complexity of interactions between apps can make it

difficult to manually locate all information flows of interest.
To simplify this process, we have introduced a system of
information flow assertions that allow analysts to specify
information flows that are either disallowed, expected, or only
allowed if a specific application is involved at an intermediate
stage. For example, a security analyst may wish to ensure
that no information can flow from the contact list to the
SMS system. Figure 5 (a) shows the assertion that encodes
this policy.
The user is alerted if an appkit violates this policy, and an

example path is provided to demonstrate how the violation
could occur. This path includes the full list of applications
or permissions involved in the information flow from the
starting node to the end.
Alternatively, such a flow may be allowable if the sensitive

information is scrubbed or encrypted before it is transfered
off of a device. For example, the applications on a curated de-
vice could be structured such that all images are sent through
an application that specifically strips geotags from the image
metadata before passing it on for further processing. The
policy depicted in Figure 5 (b) ensures that all information
obtained from methods protected by the FINE_LOCATION per-
mission (which protects access to the GPS) must be processed
by an app (GeoCleaner) before the information can be sent
to any methods protected by the INTERNET permission.

6. SECURITY LINTER
The security linter complements our single-app analysis

by 1) identifying potentially dangerous uses of the Android
framework and 2) highlighting code that the analysis does
not target. The linter can be run quickly at reduced preci-
sion, or in a more precise configuration. The more precise

configuration is essentially free when run with the single-app
analysis, as they share core data structures. The security
linter issues warnings for problems like:

• Component hijacking (as described by Lu et al. [10]),
• Dynamically registered broadcast receivers,
• Known use of insecure credential storage,
• Reflection that FUSE cannot resolve,
• Unused permissions requested in the manifest, and
• Writing to world-accessible files (which allows for trivial
information disclosure)

The individual checks implemented in the security linter
make heavy use of the SSA IR, points-to graph and call-
graph used in the single-app static analysis. We are able
to very quickly add additional security checks to the linter
by reusing these structures that are already necessary to
identify information flows through applications. This sharing
reduces implementation effort as well as analysis runtime.

7. EVALUATION
While application collusion is a growing concern, there are

few tools to actually detect such behaviors and no multi-
app evaluation suites (that we are aware of) available for
comparative analysis. Thus, the following sections focus on
the evaluation of the FUSE single-app analysis, and show
comparisons with Fortify and FlowDroid—two of the leading
single-app static analysis tools. This analysis is inherently
incomplete, as it does not include any of the capabilities
of the FUSE multi-app, multi-app policy, or linter tools.
However, it does demonstrate that the single-app analysis is
comparable with the leading approaches, and as such, is a
suitable base on which to build the higher-level tools that
cannot be compared to existing approaches.

7.1 DroidBench
We have run our tools on the DroidBench test suite, an

Android-specific single-app test suite developed by Arzt et al.
[3] to evaluate their FlowDroid tool. Our results are shown
in Table 1. Compared to FlowDroid:

• Our precision is lower due to our lack of flow sensitivity.
• Our recall is equivalent with one exception: we do not

treat password fields as sensitive information; With im-
proved summaries (perhaps even using the FlowDroid
summaries from SUSI [12]), the FUSE recall would be
higher than FlowDroid’s current performance.

We report false positives on FieldSensitivity4 and Ob-
jectSensitivity2 because FUSE is not flow sensitive. Like
FlowDroid, FUSE is unable to find the leak in IntentSink1
because we do not model the flow of information from
Activity.setResult and Activity.startActivityForResult.

Our analysis reports a false negative on ActivityLifecycle1
due to the nature of our summaries, which are based on the
results of PScout. PScout only records the list of Android
framework methods that are guarded by permissions. We
treat PScout methods that return a reference type as sources
of permission protected information. We consider the rest of
the PScout methods to be sinks for sensitive information. To
cut down on false positives, we assume that receiver objects
do not flow to sinks, while the remaining arguments do. This
assumption causes us to miss the leak in ActivityLifecycle1.
With more precise source and sink summaries, our analysis
could resolve this case.

