
Modelling Analysis and Auto Detection of
Cryptographic Misuse in Android Applications

Shao Shuai*1, Dong Guowei*1, Guo Tao*1

*1China Information Technology Security Evaluation Center
Beijing, China

shaoshuaib@163.com, dgw2008@163.com,
guotao@itsec.gov.cn

Yang Tianchang*2, Shi Chenjie*2

*2Beijing University of posts and telecommunications
Beijing, China

gunzai-00@163.com, happy_chengjie@bupt.edu.cn

Abstract—Cryptographic misuse affects a sizeable portion of
Android applications. However, there is only an empirical study that
has been made about this problem. In this paper, we perform a
systematic analysis on the cryptographic misuse, build the
cryptographic misuse vulnerability model and implement a prototype
tool Crypto Misuse Analyser (CMA). The CMA can perform static
analysis on Android apps and select the branches that invoke the
cryptographic API. Then it runs the app following the target branch
and records the cryptographic API calls. At last, the CMA identifies
the cryptographic API misuse vulnerabilities from the records based
on the pre-defined model. We also analyze dozens of Android apps
with the help of CMA and find that more than a half of apps are
affected by such vulnerabilities.

Keywords—Modelling Analysis; Cryptographic Misuse;
Vulnerability; Android.

I. Introduction
Mobile applications store a large number of users’

sensitive data, such as username, password, location, credit
card number, chat log and so on. Many mobile application
developers use cryptography to protect the confidentiality,
integrity and authentication in their apps. In theory,
cryptography can provide a good protection for the sensitive
data storage, transmission and user authentication,
authorization. Unfortunately, many developers didn’t use the
cryptographic algorithms in a correct way. Veracode[1]
detected the cryptographic defects in the source codes of
mobile applications and concluded that cryptographic issues
affected a sizeable portion of Android (64%) and iOS (58%)
applications. With Android phones being ubiquitous, Android
apps have become a worthwhile target for security and privacy
violations. Attacker may take advantage of the cryptographic
misuse vulnerabilities to acquire sensitive information of
users’, or even for targeted attacks.

Recently, a number of efforts have been made to
investigate the cryptographic misuse problem. In 2008,
Bhargvan et al.[2] concerned on the security protocol of TLS,
they relied on a combination of model-extraction and
verification tools, and implemented automated symbolic
cryptographic verification and computational cryptographic
verification. Fahl et al.[3] attempted to better understand the
potential security threats posed by Android apps that use the
SSL/TLS protocols to protect data they transmit. They created
MalloDroid, an Androguard extension that performs static
code analysis to analyze the apps' vulnerabilities against Man-

in-the-Middle (MITM) attacks due to the inadequate or
incorrect use of SSL. Georgiev et al.[4] presented an in-depth
study of SSL connection authentication in non-browser
software, focusing on how diverse applications and libraries
validate SSL server certificates. They performed both white-
box and black-box techniques to discover vulnerabilities in
validation logic and uncovered a wide variety of SSL
certificate validation bugs. Egele et al.[5] made an empirical
study of the cryptographic misuse. They proposed a light-
weight static analysis approach that checked for common
flaws made by developers who had used the cryptographic
APIs in an incorrect way so that IND-CPA security couldn’t
be provided. Sounthiraraj et al.[6] presented SMV-HUNTER,
a system for the automatic, large-scale identification of
SSL/TLS Man-in-the-Middle vulnerabilities in Android apps.

These papers analyzed APK files to discover the
cryptographic misuse vulnerabilities, which achieve more
convenience then source codes. However, instead of perform a
systematic analysis, all the existing researches focus on a
special aspect of that. In this paper, we perform a systematic
analysis on the cryptographic misuse vulnerability, and present
a conduct experiments on a number of Android applications.
First, we build the models and types of cryptographic misuse
vulnerabilities. Then, we show the lines of code where the
vulnerabilities exist in Android apps. To identify the
vulnerabilities effectively and efficiently, we build a
prototypical identification tool that combines both static and
dynamic analysis, called Crypto Misuse Analyser (CMA).
With the help of CMA, we can monitor the cryptographic
APIs invoked in the applications, and determine if the
applications have the cryptographic misuse vulnerabilities by
analysing the runtime information.

