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Abstract—Cryptographic misuse affects a sizeable portion of 
Android applications. However, there is only an empirical study that 
has been made about this problem. In this paper, we perform a 
systematic analysis on the cryptographic misuse, build the 
cryptographic misuse vulnerability model and implement a prototype 
tool Crypto Misuse Analyser (CMA). The CMA can perform static 
analysis on Android apps and select the branches that invoke the 
cryptographic API. Then it runs the app following the target branch 
and records the cryptographic API calls. At last, the CMA identifies 
the cryptographic API misuse vulnerabilities from the records based 
on the pre-defined model. We also analyze dozens of Android apps 
with the help of CMA and find that more than a half of apps are 
affected by such vulnerabilities. 

Keywords—Modelling Analysis; Cryptographic Misuse; 
Vulnerability; Android.  

I.    Introduction 
Mobile applications store a large number of users’ 

sensitive data, such as username, password, location, credit 
card number, chat log and so on. Many mobile application 
developers use cryptography to protect the confidentiality, 
integrity and authentication in their apps. In theory, 
cryptography can provide a good protection for the sensitive 
data storage, transmission and user authentication, 
authorization. Unfortunately, many developers didn’t use the 
cryptographic algorithms in a correct way. Veracode[1] 
detected the cryptographic defects in the source codes of 
mobile applications and concluded  that cryptographic issues 
affected a sizeable portion of Android (64%) and iOS (58%) 
applications. With Android phones being ubiquitous, Android 
apps have become a worthwhile target for security and privacy 
violations. Attacker may take advantage of the cryptographic 
misuse vulnerabilities to acquire sensitive information of 
users’, or even for targeted attacks.  

Recently, a number of efforts have been made to 
investigate the cryptographic misuse problem. In 2008, 
Bhargvan et al.[2] concerned on the security protocol of TLS, 
they relied on a combination of model-extraction and 
verification tools, and implemented automated symbolic 
cryptographic verification and computational cryptographic 
verification. Fahl et al.[3] attempted to better understand the 
potential security threats posed by Android apps that use the 
SSL/TLS protocols to protect data they transmit. They created 
MalloDroid, an Androguard extension that performs static 
code analysis to analyze the apps' vulnerabilities against Man-

in-the-Middle (MITM) attacks due to the inadequate or 
incorrect use of SSL. Georgiev et al.[4] presented an in-depth 
study of SSL connection authentication in non-browser 
software, focusing on how diverse applications and libraries 
validate SSL server certificates. They performed both white-
box and black-box techniques to discover vulnerabilities in 
validation logic and uncovered a wide variety of SSL 
certificate validation bugs. Egele et al.[5] made an empirical 
study of the cryptographic misuse. They proposed a light-
weight static analysis approach that checked for common 
flaws made by developers who had used the cryptographic 
APIs in an incorrect way so that IND-CPA security couldn’t 
be provided. Sounthiraraj et al.[6] presented SMV-HUNTER, 
a system for the automatic, large-scale identification of 
SSL/TLS Man-in-the-Middle vulnerabilities in Android apps. 

These papers analyzed APK files to discover the 
cryptographic misuse vulnerabilities, which achieve more 
convenience then source codes. However, instead of perform a 
systematic analysis, all the existing researches focus on a 
special aspect of that. In this paper, we perform a systematic 
analysis on the cryptographic misuse vulnerability, and present 
a conduct experiments on a number of Android applications. 
First, we build the models and types of cryptographic misuse 
vulnerabilities. Then, we show the lines of code where the 
vulnerabilities exist in Android apps. To identify the 
vulnerabilities effectively and efficiently, we build a 
prototypical identification tool that combines both static and 
dynamic analysis, called Crypto Misuse Analyser (CMA). 
With the help of CMA, we can monitor the cryptographic 
APIs invoked in the applications, and determine if the 
applications have the cryptographic misuse vulnerabilities by 
analysing the runtime information.  

Contributions. We investigate the problem of 
cryptographic misuse in Android apps and our contributions 
are the followings: 

• Cryptographic Misuse Model. A collection of misuse 
models is built in this paper, which will be helpful in 
identifying the cryptographic misuse. 

• Crypto Misuse Analyzer (CMA). An automatic tool 
is implemented, which can identify the cryptographic 
misuse effectively and efficient. 

The rest of our paper is organized as follows: In section 2, 
we present the definition and the scope of cryptographic 
misuse vulnerability. The codes that have cryptographic 
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misuse vulnerabilities in Android applications are studied in 
section 3, followed by the methodology used in our system in 
section 4. Experiment results are presented in section 5. 
Finally, future work is discussed in section 6. 

