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Abstract
As Android is entering the business domain, leaks of business-critical

and personal information through apps become major threats. Due to the
context-insensitive nature of the Android permission model, information
flow policies cannot be enforced by on-board mechanisms. We therefore
propose AppCaulk, an approach to harden any existing Android app by
injecting a targeted dynamic taint analysis, which tracks and blocks un-
wanted information flows at runtime. Critical data flows are first discov-
ered using a static taint analysis and the relevant data propagation paths
are instrumented by a taint tracking code at register level. At runtime the
dynamic taint analysis woven into the app detects and blocks data leaks as
they are about to occur. In contrast to existing taint analysis approaches
like Taintdroid, AppCaulk does not require modification of the Android
middleware and can thus be applied to any stock Android installation. In
this paper, we explain the design of AppCaulk, describe the evaluation of
its prototype, and compare its effectiveness with Taintdroid.

1 Introduction
With Android apps being increasingly used for business purposes, the threat of
sensitive data leaking from a smartphone becomes prevalent. For example, we
applied a dynamic taint analysis to the 10,000 most popular Android apps (taken
from the Google Play Store, as of December 2013) and found out that every
twentieth app sends out the phone’s IMEI immediately at startup. However,
the actual amount of apps leaking further personal information under some
conditions at runtime is potentially much higher.

The Android permission model is not designed to cope with unwanted in-
formation flows. Though it allows fine-granular access control to APIs, it is
context-insensitive and thus does not allow the user to specify which type of
data may be sent to a specific API.

To cope with information leaks, several approaches have been proposed and
some practically applicable solutions exist. Most of them refer to container-
based approaches where either applications are wrapped in a “security container”
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or domains are isolated at kernel level (see [13, 4]). These approaches are how-
ever context-free, as they do not keep track of individual data flows but rather
apply a perimeter security, either at API or OS level.
Dynamic taint analysis, in contrast, monitors how data is handled by an ap-
plication and detects when an unwanted flow from a specific data source (e.g.,
the address book) to a specific sink (e.g., a socket) is about to occur. The most
prominent representative of this class is Taintdroid [7], a system which applies
a modified Android middleware to trace data flows during execution of an app.
While Taintdroid is able to reliably detect data flows as they occur, its require-
ment to modify the Android middleware makes it unattractive for the average
business user, as she would have to replace her original Android image with a
custom Taintdroid-image and thereby void guarantees.

To overcome this limitation, we present an approach for tracing unwanted
information flows in Android apps, which can be applied to any app and does
not require modifications to the underlying middleware, thereby making it ap-
plicable to every stock Android installation. Our approach aims at weaving a
targeted dynamic taint analysis into the bytecode of an app. The weaving is
guided by a static data flow analysis which first identifies paths of potentially
unwanted data propagation which will be subject to the instrumentation. In
combination with a simple policy language, our approach becomes extensible
and can be configured to detect different types of data leaks.

To summarize, our contributions are as follows:

• A policy language to specify illegitimate data flows, the taint propagation
logic, and countermeasures to be taken once a data leak is detected at
runtime.

• A policy-driven bi-directional static data flow analysis of Dex bytecode,
considering border cases like exception handling and data propagation
over resources outside of the actual bytecode.

• A Dex bytecode instrumentation which injects a dynamic taint analysis
along the previously identified data propagation paths.

To evaluate our approach AppCaulk, we applied AppCaulk to the most
popular Android apps and assessed its effectiveness against a manual dynamic
taint analysis using Taintdroid. As a result, AppCaulk was able to find and fix
the majority of data leaks (approx. 80%) in a non-assisted manner.

The remainder of this paper is structured as follows. In Section 2 we first
give an overview of our approach. In Section 3 we describe the data flow policy
and in Section 4 how it controls the static data flow analysis, including taint
propagation over resources outside of the actual bytecode. Its results guide the
injection of a dynamic taint analysis, which is described in Section 5. Section 6
presents the results of the practical evaluation, Section 7 reviews work related
to ours, and Section 8 concludes the paper.
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2 Approach overview
The aim of this work is to discover and block data leaks in Android apps in
hybrid way, i.e. by combination of static and dynamic techniques. In the
following, we regard an Android application as a directed graph P of basic
blocks, where each basic block is made up of n ≥ 1 consecutive statements s ∈ S
(S denoting the set of statements). Each basic block ends with a statement
where the control flow diverges, for instance a conditional branch. Statements
relate to single lines of bytecode, starting with an opcode and followed by a
number of opcode-specific registers or constants.