Contributions. We investigate the problem of
cryptographic misuse in Android apps and our contributions
are the followings:

• Cryptographic Misuse Model. A collection of misuse
models is built in this paper, which will be helpful in
identifying the cryptographic misuse.

• Crypto Misuse Analyzer (CMA). An automatic tool
is implemented, which can identify the cryptographic
misuse effectively and efficient.

The rest of our paper is organized as follows: In section 2,
we present the definition and the scope of cryptographic
misuse vulnerability. The codes that have cryptographic

2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing

978-1-4799-5079-9/14 $31.00 © 2014 IEEE

DOI 10.1109/DASC.2014.22

75

misuse vulnerabilities in Android applications are studied in
section 3, followed by the methodology used in our system in
section 4. Experiment results are presented in section 5.
Finally, future work is discussed in section 6.

II. Modelling Analysis
We define the cryptographic misuse vulnerability as the

improper use of cryptographic algorithms. Any code that does
not use cryptography will not have such vulnerabilities. For an
example, the information leakage caused by unencrypted
sensitive data is not included, for there is no use of
cryptographic algorithm. In most cases, cryptographic
algorithms are predefined as APIs or libraries and what the
application developers need to do is to call them in a proper
way. However, not all the programmers know how to use the
APIs or libraries correctly. Such vulnerabilities can be divided
into two categories determined by its causes.

 Misusing the cryptographic APIs. Developers may
invoke the wrong API functions, set incorrect
parameters, and check the return values improperly and
so on.

 Lacking necessary steps. Many cryptographic APIs
need to be invoked in a predefined manner. For an
example, in order to encrypt a message using a
symmetric algorithm, the generation of a random
initialization vector should be performed first. The
vulnerability will exist in the code if the developer
didn’t generate the random initialization vector.

According to the algorithm types that the misuses occur,
the cryptographic misuse vulnerabilities can be divided into 3
classes: the symmetric encryption algorithm misuse, the
asymmetric encryption algorithm misuse and the hash
algorithm misuse. Then we consult the Common Weakness
Enumeration[7] and give a more detailed model to describe
how the vulnerabilities are caused.

A. Symmetric Encryption Algorithms
S1: Use a non-random IV for CBC encryption. Using a

non-random Initialization Vector (IV) with Cipher
Block Chaining (CBC) Mode causes algorithms to be
vulnerable to dictionary attacks. If an attacker knows the IV
before he gets the next plaintext, he can check his guess about
plaintext of some block that was encrypted with the same key
before[9].

S2: Use ECB-mode for encryption. Symmetric
encryption scheme in Electronic Code Book(ECB) Mode do
not immune to the chosen plaintext attack, so symmetric
encryption algorithms with ECB mode cannot provide
sufficient protection for users.

S3: Insufficient key length. To reduce the possibility of
brute force attack, the key length of symmetric algorithm
should be no less than 128 bits. If the key length is less than
128 bits, we believe it is vulnerable.

S4: Use a risk or broken algorithm for Symmetric
encryption. Maybe some algorithm was believed to be secure.
But now days computing power is much cheaper than before,
so the commercial hardware can creak it without much
difficult. DES is one of them. Since DES is of only 56 bit key

length, various proposals for a DES-cracking machine have
been advanced. In 2008, commercial hardware costing less
than USD 15,000 could break DES keys in less than a day on
average[10]. DES is long past its sell-by date.

S5: Use the same cryptographic key multiple times or
hard-coded cryptographic keys for encryption. For various
reasons, such as, to reduce the development cycle or to reduce
the technical difficulty, some developers use the same
cryptographic key multiple times or hard-coded cryptographic
keys for encryption. If such keys with problem are used,
malicious attackers may recover the encrypted data, even gain
the keys.