II.   Modelling Analysis 
We define the cryptographic misuse vulnerability as the 

improper use of cryptographic algorithms. Any code that does 
not use cryptography will not have such vulnerabilities. For an 
example, the information leakage caused by unencrypted 
sensitive data is not included, for there is no use of 
cryptographic algorithm. In most cases, cryptographic 
algorithms are predefined as APIs or libraries and what the 
application developers need to do is to call them in a proper 
way. However, not all the programmers know how to use the 
APIs or libraries correctly. Such vulnerabilities can be divided 
into two categories determined by its causes. 

 Misusing the cryptographic APIs. Developers may 
invoke the wrong API functions, set incorrect 
parameters, and check the return values improperly and 
so on.  

 Lacking necessary steps. Many cryptographic APIs 
need to be invoked in a predefined manner. For an 
example, in order to encrypt a message using a 
symmetric algorithm, the generation of a random 
initialization vector should be performed first. The 
vulnerability will exist in the code if the developer 
didn’t generate the random initialization vector. 

According to the algorithm types that the misuses occur, 
the cryptographic misuse vulnerabilities can be divided into 3 
classes: the symmetric encryption algorithm misuse, the 
asymmetric encryption algorithm misuse and the hash 
algorithm misuse. Then we consult the Common Weakness 
Enumeration[7] and give a more detailed model to describe 
how the vulnerabilities are caused. 

A. Symmetric Encryption Algorithms 
S1: Use a non-random IV for CBC encryption. Using a 

non-random Initialization Vector (IV) with Cipher 
Block Chaining (CBC) Mode causes algorithms to be 
vulnerable to dictionary attacks. If an attacker knows the IV 
before he gets the next plaintext, he can check his guess about 
plaintext of some block that was encrypted with the same key 
before[9].  

S2: Use ECB-mode for encryption. Symmetric 
encryption scheme in Electronic Code Book(ECB) Mode do 
not immune to the chosen plaintext attack, so symmetric 
encryption algorithms with ECB mode cannot provide 
sufficient protection for users.  

S3: Insufficient key length. To reduce the possibility of 
brute force attack, the key length of symmetric algorithm 
should be no less than 128 bits. If the key length is less than 
128 bits, we believe it is vulnerable.  

S4: Use a risk or broken algorithm for Symmetric 
encryption. Maybe some algorithm was believed to be secure. 
But now days computing power is much cheaper than before, 
so the commercial hardware can creak it without much 
difficult. DES is one of them. Since DES is of only 56 bit key 

length, various proposals for a DES-cracking machine have 
been advanced. In 2008, commercial hardware costing less 
than USD 15,000 could break DES keys in less than a day on 
average[10]. DES is long past its sell-by date. 

S5: Use the same cryptographic key multiple times or 
hard-coded cryptographic keys for encryption. For various 
reasons, such as, to reduce the development cycle or to reduce 
the technical difficulty, some developers use the same 
cryptographic key multiple times or hard-coded cryptographic 
keys for encryption. If such keys with problem are used, 
malicious attackers may recover the encrypted data, even gain 
the keys. 

B. Hash Algorithms 
H1: Reversible one-way hash. Maybe some algorithm 

was believed to be secure, but researchers found effective 
attacking algorithms. Two of the reversible one-way hash 
algorithms are MD4 and MD5. Gaëtan Leurent[11] broke the 
MD4 in 2008, and RFC 6150 stated that RFC 1320 (MD4) is 
obsolete in 2011. In 2010, Cert believed that MD5 "should be 
considered cryptographically broken and unsuitable for further 
use"[12]. The malware Flame exploited the weaknesses in 
MD5 and fake a Microsoft digital signature to make itself 
installed as a legal code[13]. 

C. Asymmetric Encryption Algorithms 
A1: Inadequate key length. The key of asymmetric 

encryption algorithms is not long enough to prevent the brute 
force attack. For an example, we believe that the key length of 
RSA should be no less than 1024 bits, or else it is considered 
to be vulnerable. For exploits using 512-bit code-signing 
certificates that may have been factored were reported in 
2011[14], It is currently recommended that the key be at least 
2048 bits[15]. 

A2: RSA algorithm without OAEP. The programs use 
the RSA algorithm but do not incorporate Optimal 
Asymmetric Encryption Padding (OAEP) [16], which might 
weaken the encryption.  

A3: Improper Certificate Validation. The programs 
didn’t validate the certificate properly. So an attacker may use 
an invalid certificate to impersonate a trusted entity and make 
a man-in-the-middle (MITM) attack[17]. In an MITM attack, 
an attacker is able to intercept and modify network traffic 
between the client and the server. The improper certificate 
validations include the following situations: 

A3-1: Missing Validation of Certificate 

A3-2: Improper Check for Certificate Revocation 

A3-3: Improper Validation of Certificate Expiration 

A3-4: Improper Validation of Certificate with Host 
Mismatch 

A3-5: Improper Following of a Certificate's Chain of 
Trust 

D. Key Management Errors 
K1: Use of Hard-coded Cryptographic Key or 

Password. The use of a hard-coded cryptographic key or 
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password significantly increases the possibility that encrypted 
data may be recovered. The attacker can simple disassemble 
the binary codes and acquire the hard-coded cryptographic 
key. 