A potential data leak is imposed by a directed, non-cyclic subgraph of P ,
leading from a source i ∈ S of sensitive information (e.g., reading from a contact
data provider) to an untrusted sink o ∈ S (e.g., sending data to a server).

In order to discover data leaks at runtime, a naive approach of applying a dy-
namic taint analysis would be to wrap every single statement of the application
with monitoring code to track the status of all variables. This would obviously
result in a drastic performance deterioration, because the number of statements
would be more than tripled and we would have to maintain the taint state of
every single variable in the application. Luckily, in most cases only a fraction of
all possible execution paths and variables will be relevant for the data leaks to
control. We take advantage of this fact by first performing a static inspection of
the application bytecode to choose only relevant code fractions and, afterwards,
insert the minimum subset of instructions to counter data leakages.

The first task is to define what is the data leak to be detected. This can
either be direct, if the respective information is sent out to an untrusted sink
as a whole, or indirect, in case the information is for example sent to an intent
which is received by a different part of the app. Since data leakages can happen
in very diverse ways, we provide a configurable policy to characterize them.
Therefore, the first step is to define the leak (and required countermeasures)
using our policy. Such a policy will govern the next steps of our approach,
particularly the data flow analysis and the instrumentation.

After the policy description, the application itself is analyzed. First, the
application is disassembled and divided into the main execution blocks. Based
on these blocks, the data flow analysis is performed. For this purpose, the anal-
ysis traverses the code twice – in a backward slicing step, we determine the
execution paths leading to the sinks and eliminate statements not relevant for
data propagation to the sink. In a second step, we apply a forward slicing to
further eliminate all paths not starting at sources. To perform these actions, a
propagation logic is defined. This logic is composed of rules that specify for each
opcode how sensitive data is propagated from one register to another. There-
fore, these rules are based on the well-known taint propagation concept [12],
specifying how registers get tainted or untainted. To offer full flexibility, user-
defined propagation rules can also be included into the aforementioned policy.
They may also contain different taint levels, thus enabling classifying data by
different protection levels such as “personal information” or “confidential”.

The next step is to instrument the program in a way that it tracks such flows
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and handles data leaks. Nevertheless, as this activity depends on the register
type of the leaked data, a type inference task is carried out. Using this informa-
tion, the instrumentation injects the appropriate action into the bytecode just
before data from a tainted register is about the leak to a sink.

After the instrumentation step, the application is hardened and can be run
on Android devices without the fear of data leakages. For this purpose, the
modified application code is assembled, packed and signed.

3 Policy definition
The main degrees of freedom in data leak prevention are the definitions of “un-
wanted data flows” and the countermeasures to be taken. They cannot be set
universally, but should rather be available in the form of profiles, a user can
choose from. We thus apply a policy-based approach which allows to describe
any use-case-specific information in the form of rules:

Sources. Sources of sensitive information, denoted by statements indicating
either program entry points or method invocations. For method invocations,
each return value is considered tainted using the configured tag. We allow
any substring of the fully qualified method name and its parameters here. For
example:
Landroid/telephony/TelephonyManager;->getDeviceId()Ljava/lang/String;[TAG_IMEI]

Sinks. Untrusted sinks to which sensitive data must not leak, denoted again
by statements of the respective method invocations, and the index of parameters
to which tainted data must not leak. For example:
Lorg/apache/http/client/HttpClient;->execute(Lorg/apache/http/client/methods/

HttpUriRequest;)Lorg/apache/http/HttpResponse; [0]

Tags. A lattice of a set of tags to classify tainted data. For example:
TAINT_IMEI, TAINT_GPS, etc.

Propagate. A function defining for each statement how tags are propagated
from input registers to output registers, denoted by the register’s position. E.g.:
aget: 0:L ← 1:L|2:L
(aget vx,vy,vz gets the object at index vz from the array vy and puts it into
vx. The propagation rule states that when either the index or the array is
tainted with taint level L, the output will be tainted as well)

Untaint. A function asserting for each statement how tags are untainted.
This is analogue to setting the target taint level to ∅ in a propagate rule.