B. Hash Algorithms
H1: Reversible one-way hash. Maybe some algorithm

was believed to be secure, but researchers found effective
attacking algorithms. Two of the reversible one-way hash
algorithms are MD4 and MD5. Gaëtan Leurent[11] broke the
MD4 in 2008, and RFC 6150 stated that RFC 1320 (MD4) is
obsolete in 2011. In 2010, Cert believed that MD5 "should be
considered cryptographically broken and unsuitable for further
use"[12]. The malware Flame exploited the weaknesses in
MD5 and fake a Microsoft digital signature to make itself
installed as a legal code[13].

C. Asymmetric Encryption Algorithms
A1: Inadequate key length. The key of asymmetric

encryption algorithms is not long enough to prevent the brute
force attack. For an example, we believe that the key length of
RSA should be no less than 1024 bits, or else it is considered
to be vulnerable. For exploits using 512-bit code-signing
certificates that may have been factored were reported in
2011[14], It is currently recommended that the key be at least
2048 bits[15].

A2: RSA algorithm without OAEP. The programs use
the RSA algorithm but do not incorporate Optimal
Asymmetric Encryption Padding (OAEP) [16], which might
weaken the encryption.

A3: Improper Certificate Validation. The programs
didn’t validate the certificate properly. So an attacker may use
an invalid certificate to impersonate a trusted entity and make
a man-in-the-middle (MITM) attack[17]. In an MITM attack,
an attacker is able to intercept and modify network traffic
between the client and the server. The improper certificate
validations include the following situations:

A3-1: Missing Validation of Certificate

A3-2: Improper Check for Certificate Revocation

A3-3: Improper Validation of Certificate Expiration

A3-4: Improper Validation of Certificate with Host
Mismatch

A3-5: Improper Following of a Certificate's Chain of
Trust

D. Key Management Errors
K1: Use of Hard-coded Cryptographic Key or

Password. The use of a hard-coded cryptographic key or

76

password significantly increases the possibility that encrypted
data may be recovered. The attacker can simple disassemble
the binary codes and acquire the hard-coded cryptographic
key.

K2: Key Exchange without Entity Authentication.
Performing a key exchange will preserve the privacy of the
information sent between two entities, but this will not
guarantee the entities are who they claim they are. This may
enable a set of "man-in-the-middle" attacks. Typically, this
involves a victim client that contacts a malicious server that is
impersonating a trusted server. If the client
skips authentication or ignores an authentication failure, the
malicious server may request authentication information from
the user. Then the malicious server can use this authentication
information to log in to the trusted server using the victim's
credentials, sniff traffic between the victim and trusted server,
etc.

K3: Reusing a Nonce, Key Pair in Encryption. The
nonce should be used for the present occasion during the
program running and only once. Nonce is often bundled with a
key in a communication exchange to produce a new session
key for each exchange. An attacker may be able to replay
previous legitimate commands or execute new arbitrary
commands.

K4: Use of a Key past its Expiration Date. Software uses
a cryptographic key or password past its expiration date,
which diminishes its safety significantly by increasing the
timing window for cracking attacks against that key. While the
expiration of keys does not necessarily ensure that they are
compromised, it is a significant concern that keys which
remain in use for prolonged periods of time have a decreasing
probability of integrity. For this reason, it is important to
replace keys within a period of time proportional to their
strength.

III. Cryptographic misuse vulnerabilities in Android
Applications

Android apps complete cryptographic functions by taking
advantage of the Java Cryptography Architecture (JCA) which
provides cryptographic services and specifies the developers
how to invoke Cryptographic APIs on Android platform. The
JCA uses a provider-based architecture and contains a set of
APIs for various purposes, such as encryption, key generation
and management, certificate validation, etc.