K2: Key Exchange without Entity Authentication. 
Performing a key exchange will preserve the privacy of the 
information sent between two entities, but this will not 
guarantee the entities are who they claim they are. This may 
enable a set of "man-in-the-middle" attacks. Typically, this 
involves a victim client that contacts a malicious server that is 
impersonating a trusted server. If the client 
skips authentication or ignores an authentication failure, the 
malicious server may request authentication information from 
the user. Then the malicious server can use this authentication 
information to log in to the trusted server using the victim's 
credentials, sniff traffic between the victim and trusted server, 
etc. 

K3: Reusing a Nonce, Key Pair in Encryption. The 
nonce should be used for the present occasion during the 
program running and only once. Nonce is often bundled with a 
key in a communication exchange to produce a new session 
key for each exchange. An attacker may be able to replay 
previous legitimate commands or execute new arbitrary 
commands.  

K4: Use of a Key past its Expiration Date. Software uses 
a cryptographic key or password past its expiration date, 
which diminishes its safety significantly by increasing the 
timing window for cracking attacks against that key. While the 
expiration of keys does not necessarily ensure that they are 
compromised, it is a significant concern that keys which 
remain in use for prolonged periods of time have a decreasing 
probability of integrity. For this reason, it is important to 
replace keys within a period of time proportional to their 
strength.    

III.   Cryptographic misuse vulnerabilities in Android 
Applications 

Android apps complete cryptographic functions by taking 
advantage of the Java Cryptography Architecture (JCA) which 
provides cryptographic services and specifies the developers 
how to invoke Cryptographic APIs on Android platform. The 
JCA uses a provider-based architecture and contains a set of 
APIs for various purposes, such as encryption, key generation 
and management, certificate validation, etc.  

The JCA implementations are included in the package 
java/security, javax/crypto and javax/security. Through the 
interface provided by Engine class such as Cipher, Signature, 
KeyStore, SecureRandom, MessageDigest and MAC, a 
specific cryptographic service is accessible to an application. 
We study the Android API calls that have cryptographic 
misuse vulnerabilities, and the following three examples show 
the vulnerabilities in Android apps. 

S1: Use a non-random IV for CBC encryption. Before 
obtain the service of symmetric encryption scheme in Android, 
the developer should select the Cipher Engine and invoke the 
Cipher.getinstance() factory method, and initialize the object 
new established, specify the ENCRYPT_MODE, key and IV 
if the mode is CBC. As shown in the Fig. 1, the third 
parameter of Cipher.init() is set as “iv” in line 8, which is an 

IvParameterSpec instance. However, the instance is initialized 
with a constant vector in line 2. So, it matches the model of 
S1. 

 

Fig. 1. Non-random IV for CBC encryption sample 

 
Fig. 2. ECB-mode for Encryption sample 

S2: Use ECB-mode for Encryption. As shown in the Fig. 
2, the parameter of Cipher.getinstance() is set as “AES” in line 
3 and the cipher mode and padding is omitted, so the ECB 
mode and PKCS7Padding are used as the default value, which 
matches the model of S2. 

 

Fig. 3. Use  of hard-coded cryptographic key 

 
Fig. 4. Reversible one-way hash sample 

K1: Use of Hard-coded Cryptographic Key or 
Password. The code in Fig. 3 attempts to verify a password 
using a hard-coded cryptographic key. The key value is a hard-
coded string value, the value is compared to the password for 
verification that if the password is equivalent to the hard-
coded cryptographic key. 

H1: Reversible one-way hash. Before obtain the service 
of message digest scheme, the developer should select the 
MessageDigest Engine and invoke the 
MessageDigest.getinstance() factory method, call the update() 

1    public class MD5 {             
2     public static String getMD5(String val) 
         throws NoSuchAlgorithmException{     
3       MessageDigest md5 = MessageDigest 

.getInstance(“MD5");     
4       md5.update(val.getBytes());     
5       byte[] m = md5.digest();     
6       return getString(m); } }  

1     private static byte[] encrypt(byte[] raw, byte[] clear) 
   throws Exception{       

2      SecretKeySpec skeySpec = new  
SecretKeySpec(raw, "AES");       

3      Cipher cipher = Cipher.getInstance(“AES”);       
4      cipher.init(Cipher.ENCRYPT_MODE, skeySpec);   
5      byte[] encrypted = cipher.doFinal(clear);       
6 return encrypted; }

1 public static String encode(String key, byte[] data) throws 
Exception { 

2        byte[] ivbyte = { 1, 2, 3, 4, 5, 6, 7, 8 };  
3        DESKeySpec dks = new  DESKeySpec(key.getBytes()); 
4       SecretKeyFactory keyFactory = 