APIPropagationRules. Not all functions can be completely examined
when only operating on bytecode, since at some level, they can use native code.
These rules specify how tainting is propagated for such functions. If an API
function is not configured, but cannot be analyzed due to native code usage,
our framework assumes all registers as tainted. Therefore, all potential data
leakages through native code are considered.
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sink
invoke-static v1, [...]

Potentially marked: [v1]

location2
const/16 v1, 0x1
Potentially marked: []

location3
if-ne v1, v2, ∶ location2

Potentially marked: [v1]

location1
add-int v1, v1, 0x1
Potentially marked: [v1]

Figure 1: Potential taint propagation to a sink

Countermeasure. The action to be taken when a data leak has been de-
tected at a sink, denoted by its fully qualified method name. The method’s pa-
rameters are not given here as they are determined by the CounterMeasureHandler
interface and filled with relevant data such as the current program counter, the
tainted register, taint level, etc. For example:
<sink>:L AskForUserConfirmation
(When method <sink> is about to be called with a register having taint level L
or higher, a method to open a user confirmation dialog is invoked. If the method
returns true, execution continues, otherwise the program exits)

Such rules can be bundled in profiles, selectable by the user, such as “pre-
vent personal information leakage to the Internet” or “require encryption for
persistent storage” and allow us to adapt the propagation logic to capture even
stricter variants, such as control- flow-based information leaks.

4 Static data flow analysis
Given the information stated in the policies, we can now apply a static data flow
analysis, whereas we have to consider some challenges specific to the Android
OS.

We apply a bi-directional inter-procedural data flow analysis and slice the
program code accordingly to extract only the statements which are relevant for
data propagation from sources to sinks. During the analysis, we also consider
propagation channels which lie outside of code execution, such as propagation
over files or sockets. We refer to these situations as external tunnels. Section 4.2
describes how we deal with them.

4.1 Backward Slicing
The goal of the analysis is to annotate each location (i.e., line of code) in each
function with a list of registers which could potentially leak their values to a
sink, if the respective code path is executed.
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Backward analysis

The analysis uses a worklist algorithm, similar to [6], to create a list of relevant
registers at each location, starting at all sinks which are defined in the policy,
such as
Lorg/apache/http/client/HttpClient;->execute(Lorg/apache/http/client/methods/

HttpUriRequest;)Lorg/apache/http/HttpResponse;[0]

The policy also defines which sink parameters must be considered as leaks (pa-
rameter 0 in this example, referring to the HttpUriRequest) – they are initially
marked as relevant. We now step back in the control flow graph (CFG), mark-
ing further registers with their taint status according to the propagation logic
defined in the policy. For instance, for the instruction move v1, v2, the prop-
agation logic assigns the taint state of the source register v2 to the destination
register v1.

Whenever the register is untainted on an execution path, we remove it from
the list of relevant registers. Consider the simple control flow depicted by Fig-
ure 1: at the sink, register v1 is marked as relevant, but as we step backwards in
the CFG, location2 assigns a constant value to it, thereby rendering it irrelevant
for data leaks.

During the backwards analysis, we create the CFG on-the-fly and follow
all function calls available in the classpath. Besides the application code, this
includes all Android APIs and their implementations in the framework.jar file.
However, some Android APIs (and in some cases, application methods, too) are
implemented as native code and invoked over JNI. As these methods cannot be
further analyzed, we cover them by fixed propagation rules defined in the policy.

As for Android 4.3, we identified 3600 natively implemented framework func-
tions. The majority of them is however not relevant to data flow tracking, as
they either take no parameter or do not return a value. Thus, 1339 native
framework functions remained to be covered by propagation rules. They in-
clude many overloaded and thus redundant functions, differing only in their
parameter types, such as sqrt(D):D and sqrt(F):F, thus making the definition
of fixed propagation rules feasible.

Apart from straightforward taint propagation over local registers, some fur-
ther cases have to be handled:

• Member variables: If a member variable (static or not static) is read at
a location (e.g. sget v1, L/[...]->MEMBER), this member variable is
considered relevant, and all locations where this variable is written are
added to the worklist.

• Wide operations: Dex bytecode includes several 64 bit instructions oper-
ating on two successive 32 bit registers. These operations are only called
with one part of the register pair, while the second one is implicitly used.
For example move-wide v1, v3), applies to four registers from v1 to v4.
These instructions must thus be treated respectively in the propagation
logic.
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• Coupled locations: Some atomic operations comprise multiple consecutive
statements. For example, method calls consist of one statement for the
call and a second one for assigning the return value to a register. This has
to be reflected when parsing statements during the analysis.