The JCA implementations are included in the package
java/security, javax/crypto and javax/security. Through the
interface provided by Engine class such as Cipher, Signature,
KeyStore, SecureRandom, MessageDigest and MAC, a
specific cryptographic service is accessible to an application.
We study the Android API calls that have cryptographic
misuse vulnerabilities, and the following three examples show
the vulnerabilities in Android apps.

S1: Use a non-random IV for CBC encryption. Before
obtain the service of symmetric encryption scheme in Android,
the developer should select the Cipher Engine and invoke the
Cipher.getinstance() factory method, and initialize the object
new established, specify the ENCRYPT_MODE, key and IV
if the mode is CBC. As shown in the Fig. 1, the third
parameter of Cipher.init() is set as “iv” in line 8, which is an

IvParameterSpec instance. However, the instance is initialized
with a constant vector in line 2. So, it matches the model of
S1.

Fig. 1. Non-random IV for CBC encryption sample

Fig. 2. ECB-mode for Encryption sample

S2: Use ECB-mode for Encryption. As shown in the Fig.
2, the parameter of Cipher.getinstance() is set as “AES” in line
3 and the cipher mode and padding is omitted, so the ECB
mode and PKCS7Padding are used as the default value, which
matches the model of S2.

Fig. 3. Use of hard-coded cryptographic key

Fig. 4. Reversible one-way hash sample

K1: Use of Hard-coded Cryptographic Key or
Password. The code in Fig. 3 attempts to verify a password
using a hard-coded cryptographic key. The key value is a hard-
coded string value, the value is compared to the password for
verification that if the password is equivalent to the hard-
coded cryptographic key.

H1: Reversible one-way hash. Before obtain the service
of message digest scheme, the developer should select the
MessageDigest Engine and invoke the
MessageDigest.getinstance() factory method, call the update()

1 public class MD5 {
2 public static String getMD5(String val)
 throws NoSuchAlgorithmException{
3 MessageDigest md5 = MessageDigest

.getInstance(“MD5");
4 md5.update(val.getBytes());
5 byte[] m = md5.digest();
6 return getString(m); } }

1 private static byte[] encrypt(byte[] raw, byte[] clear)
 throws Exception{

2 SecretKeySpec skeySpec = new
SecretKeySpec(raw, "AES");

3 Cipher cipher = Cipher.getInstance(“AES”);
4 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
5 byte[] encrypted = cipher.doFinal(clear);
6 return encrypted; }

1 public static String encode(String key, byte[] data) throws
Exception {

2 byte[] ivbyte = { 1, 2, 3, 4, 5, 6, 7, 8 };
3 DESKeySpec dks = new DESKeySpec(key.getBytes());
4 SecretKeyFactory keyFactory =

SecretKeyFactory.getInstance("DES");
5 Key secretKey = keyFactory.generateSecret(dks);
6 Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
7 IvParameterSpec iv = new IvParameterSpec(ivbyte);
8 cipher.init(Cipher.ENCRYPT_MODE,secretKey,iv);
9 byte[] bytes = cipher.doFinal(data);}

1 public boolean VerifyAdmin(String password) {
2 if (password.equals
3 ("68af404b513073584c4b6f22b6c63e6b")) {
4 System.out.println("Entering Diagnostic Mode...");
5 return true;
6 }
7 System.out.println("Incorrect Password!");
8 return false;

77

and digest() to generate the Message-Digest. As shown in Fig.
4, the parameter of getInstance() is selected as “MD5” in line
3. Unfortunately, the message digest algorithm MD5 has been
demonstrated to be reversible.

IV. Methodology
To identify the cryptographic misuse vulnerabilities in

Android applications, we proposed CMA. In this section, we
describe our system architecture and introduce the analysis
implementation in detail.

We only analyze the symmetric encryption, hash, and
asymmetric encryption misuse vulnerabilities in CMA for
simplicity. CMA first performs static analysis on each app,
and determines if the encryption APIs are used. When
detecting the cryptographic APIs, CMA builds the Control
Flow Graph (CFG) and Call Graph(CG)of the target app, and
analyses which branch the cryptographic APIs are on. Then it
runs the app following the branch detected and generates
runtime logs. By comparing the logs with the models defined
in section 2, CMA determines whether the apps have the
cryptographic misuse vulnerabilities.