(a) assert [com.android.contacts] -> [android.permission.SEND_SMS] :: never;
(b) assert [android.permission.FINE_LOCATION] -> [android.permission.INTERNET] :: *. com.example.GeoCleaner *.;

Figure 5: Information flow assertions in FUSE

The private data leaks (PrivateDataLeak1 and Private-
DataLeak2 test whether the analysis treats strings obtained
from password fields in Android as sensitive data. FUSE
does not treat password fields as sensitive data sources and
trivially fails these tests. While it is straightforward to
identify password fields accessed by their unique identifier
assigned in static layout files, a number of Android Views
can be configured dynamically to become password fields.
It is in general difficult to say whether or not an arbitrary
Android View is a password field because this information is
not necessarily available statically. In the absence of robust
static inference of password fields, we are faced with either
reporting leaks of obvious password fields or large numbers
of false positives. Without knowing precisely which View
objects are password fields, reading a value from any text
field in a layout containing a password field would taint the
values in all fields of the layout.

7.2 Sinks Found
In this section, we report on the ability of our single-app

analysis to resolve targets of interprocess communication. In
Table 2, We report for three collections of applications:

• Nexus 4: a collection of 189 applications drawn from
an end-user’s Nexus 4 (including system applications),
running Android 4.4.2, intended to be representative
of a typical user device.

• F-Droid: The complete collection of 1124 unique apps
in F-Droid as of May, 2014.

• Malware: The Malware Genome dataset [15], a collec-
tion of 1260 apks containing assorted Android malware.

For each of these application collections, we calculated:
1) the total number of sinks, 2) the number of paramet-
ric sinks, 3) the number of intents sent from sinks, and 4) the
number of those intents whose targets we are able to re-
solve. The number of intents sent from sinks is less than
the total number of sinks because not all sinks (e.g., con-
tent provider sinks and permission sinks) have an associated
intent. Though our analysis is flow insensitive, our string
analysis is able to resolve at least a prefix of most of the
relevant fields of intents. Furthermore, a small but significant
number of intents are parametric and must be resolved by
the fixed point iteration in our multi-application analysis.

8. RELATED WORK
With the ubiquitous deployment of Android, a number

of projects have investigated security analysis for the plat-
form. The work closest to ours is Epicc [11], which also
considers the multi-application collusion problem. Epicc
reduces the problem to an interprocedural dataflow environ-
ment problem (IDE) [14]. Compared to our work, Epicc
is flow and context sensitive, which should eliminate some
false positives. However, Epicc does not address communica-
tion through content providers, track sensitive information
obtained through permission protected framework methods,
or fully analyze the Android framework code. Furthermore,

we introduce the notion of parametric sinks whose targets
must be resolved through a fixed point computation. As we
discuss in Section 7.2, parametric sinks are not uncommon
in practice.
DroidForce [13] addresses the multi-application collusion

problem with a dynamic enforcement mechanism backed by
a flexible policy language. Under this dynamic approach,
all applications on a device are instrumented with dynamic
checks. If an application attempts an operation that vio-
lates the policy, the operation is denied (i.e., skipped at
the bytecode level). While this can introduce crashes, some
applications can continue despite the denied operation. Like
Epicc, our approach is completely static; static approaches
are most helpful to analysts attempting to understand ap-
plications and developers attempting to secure their own
applications. DroidForce complements static approaches,
providing additional assurance to users, who might have
their own policies; furthermore, the dynamic approach can
compensate for the inability of static analysis tools to reason
about dynamically loaded code.
DroidForce builds on FlowDroid from Arzt et al. [3], which

discovers information flows within individual applications.
FlowDroid casts the problem as an IFDS problem with sup-
port from an on-demand pointer analysis to handle heap
references. Their analysis is field, flow, and context sensitive
with some object sensitivity and is thus very precise. How-
ever, FlowDroid is unsound in the presence of threads, while
FUSE is sound with regard to thread interleavings since it is
not flow sensitive.
The CHEX tool [10] is designed to find component hi-