The backward analysis will terminate when no statement has been added to
the worklist and no taint marking has changed in the previous iteration. At this
point, we have a slicing of the program containing all control flows along which
data may be propagated to a sink.

Forward analysis

To ensure that only critical data is considered, we now apply a forward analysis
starting at all sources. Here, the source definition from the policy is used, which
contains critical method calls and the taint level with which the return value
of the call will be tagged. For example, the following line assigns the taint tag
IMEI to return values of the method getDeviceId().
Landroid/telephony/TelephonyManager;->getDeviceId()Ljava/lang/String;[TAG_IMEI]

Creation of annotations

Finally, we merge the results of forward and backward analysis and create an-
notations for each relevant line of code, which guide the subsequent instrumen-
tation.

The merging algorithm for a simple case takes the result of the forward and
backward analysis as input, and considers all locations which appear in both
locations. The algorithm then states if the line can mark or unmark variable,
and stores this information in an internal data structure, which is used by the
instrumentation in the next step.

In reality, the merging algorithm has to deal with some more complex issues,
which are only briefly explained here:

• method calls: tainted parameters need to be marked inside a method
before the first statement

• method returns: taint states of return values need to be mapped to the
registers to which the return values are assigned in the caller.

• member variables: tainted member variables have to be stored and and
read on a per-instance basis.

• exception: taint states may propagate over exception handlers

4.2 Addressing external tunnels
The described forward and backward techniques rely on the logical path that
may be traced for a given piece of information throughout the analyzed applica-
tion. Apart from propagating register values, there may exist additional paths
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to forward critical data from sources to sinks, which we aim to capture. We
refer to these paths as external tunnels.

External tunnels may rely on files, databases, content providers, SharedPref-
erences containers, intents and broadcast receivers (Figure 2). In order to build
such a tunnel, it is necessary to first send the data to be leaked to the external
instrument (e.g., a file). Afterwards, in any other part of the application, an
information retrieval is performed. To the best of our knowledge, many of these
data leaks have not been addressed previously.

In order to address external tunnels, we extend the CFGof the aforemen-
tioned analysis. In the case of files, whenever a file write with a tainted value is
found in the forward analysis, all file reads in the whole application are added to
the list of instructions to analyze and the result of the file reads are potentially
tainted as well. Similarly, if a tainted file read is found in the backwards anal-
ysis, all file write operations are queued to be processed and their parameters
are tainted accordingly. The same process is applied for databases, connecting
insert and query operations. Also, the same methods are connected when they
are related to content providers and a tainted ContentV alue is at stake. With
respect to the shared preferences file (SharedPreferences class), the meth-
ods involved in external tunnels are put and getString (and any other get-*
method defined for the class). Regarding intents, the methods startActivity
and getIntent are linked to each other.

One special situation is that of broadcast receivers (BroadcastReceiver
class), where we consider sendBroadcast as the insertion operation. As opposed
to the previous cases, however, no predefined retrieval operation exists. Rather,
once a broadcast receiver is gathered by the application, the onReceive method
is invoked and data is retrieved by methods which are specific to the implement-
ing class. Therefore, we assume the first line of the onReceive method as the
retrieval operation and add it to the processing queue when a sendBroadcast
has been found before. With respect to the backwards analysis, whenever the
process reaches the beginning of the onReceive method, all sendBroadcast op-
erations are added to the list of instructions in which the analysis will continue.

One limitation of the approach is its heuristic nature when addressing files.
Precisely tracking file handlers is not possible at bytecode level, as files can be
moved or modified outside of the application’s bytecode, e.g. by native code
or the OS itself. Therefore, we overapproximate by considering every file read
after a file write has occurred, not differentiating between individual file names.
Although this may lead to false positives, this decision ensures that no potential
data leakages are missed.

5 Bytecode instrumentation for dynamic data flow
tracking

As a result from the static analysis, we receive all statement locations and
relevant registers, along with the registers’ taint states that are on the paths
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Figure 2: External tunnels management
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from all sources i ∈ S to each sink o ∈ S and may have an effect on data
propagation from source to sink. That is, we create a set T ⊆ S of taintable
statements, such that applying the propagation logic to each t ∈ T results in a
propagation path from i to o, no statement t′ /∈ T exists on any propagation
path. We are now ready to instrument the application so it includes a taint
analysis along these paths, and only these paths.