The CMA is designed to meet the following major
requirements:

 Efficiency: The CMA performs branch analysis to
select the branches that invoke the cryptographic APIs
in the runtime, which reduces the computation cost of
modelling analysis.

 Accuracy: The CMA analyzes vulnerabilities based on
the runtime records, which achieve more accuracy than
static analysis[4].

A. Branch Analysis

Fig. 5. Branch Analysis

In branch analysis, APK files are disassembled firstly and
the dalvik bytecodes are analyzed to reveal the functionalities
of the app. Then the Control Flow Graph (CFG) and Call
Graph (CG) of each app are constructed and the Target Branch
Collection(TBC) is built by the branch path analysis. The
branch analysis process is shown in Fig. 5.

In CMA, we use apktool[18] to unpack the app and acquire
the classes.dex file, which contains dalvik byte codes. And
then reveals the sequence of the dalvik instructions of every
method implemented in the app. The CMA analyses the dalvik
instructions and selects the apps who invoke the cryptographic
APIs.

Then we build the CFG and CG of each app. An android
program can be divided into different small blocks, each block
contains several dalvik instructions which can be invoke by
dalvik virtual machine in a certain order. CFG is a graph
represents the special control flows in a block and between

blocks for an application. We construct the CFG by analyzing
the sequence of dalvik instructions. The sequence often
contains a lot of jump instructions. Android jump instructions
use direct jump and the destination addresses can be statically
obtained. In the process of CFG construction, we first get the
block boundaries by analysing the jump instructions, then we
link the blocks boundaries based on the destination address of
jump instructions.

CG is a collection of nodes and edges and it has a single
start and end point. The nodes stand for the function entry
points, which consist of function name, parameter and return
value. The edges are between two nodes, each edge records an
entry point and an exit point and describes the relationship
between the two nodes. We consider the Android app as a
graph G consisting of a set N(G) of vertices and a set E(G) of
direct edges. An edge e E(G) is an ordered pair e = (i; j),
where i; j V: i j.

To identify the execution branch which contains the
cryptographic API, the CMA performs the Branch Path
analysis on the app by performing reverse traversal on CFG
and CG. Through the path analysis, the Target Branch
Collection(TBC) was generated at last.

B. Record Generation and Modelling Analysis

Fig. 6. Record Generation and Modelling Analysis

We mainly use API trace[19] and dynamic analysis to
generate the cryptographic API invoked records, and compare
the records with the model defined in section 2. The CMA
adds logging code and repackages the APK. Then it runs each
repacked app and records runtime logs. The record generation
and modelling analysis process is shown in Fig 6.

The record generation is tightly coupled with the dynamic
analysis tool called API Monitor[20]. API Monitor is a
dynamic analysis tool that can add logging codes into Smali
code of the app. With the information collected from the
branch analysis, the CMA can accurately locate the
cryptographic APIs and add instrumentation code. CMA
monitors the API according to a configuration file which
specifies the APIs that CMA will monitor. Runtime logs
related to them will be generated when the repackaged APK is
running. A demo of API list file is showed in Figure 6.

 A runtime log records the executive information of the
instrumentation in detail, the content of the record was
separated into multiple items by semicolons, from left to right,
the record items are: the first item is the package name and the
invoker class, the second item consists of the method name

78

before the parentheses, arguments and assignment in the
parentheses, the last item is return value and its type.

We define the model eature set for all cryptographic
algorithms misuse mentioned in section 2. The log analyser
checks each item of the log records, extracts the features of the
record, and examines if the record matches the misuse model.

Fig. 7. Configuration List

V. Experiment
To estimate the impact of the cryptographic misuse

problem in Android applications, we analyzed dozens of
mobile apps and found more than half of them were affected
by such vulnerabilities. The tested apps were downloaded
from http://as.baidu.com/, which is one of the most popular
mobile application download site in China.