jacking attacks, which involve applications using unsanitized
inputs from other applications in sensitive method calls. Ap-
plications that expose privileged components with insufficient
permission protection can inadvertently allow malicious ap-
plications to use their services for nefarious purposes. CHEX
uses a flow and context-sensitive dataflow analysis to model
the flow of information through Android applications. CHEX
models Android framework code, but cannot discover the
full call graph for applications like that in listing 3. Our
single-app analysis infers the same types of information flows
as CHEX; thus, our security linter can recognize possible
component hijacking attacks. Additionally, we identify para-
metric sinks that CHEX does not address.
The SCanDroid tool [5, 7] has similar goals and direction

to our work. It is implemented on top of the IBM WALA
toolkit and implements a flow analysis in terms of a simple
constraint system. Their constraint formulation is analo-
gous to our taint analysis, which supports multiple taint
labels. Both SCanDroid and FUSE work on arbitrary An-
droid applications without source code; however, we have
been unable to apply SCanDroid to analyze the full frame-
work due to scalability issues, which prevents SCanDroid
from reaching the precision and recall possible with FUSE.
SCanDroid aims to incrementally evaluate flows as new ap-
plications are installed on devices; our work analyzes entire
appkits at once. In our model of curated collections of ap-
plications, incremental analysis is less important. That said,

*©= correct warning, *= false warning, ©= missed leak
App Name Fortify FlowDroid FUSE

Arrays and Lists
ArrayAccess1 * *
ArrayAccess2 * * *
ListAccess1 * * *

Callbacks
AnonymousClass1 *© *© *©
Button1 *© *© *©
Button2 *©©© *© *© *©* *© *© *©*
LocationLeak1 ©© *© *© *© *©
LocationLeak2 ©© *© *© *© *©
MethodOverride1 *© *© *©

Field and Object Sensitivity
FieldSensitivity1
FieldSensitivity2
FieldSensitivity3 *© *© *©
FieldSensitivity4 *
InheritedObjects1 *© *© *©
ObjectSensitivity1
ObjectSensitivity2 *

Inter-App Communication
IntentSink1 *© © ©
IntentSink2 *© *© *©
ActivityCommunication *© *© *©

Lifecycle
BroadcastReceiverLifecycle1 *© *© *©
ActivityLifecycle1 *© *© ©
ActivityLifecycle2 *© *© *©
ActivityLifecycle3 © *© *©
ActivityLifecycle4 *© *© *©
ServiceLifecycle1 © *© *©

General Java
Loop1 © *© *©
Loop2 © *© *©
SourceCodeSpecific1 *© *© *©
StaticInitialization1 *© © *©
UnreachableCode *

Miscellaneous Android-Specific
PrivateDataLeak1 © *© ©
PrivateDataLeak2 *© *© ©
DirectLeak1 *© *© *©
InactiveActivity *
LogNoLeak

Sum, Precision, and Recall
*©, higher is better 17 26 24
*, lower is better 4 4 6
©, lower is better 11 2 4
Precision p = *©/(*©+ ∗) 81% 86% 80%
Recall r = *©/(*©+©) 61% 93% 86%
F-measure 2pr/(p + r) 0.70 0.89 0.82

Table 1: FUSE DroidBench results. Empty rows indicate
benign tests (no flows exist to be found).

AppKit Nexus 4 F-Droid Malware
Number of Apps 186 2126 1261
Total Sinks 19178 48596 52342
Parametric Sinks 260 346 363
Intent Targets 6338 22573 20238
Resolved Targets 6318 22564 19348

Table 2: Sinks found in a selection of applications

our multi-application analysis usually runs quickly enough
that adding a new application and re-running the analysis is
not prohibitive.