In this section, we describe the procedure of Dex-bytecode instrumentation
and the challenges to overcome.

5.1 Type Inference
To correctly interpret the registers during taint propagation, we have to infer
their types to distinguish between reference and non-reference registers. This
distinction is required in order to construct valid statements that will pass An-
droid’s bytecode verifier. Inferring the type of a register is trivial for a statement
like the following, which reveals that v2 is an integer and v3 is a string.
invoke-static {v2, v3}, L/Testing;->test(I L/java/String;)V

Dex bytecode is not strictly typed and thus, type information must be in-
ferred from a statement’s context. For example, the following statement is type-
sensitive at the time of execution, but does not reveal any typing information
about v2 or v3 at bytecode level:
move v2, v3

To solve this problem, we infer types from use-definition chains created dur-
ing the intraprocedural static analysis. For each method we first run from the
return point to the start of the method and remember all register types. At the
method start, we infer the remaining register types from the method header.

5.2 Runtime stack tracing
In order to achieve a precise context-sensitive data flow tracking, we need infor-
mation about the instance of a method’s caller at runtime.

Unfortunately, Dalvik does not include information about instances in the
stack trace. Although it is possible to inspect a stack trace, references to the
specific instances are not made available by the Dalvik VM and it is therefore
not possible to determine whether a method has been invoked from an instance
A or B of the same class.
As this information is required for the context-sensitive data flow analysis, we in-
strument the app’s bytecode, so as to create a custom stack trace which includes
all information we need. Along the critical data paths and for each thread, we
create a global custom stack and push the caller’s instance onto it just before
a method call. After returning from the call, the caller’s instance is removed
again from the stack.

We then use this detailed custom stack in our tracing code and check whether
the parameters of a method have been tainted in the caller’s instance.
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5.3 Register count
Dalvik is a purely register-based machine, so we have no choice of allocating ad-
ditional memory for the dynamic tainting analysis, other than reserving further
registers. This needs to be done at the time of instrumentation, because Dalvik
does not allow to dynamically allocate registers at runtime. In practice, this
leads to some difficulties, as many opcodes can only reference registers with 4-
bit addresses, so when extending the number of registers in a method, we need
to ensure that we comply to the opcode’s restrictions. We therefore rewrite
the respective statements and either replace the opcode with a semantically
equivalent one, which supports registers beyond 4 bits (e.g., invoke-direct is
replaced by invoke-direct/range), or swap the relevant registers with some
of the lower 4-bit range.

5.4 Injecting dynamic taint analysis
In order to trace the taint state of each relevant register, we track them in a
global tainting table. This is done by inserting a call to our taint tracking code
before or after each statement in the data flow graph (DFG) and passing all
relevant registers to it. The DFG is the result of the previous static analysis.
Depending on the type of annotation for the location, the call to our code needs
to be inserted before or after the statement.

In the taint tracking code, we then turn each register into a globally unique
identifier and set its taint state as indicated by the static data flow analysis.
This includes the tag that is given to a variable at each sink. Using this tag, we
can e.g., display the type of data that is about to leak.

The taint tracking code also requires the results of the type inference: when
passing registers to the taint tracking code, we need to know the type of the
register in order to call the tracking method with the appropriate signature.
While most non-matching types could be handled by proper casting in the taint
tracking code, Dalvik distinguishes between ref and non-ref registers at bytecode
level (i.e., references and primitive types). Correctness of these types is checked
during the pre-verification in the bytecode verifier, which is invoked by the main
ClassLoader already at the time of installation. So, it is not possible to handle
mismatching types at run time in our code, as the application would not even
install. Further, the alternative of switching off the verifier is not an option for
our approach, since we aim at a solution that does not require any modification
of the Android platform.

Since we have added the above-described type inference into the static anal-
ysis phase of our framework, we can now use this information to properly dis-
tinguish between ref and non-ref types.

5.5 Handling policy violations
Just before the call to a sink method, a handler is inserted that checks the
current taint status of the parameters that are passed to the sink and takes
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countermeasures, if a tainted value is about to leak.
Of course, it is possible to simply prevent the sink from being called or to

terminate the program. However, in order to increase user experience and sta-
bility of a hardened app, it is helpful to provide access to the GUI context of the
application. This way, a policy handler can display dialogs and ask the user for
confirmation. This requires the handler to access the application context object,
which is not accessible from a static method. We therefore instrument the main
activity of the app so it provides static access to getApplicationContext().