A. Test Subjects
We selected the following 5 type of apps: shopping, instant

communication, mobile bank client, social network, payment
& finance. All of the selected apps involve the sensitive data
store or transport, thus it is critical for them to use the
cryptographic algorithms correctly. Most of the selected apps’
have been downloaded more than 1,000,000 times. The
numbers of apps are shown in Table 1.

TABLE I. THE NUMBER OF APPS

App
types

shopping instant
communication

mobile
bank
client

social
network

payment
&

finance

total

Numbers 9 9 11 8 8 45

B. Experiment Results
We only found 5 apps have no cryptographic misuse

vulnerabilities. The numbers of apps that are affected by the
vulnerabilities are shown in Table 2.

TABLE II. THE NUMBER OF APPS AFFECTED

vulnerabilities S1 S2 S3 S4 H1 A1 A2 A3
total numbers 8 7 0 8 38 1 3 0

shopping 4 2 0 2 9 0 0 0
instant

communication
3 1 0 2 8 0 1 0

mobile bank
client

0 2 0 0 6 1 0 0

social network 0 0 0 3 8 0 2 0
payment &

finance
1 2 0 1 7 0 0 0

From table 2 we can see that H1 affect the most apps, for
most apps choose md5 in computing digest. Since the most
U.S. government applications now require the SHA-2 family

of hash functions[21], this will be improved years later. The
reason why asymmetric encryption misuse is much fewer than
symmetric encryption misuse is the use of asymmetric
encryption is much fewer than symmetric encryption.

C. Analysis
To check the reported cryptographic misuse

vulnerabilities, we examined the apps manually. The rest of
section 5 shows examples of how the vulnerabilities were
identified.

Fig. 8. Example of S2

S2: Use ECB-mode for Encryption. Using Symmetric
cryptographic algorithms in ECB mode may weaken the
security of the application, and CBC mode is recommended. A
popular shopping client use AES in their mobile client, part of
its runtime log is shown in Fig. 9. Line 2 shows the developer
set the argument as “AES/ECB/PKCS7Padding”, which
means the algorithm use the encryption mode “ECB”.

Fig. 9. Example of S4

S4: Using a risk or broken algorithm. DES has been
exposed to be vulnerable to brute force attack. But there are
still many apps use DES to encrypt the sensitive data. Runtime
log in Fig. 10 is recorded when P Bank client is running. Line
1 shows that the argument of Cipher.getInstance() is set as
“DES” .

Fig. 10. Example of H1

H1: Reversible one-way hash. To ensure the
effectiveness and integrity of the transmission content, one-
way hash algorithm is used to generate message digest. As
describe in section 2, MD5 has been known as vulnerable.
According to the report provided by CMA, many applications
still use the improper one-way hash algorithm. As the runtime
log in Fig. 11, N Bank client uses MD5 to get message digest

1 V/CMA(9230): Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;=DES)

Ljavax/crypto/Cipher;=javax.crypto.Cipher@4242ead8
2 V/ CMA (9230): Ljavax/crypto/Cipher;->init(I=1

| Ljava/security/Key; =javax.crypto. spec.SecretKeySpec@bc)V
3 V/CMA(9230): Ljavax/crypto/Cipher;->doFinal

([B={-18, 52, -44, -116, 44, 40, -53, 6, 9, -120, 79, -117, -53, 113,
28, 40})[B={83, 121, 115, 67, 108, 105, 101, 110, 116, 74, 115}

1 V/CMA(18739): java/security/ MessageDigest; >getInstance
(Ljava/lang/String;=MD5)
Ljava/security/MessageDigest;=MESSAGE DIGEST MD5