9. CONCLUSION
The danger of Android application collusion is often over-

looked, as single-app exploitation is still a profitable means
for adversarial activity; however, we believe that the per-
ceived difficulty of using multiple applications is much higher
than the actual cost. While we are unaware of any wide-
spread instances of malicious application collusion at this
point, it is difficult to say with confidence that such attacks
are not in active use already. The technologies to detect such
behaviors are just beginning to arise, and the difficulty of
analyzing an entire app store (such as the Google Play Store)
severely limits our ability to ensure that such an attack has
not been deployed.
We believe that the FUSE tools and similar analysis efforts

are making steps in that direction. FUSE incorporates a
state-of-the-art static binary analysis of individual applica-
tions, mitigates the inevitable precision and recall challenges
with a light-weight security lint tool, then leverages the
results from the single-app process to build a multi-app in-
formation flow graph that can be automatically analyzed
against a specified security policy, or explored interactively.

10. ACKNOWLEDGMENTS
This material is based upon work supported by the DARPA

Program Office under Contract No. W31P4Q-12-C-0024.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the DARPA Program
Office.

References
[1] A. Aiken. Introduction to set constraint-based program

analysis. Sci. Comput. Program., 35(2):79–111, 1999.

[2] L. O. Andersen. Program analysis and specialization for
the C programming language. PhD thesis, University of
Cophenhagen, 1994.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. L. Traon, D. Octeau, and P. McDaniel. Flow-
droid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, page 29, 2014.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout:
analyzing the Android permission specification. In the

ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012, pages 217–228, 2012.

[5] A. Chaudhuri. Language-based security on android. In
Proceedings of the 2009 Workshop on Programming Lan-
guages and Analysis for Security, PLAS 2009, Dublin,
Ireland, 15-21 June, 2009, pages 1–7, 2009.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[7] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCan-
Droid: Automated Security Certification of Android Ap-
plications. Technical Report CS-TR-4991, Department
of Computer Science, University of Maryland, College
Park, Nov. 2009.

[8] O. Lhoták and L. J. Hendren. Scaling java points-to
analysis using SPARK. In Compiler Construction, 12th
International Conference, CC 2003, Held as Part of the
Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings, pages 153–169, 2003.

[9] V. B. Livshits, J. Whaley, and M. S. Lam. Reflection
Analysis for Java. In Programming Languages and Sys-
tems, Third Asian Symposium, APLAS 2005, Tsukuba,
Japan, November 2-5, 2005, Proceedings, pages 139–160,
2005.

[10] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX:
statically vetting android apps for component hijacking
vulnerabilities. In the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012, pages 229–240, 2012.

[11] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. L. Traon. Effective inter-component
communication mapping in android: An essential step
towards holistic security analysis. In Proceedings of the
22th USENIX Security Symposium, Washington, DC,
USA, August 14-16, 2013, pages 543–558, 2013.

[12] S. Rasthofer, S. Arzt, and E. Bodden. A machine-
learning approach for classifying and categorizing an-
droid sources and sinks. In 2014 Network and Distributed
System Security Symposium (NDSS), 2014.

[13] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden. Droid-
force: Enforcing complex, data-centric, system-wide
policies in android. In Proceedings of the 9th Interna-
tional Conference on Availability, Reliability and Secu-
rity (ARES). IEEE, Sept. 2014. to appear.

[14] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interpro-
cedural dataflow analysis with applications to constant
propagation. In TAPSOFT’95: Theory and Practice
of Software Development, 6th International Joint Con-
ference CAAP/FASE, Aarhus, Denmark, May 22-26,
1995, Proceedings, pages 651–665, 1995.

[15] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Proceedings of the
2012 IEEE Symposium on Security and Privacy, SP ’12,
pages 95–109, 2012. ISBN 978-0-7695-4681-0.

	Introduction
	Attack Model and Assumptions

	Structure of Android Applications
	Single-app Analysis
	Android Lifecycle Model
	Permissions
	Taint Analysis
	Finding IPC Sinks
	String Analysis
	Parametric Intents

	Reflection

	Multi-application Analysis
	Matching Sinks to Components
	Enriching Parametric Sinks

	Multi-app Policy Evaluation
	Security Linter
	Evaluation
	DroidBench
	Sinks Found

	Related Work
	Conclusion
	Acknowledgments