6 Evaluation
AppCaulk has been implemented as a Python-based tool, which analyzes and
modifies Android apps and runs on a standard Linux system. The input to
AppCaulk is an Android APK file, which is statically analyzed and subsequently
instrumented according to the findings from the data flow analysis, as detailed
in Section 4 and Section 5.

In a first step of our evaluation, we implemented a simple app with some
exemplary data leaks. This toy example includes reading the IMEI and tele-
phone number and leaking them to an online server, under certain conditions.
The data propagation path includes methods of the app itself, the Android
framework, exception handlers, and file read/writes.

source {
Landroid/telephony/TelephonyManager;->getDeviceId()Ljava/lang/String;

[TAG_IMEI]
Landroid/telephony/TelephonyManager;->getLine1Number()Ljava/lang/String;

[TAG_PHONE]
...

}

sink {
Lorg/apache/http/impl/client/DefaultHttpClient;-><init>[0]
...

}

Listing 1: Example policy

The policy has been set up to prevent such data leaks, and includes the exem-
plary sources and sinks shown in Listing 1.

The propagation rules are configured in the policy as described in Section 3.
As a countermeasure, AskUserConfirmation is used, which checks at each sink
if the specified parameter is tainted, and only if this is the case, displays a GUI
dialog to ask the user for confirmation, as shown in Figure 3.
Since we use taint tags to track the type of data being leaked we know that the
app is about to leak the IMEI and can inform the user accordingly.
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Tested applications AppCaulk Taintdroid

Package name Sources Sinks Methods Data leakage? Data leakage?

com.rhmsoft.fm 0 62 14514 No (no sources or sinks) n/a
cn.wps.moffice_eng 1 29 39152 * Not achieved

com.facebook.pages.app 1 4 36171 Yes Yes
com.mobisystems.office 2 30 48308 Yes Yes

com.allesklar.job 1 26 3492 No Not achieved
de.arbeitsagentur.jobboerse 0 0 7587 No (no sources or sinks) n/a

com.dataviz.docstogo 2 22 17748 Yes Not achieved
com.estrongs.android.taskmanager 1 10 1647 No Not achieved

com.netqin.ps 7 43 14355 Yes Yes
com.indeed.android.jobsearch 0 8 2777 No (no sources or sinks) n/a

at.tomtasche.reader 0 19 8260 No (no sources or sinks) n/a
com.splashtop.remote.pad.v2 0 9 13560 No (no sources or sinks) n/a

com.box.android 1 53 37023 No Not runnable in emulator (crash)
com.dynamixsoftware.printershare 3 55 13170 Yes Not achieved

com.allesklar.lehrstellen 1 34 6152 No Not achieved
com.monster.android.Views 0 10 13101 No (no sources or sinks) n/a

com.mobisystems.editor.office_with_reg 2 30 48709 * Not achieved
mobi.infolife.smsbackup 0 3 1265 No (no sources or sinks) n/a

de.joergjahnke.documentviewer.android.free 0 14 2436 No (no sources or sinks) n/a
cn.wps.moffice_i18n 1 27 39649 * Not achieved
com.olivephone.edit 1 43 48811 No Not achieved

com.scout24.jobs 0 6 4925 No (no sources or sinks) n/a
com.tux.client 0 7 2564 No (no sources or sinks) n/a

com.rhythm.hexise.task 0 9 1128 No (no sources or sinks) n/a
com.threebirds.wordreader 1 39 5148 No Not runnable in emulator (crash)

com.stoik.mdscanlite 2 25 2508 Yes Not runnable in emulator (not installed)
de.aok.gehaltsrechner 0 14 830 No (no sources or sinks) n/a
im.ecloud.ecalendar 6 72 20327 Yes Yes
com.intsig.BCRLite 7 39 11531 Yes Not runnable in emulator (crash)

com.hi.applock 2 12 9353 No Not achieved
com.netqin.mm 7 49 9615 Yes Not runnable in emulator (crash)

com.threebirds.excelreader 1 39 5080 No Not runnable in emulator (crash)
mobi.infolife.installer 0 30 9981 No (no sources or sinks) n/a