2 V/CMA(18739):Ljava/security/MessageDigest;-
>update([B={100, 101, ……, 0, 0, -70, 47, 0, }

3 V/CMA(18739): Ljava/security/MessageDigest;->digest()
[B={-67, -32, 93, -45, -19, -13, 4, 81, -36, 25, -
 107, -81, -66, -43, -98, -125}

1 V/CMA(16248): Ljavax/crypto/spec/SecretKeySpec;-
><init>([B={122, 121, 33, 67, 97, 68, 51, 123, 51, 54, 42, 119,
53, 54, 35, 99} | Ljava/lang/String;=AES)V

2 V/CMA(16248): Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;=AES/ECB/PKCS7Padding)Ljava
x/crypto/Cipher;=javax.crypto.Cipher@40637c38

3 V/CMA(16248): Ljavax/crypto/Cipher;->init(I=1 |
Ljava/security/Key;=javax.crypto.spec.SecretKeySpec@4a8)V

107, 83, 106}

1 # DEFAULT API LIST
2 # Digest
3 Ljava/security/MessageDigest;->getInstance
4 Ljava/security/MessageDigest;->update
5 Ljava/security/MessageDigest;->digest
6 # Cipher
7 Ljavax/crypto/Cipher;->getInstance
8 Ljavax/crypto/spec/SecretKeySpec;-><init>
9 Ljavax/crypto/Cipher;->init
9 Ljavax/crypto/Cipher;->doFinal

79

value. Line 1 shows the client calls the
MessageDigest.getInstance() to construct the MessageDigest
instance, whose argument is specified as “MD5”.

Fig. 11. Example of A1

A1: Inadequate key length. The key length of RSA is an
important factor to its reliability. Fig. 11 shows the CMA log
of M Bank who use RSA to protect the communication data.
The key is in line 4, whose length is 64Bytes, equals to
512bits.

Fig. 12. Example of A2

A2: RSA algorithm without OAEP. Part of runtime log
of a famous social network client is showen in Fig.13. The
client initializes the RSA Cipher object with the parameter
“RSA”, while the padding is none. This implementation
matches the model of A2.

VI. Conclusion
In this paper, we systematic studied the cryptographic

misuse vulnerabilities and perform an investigation of the
current cryptographic misuse vulnerabilities in Android apps.
We concluded the cryptographic misuse model and build an
prototype system named Crypto Misuse Analyzer(CMA),
which can effectively identify the crypto misuse vulnerabilities
based on the pre-defined model. Our investigation shows that
more than half of apps have the cryptographic misuse
vulnerabilities. But our work is limited in the cryptographic
APIs misuse. In future work, we plan to continue our current
work on Android native codes and other kind of misuse
vulnerabilities.

ACKNOWLEDGMENTS

This work was supported by the National High Technology
Research and Development Program of China (863 Program)
(2012AA012903), the National Natural Science Foundation of
China (61100047).

REFERENCES
[1] Veracode “State of Software Security Report Volume5)”,

http://www.veracode.com/ resources/ state-of-software-security
[2] Bhargavan, Karthikeyan, et al. "Cryptographically verified

implementations for TLS." Proceedings of the 15th ACM conference
on Computer and communications security. ACM, 2008.

[3] Fahl, Sascha, et al. "Why Eve and Mallory love Android: An analysis
of Android SSL (in) security." Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012.

[4] Georgiev, Martin, et al. "The most dangerous code in the world:
validating SSL certificates in non-browser software." Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012.

[5] Egele, Manuel, et al. "An empirical study of cryptographic misuse in
Android applications." Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013.

[6] David Sounthiraraj, Justin Sahs, Garret Greenwood, et al. “SMV-
HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps.” NDSS 2014, February, 2014,
San Diego, CA, USA.

[7] Common Weakness Enumeration: CWE, https://cwe.mitre.org/
[8] Bellare, Mihir, and Phillip Rogaway. "Introduction to modern

cryptography." UCSD CSE 207 (2005): 207.
[9] Al Fardan, Nadhem J., and Kenneth G. Paterson. "Lucky thirteen:

Breaking the TLS and DTLS record protocols." Security and Privacy
(SP), 2013 IEEE Symposium on. IEEE, 2013.

[10] Kumar, Sandeep, et al. "How to Break DES for BC 8,980." SHARCS
‘06–Special-purpose Hardware for Attacking Cryptographic
Systems (2006): 17-35.

[11] Leurent, Gaëtan. "MD4 is not one-way." Fast Software Encryption.
Springer Berlin Heidelberg, 2008.

[12] Vulnerability Note VU#836068 MD5 vulnerable to collision attacks.
http://www.kb.cert.org/ vuls/id/836068

[13] Sotirov, Alex. "Analyzing the MD5 collision in Flame." Presentation at
SummerCon, slides available at http://www. trailofbits.
com/resources/flame-md5. pdf (2012).

[14] RSA-512 certificates abused in-the-wild. http://blog.fox-
it.com/2011/11/21/rsa-512- certificates-abused -in-the-wild/.

[15] Has the RSA algorithm been compromised as a result of Bernstein's
Paper? What key size should I be using? http://www.emc.com/emc-
plus/rsa-labs/historical/has-the-rsa-algorithm -been-compromised.htm

[16] Brown, Daniel RL. "What Hashes Make RSA-OAEP Secure?." IACR
Cryptology ePrint Archive 2006 (2006): 223.

[17] Clark, Jeremy, and Paul C. van Oorschot. "SoK: SSL and HTTPS:
Revisiting past challenges and evaluating certificate trust model
enhancements." Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013.

[18] http://code.google.com/p/android-apktool/.
[19] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu. Riskmon: Continuous and

automated risk assessment for mobile applications. In Proceedings of
4th ACM Conference on Data and Applications Security (CODASPY),
pages 99–110. ACM, 2014.

[20] http://code.google.com/p/droidbox/.
[21] Nist's Policy On Hash Functions. “http://csrc.nist.gov/groups/ST/

hash/policy.html”

1 V/CMA(6225): Ljavax/crypto/Cipher;->getInstance
(Ljava/lang/String;=RSA/ECB/PKCS1Padding)
Ljavax/crypto/Cipher;=javax.crypto.Cipher@422c3590

2 V/CMA(6225): Ljavax/crypto/Cipher;->init(I=1|
Ljava/security/Key;
=OpenSSLRSAPublicKey{modulus=b4…9,publicExponent=10001
})V

3 V/CMA (6225): Ljavax/crypto/Cipher;->doFinal([
B={65, 65, 65, 56, 51, 56, 51, 53, 49, 50, 51, 51, 53, 53})

4 [B={54, 101, 103, -18, 88, -105, -72, -106, 39, 34, 46, -34, 7, -58, -
11, 66, -116, -15, -128, 75, 22, 9, -81, -12, -123, -39, -121, 100, -88,
-75, 106, 100, -25, -58, -49, -30, -31, 82, -2, -94, -123, -70, 106, 75,
89, -42, 57, -53, 71, 77, 107, -68, 27, -40, -117, 120, -9, 27, -56, -
44, 121, -99, 121, 43}

1 V/CMA(19121): Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;=RSA)Ljavax/crypto/Cipher;=javax.
crypto.Cipher@406a0cc0

2 V/CMA(19121): Ljava/security/KeyFactory;-
>getInstance(Ljava/lang/String;=RSA)Ljava/security/KeyFactory;=j
ava.security.KeyFactory@4069fbe0

3 V/CMA(19121): Ljava/security/KeyFactory;-
>generatePublic(Ljava/security/spec/KeySpec;=java.security.spec.R
SAPublicKeySpec@4063b548)Ljava/security/PublicKey;=RSA
Public Key\n modulus: 85..b4c862b\n public exponent:
10001\n

4 V/CMA(19121): Ljavax/crypto/Cipher;->init(I=1 |
Ljava/security/Key;=RSA Public Key\n modulus:
85…b4c862b\n public exponent: 10001\n)V

80