com.sic.android.wuerth.wuerthapp 1 22 3742 Yes Not achieved
de.interaid.heizoel24 0 7 4329 No (no sources or sinks) n/a
com.citrix.Receiver 17 32 27562 Yes Not achieved

de.sandnersoft.Arbeitskalender_Lite 0 9 3514 No (no sources or sinks) n/a
com.samapp.excelcontacts.excelcontactslite 4 5 6913 No Not runnable in emulator (crash)

com.tf.thinkdroid.amlite 1 35 31604 No Not achieved
soma.de 0 12 3309 No (no sources or sinks) n/a

com.nitrodesk.droid20.nitroid 5 47 35735 * Yes
com.cisco.anyconnect.vpn.android.avf 2 2 4229 No Not runnable in emulator (crash)

com.wyse.pocketcloudfree 0 35 13370 No (no sources or sinks) n/a
com.zero8timetracking.timesheeter 0 27 16254 No (no sources or sinks) n/a

com.IQBS.android.app2sd 0 11 1395 No (no sources or sinks) n/a
com.ups.mobile.android 1 16 20125 No Not achieved

com.infraware.polarisoffice.entbiz.gd.viewer 1 21 16493 No Not runnable in emulator (requires PIN)
com.threebirds.officereader 1 43 5088 No Not runnable in emulator (crash)

Table 1: Effectiveness comparison AppCaulk versus TaintDroid

13



Figure 3: Injected AskUserConfirmation Message

6.1 Discussion of Performance Impact
One of our goals when combining dynamic taint analysis with a static data
flow analysis was to limit the overhead caused by instrumented statements.
Assuming that we had followed a naive approach, we had to instrument each
statement with the taint tracking code, had to put every single method call
onto our customized runtime stack, and had to rewrite all statements accessing
registers which had moved beyond the 4 bit range during the instrumentation.
Only adding the taint tracking code would have increased the bytecode by factor
three (storing the current method, the current register, and invoking the tracking
code). Pushing and popping caller objects from the stack would again add two
statements per method call. Further, the rewriting of registers can take up to
eight additional statements per instruction, when registers have to be swapped.
Thus, we would have ended up with an application which would be at least three
to five times larger than the original one – obviously not a desired outcome.

Limiting the instrumentation to only those statements that have been identi-
fied as relevant during the static data flow analysis results in a drastic improve-
ment, as illustrated by the example of our toy app. Although being very small,
this app serves well as a benchmark, because it can be considered the worst
case in terms of overhead, doing almost nothing besides leaking data. The app
contains 371 statements, which all would be instrumented if no a-priori knowl-
edge of possible data flows would exist. Since we perform such analysis, only
39 statements need to be instrumented. This means, we can leave more than
89% of the original statements untouched in our testing app, which results in no
noticeable performance impact when it is executed. Since we only instrument
paths that can potentially leak data, all other paths are not influenced. Besides
the actual modification of the app’s bytecode, AppCaulk adds a fixed overhead
of 1100 lines of code for the tracking and the AskUserConfirmation message.

Compared to a naive approach which would inflate apps to a triple to quin-
tuple of their size, this shows how AppCaulk achieves a much lower overhead.
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6.2 Effectiveness analysis
Applying AppCaulk just to our simple example app would obviously not allow
us to make any statements about its practical applicability and its effectiveness.
We thus applied AppCaulk to the 48 most popular Android applications in the
German Google Play market as of July 2013. Given that TaintDroid can also
identify data leaks in Android applications, we compared our prototype with
this approach.

In order to compare both proposals, the AppCaulk prototype was configured
to have getDeviceId as source (which indicated the reading of the device’s
IMEI). To configure the sinks, the permissionmap [11] was consulted, and all
API calls which need the INTERNET permission were considered as sink. In
this way, all potential leakages of the IMEI to the Internet are considered. This
type of leak is also considered by TaintDroid.

Table 1 summarizes the achieved results. The comparison procedure was
composed of two steps. First, all applications were analysed by the AppCaulk
prototype. The analysis took 7656,2 s. in mean and four applications did not
finish their analysis (noted by * in Table 1). This figure highlights the need to
further improve AppCaulk in the future.

The second step was to manually execute them in the TaintDroid environ-
ment. In case they did not have any source or sink, they were not considered.
This issue happened in 19 out of 48 applications. The goal of this step was to
achieve the same result as that of our prototype concerning data leakage de-
tection – if our prototype detected a potential data leakage, it should also be
detected by TaintDroid. From the 29 remaining apps only 19 were successfully
installed. As 4 of them were not analysed by our approach, 15 cases can be
effectively compared. According to the results, most of these applications (12
out of 15) got the same detection result using both approaches and only 3 were
false positives. Apart from them, application com.netqim.mm is also successful
since AppCaulk detected a data leak which is already announced in its terms
of use. It must be noted that no false negatives have been found. Therefore,
results confirm the effectiveness of our prototype – no data leakages were missed
and a reduced amount of false positives appeared.

7 Related Work
Security research on Android apps has been a popular area in the past few years
and a number of publications related to ours have been published.

In parallel and independently from us, Zhang and Yin have published similar
work on instrumenting Android apps for limiting data leaks [15]. The main
difference between AppCaulk and the solution in [15] is that AppCaulk includes
heuristics to deal with data flows through external channels, i.e. across execution
contexts. Further differences lie in details such as instrumentation at different
levels (smali assembler in AppCaulk, Jimple IR in [15]).

AppGuard [1] and Aurasium [14] aim to bring more fine-granular and cus-
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tomizable security policies to apps. AppGuard revokes permissions of an app
by rewriting its bytecode. Aurasium inserts monitoring code into the app and
requires modifications of the Android middleware to trace and block the moni-
tored code. Mockdroid [3] also modifies the Android OS, but aims at “mocking”
data sources with dummy content, rather than blocking access to them.
Just like AppCaulk, TaintDroid [7] discovers flows of sensitive data at runtime.
In contrast to our approach, it does so by weaving a dynamic taint analysis
into the Dalvik VM and other parts of the OS. Consequently, this makes it
difficult to apply TaintDroid to selected applications only or in scenarios where
installation of a custom TaintDroid-image on a phone is not an option.

SCanDroid [9] builds upon the WALA code analysis framework to run a
static data flow analysis and evaluate its results in the context of the permis-
sions required by the application’s manifest file. A modification of the bytecode
was however not the goal of the authors. It should further be noted that the
choice of Wala for static analysis raises some difficulties as Wala operates on
Java source code or JVM bytecode only.
A more promising choice is Soot [10], which is a program analysis and opti-
mization framework for Java. In combination with Dexpler [2], a bi-directional
translation from Dex bytecode to the internal representation of Soot, the frame-
work can also be applied to Android apps. FlowDroid [8] is a purely static data
flow analysis tool including Android-specific propagation channels via callback
functions. Our approach differs from FlowDroid in that we amend the static
analysis with injection of a dynamic taint analysis so that we are not only able
to discover potential data leaks, but also prevent them at runtime. Further, the
dynamic part of our solution tracks data propagation even outside of the actual
code, such as File I/O. Nevertheless, FlowDroid’s callback-aware flow analysis
could be combined with AppCaulk’s static data flow part.
Though not dealing with Android apps, the work of Chang et al. [5] is the one
closest related to ours. The authors propose a framework for statically analyzing
C programs and instrumenting the program at locations where policy violations
might occur. Chang et al. detail some specific problems and show that their
system produces low overhead. In contrast to our framework, they operate at
C code and not on the binary itself, thereby making the approach not suited
for a fully automated blackbox analysis and instrumentation of third-party ap-
plications, as we seek to achieve.

8 Conclusion
In this paper we presented AppCaulk, a framework to harden Android apps by
instrumenting them along critical execution paths with a dynamic taint anal-
ysis. AppCaulk is able to detect and prevent data leaks by tracing data flows
from sources to sinks. Contrary to existing dynamic taint analysis approaches,
AppCaulk operates directly on dex bytecode of an app and does not require
modifications of the underlying Android platform. This way, AppCaulk is ap-
plicable on any app and any stock Android platform.
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Our practical evaluation has shown that the effectiveness of AppCaulk is
slightly better than TaintDroid at a low false positives rate. While the initial
data flow analysis of an app may require a significant amount of time, the actual
performance overhead at runtime is imperceptable.

Our future work will deal with further precision of sources and sinks which
are defined by context-sensitve patterns rather than single statements and with
closing gaps in the data flow tracing by dynamic code loading and reflection.
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