SecretKeyFactory.getInstance("DES"); 
5       Key secretKey = keyFactory.generateSecret(dks); 
6       Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); 
7       IvParameterSpec iv = new IvParameterSpec(ivbyte); 
8       cipher.init(Cipher.ENCRYPT_MODE,secretKey,iv); 
9       byte[] bytes = cipher.doFinal(data);} 

1  public boolean VerifyAdmin(String password) { 
2  if (password.equals 
3    ("68af404b513073584c4b6f22b6c63e6b")) { 
4    System.out.println("Entering Diagnostic Mode..."); 
5    return true; 
6   } 
7  System.out.println("Incorrect Password!"); 
8  return false;
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and digest() to generate the Message-Digest. As shown in Fig. 
4, the parameter of getInstance() is selected as “MD5” in line 
3. Unfortunately, the message digest algorithm MD5 has been 
demonstrated to be reversible.  

IV.   Methodology 
To identify the cryptographic misuse vulnerabilities in 

Android applications, we proposed CMA. In this section, we 
describe our system architecture and introduce the analysis 
implementation in detail. 

We only analyze the symmetric encryption, hash, and 
asymmetric encryption misuse vulnerabilities in CMA for 
simplicity. CMA first performs static analysis on each app, 
and determines if the encryption APIs are used. When 
detecting the cryptographic APIs, CMA builds the Control 
Flow Graph (CFG) and Call Graph(CG)of the target app, and 
analyses which branch the cryptographic APIs are on. Then it 
runs the app following the branch detected and generates 
runtime logs. By comparing the logs with the models defined 
in section 2, CMA determines whether the apps have the 
cryptographic misuse vulnerabilities.   

The CMA is designed to meet the following major 
requirements: 

 Efficiency: The CMA performs branch analysis to 
select the branches that invoke the cryptographic APIs 
in the runtime, which reduces the computation cost of 
modelling analysis. 

 Accuracy: The CMA analyzes vulnerabilities based on 
the runtime records, which achieve more accuracy than 
static analysis[4]. 

A. Branch Analysis 

 
Fig. 5. Branch Analysis 

In branch analysis, APK files are disassembled firstly and 
the dalvik bytecodes are analyzed to reveal the functionalities 
of the app. Then the Control Flow Graph (CFG) and Call 
Graph (CG) of each app are constructed and the Target Branch 
Collection(TBC) is built by the branch path analysis. The 
branch analysis process is shown in Fig. 5. 

In CMA, we use apktool[18] to unpack the app and acquire 
the classes.dex file, which contains dalvik byte codes. And 
then reveals the sequence of the dalvik instructions of every 
method implemented in the app. The CMA analyses the dalvik 
instructions and selects the apps who invoke the cryptographic 
APIs.  

Then we build the CFG and CG of each app. An android 
program can be divided into different small blocks, each block 
contains several dalvik instructions which can be invoke by 
dalvik virtual machine in a certain order. CFG is a graph 
represents the special control flows in a block and between 

blocks for an application. We construct the CFG by analyzing 
the sequence of dalvik instructions. The sequence often 
contains a lot of jump instructions. Android jump instructions 
use direct jump and the destination addresses can be statically 
obtained. In the process of CFG construction, we first get the 
block boundaries by analysing the jump instructions, then we 
link the blocks boundaries based on the destination address of 
jump instructions. 

CG is a collection of nodes and edges and it has a single 
start and end point. The nodes stand for the function entry 
points, which consist of function name, parameter and return 
value. The edges are between two nodes, each edge records an 
entry point and an exit point and describes the relationship 
between the two nodes. We consider the Android app as a 
graph G consisting of a set N(G) of vertices and a set E(G) of 
direct edges. An edge e E(G) is an ordered pair e = (i; j), 
where i; j V: i  j. 

To identify the execution branch which contains the 
cryptographic API, the CMA performs the Branch Path 
analysis on the app by performing reverse traversal on CFG 
and CG. Through the path analysis, the Target Branch 
Collection(TBC) was generated at last. 

B. Record Generation and Modelling Analysis 

 
Fig. 6. Record Generation and Modelling Analysis 

We mainly use API trace[19] and dynamic analysis to 
generate the cryptographic API invoked records, and compare 
the records with the model defined in section 2. The CMA 
adds logging code and repackages the APK. Then it runs each 
repacked app and records runtime logs. The record generation 
and modelling analysis process is shown in Fig 6. 

The record generation is tightly coupled with the dynamic 
analysis tool called API Monitor[20]. API Monitor is a 
dynamic analysis tool that can add logging codes into Smali 
code of the app. With the information collected from the 
branch analysis, the CMA can accurately locate the 
cryptographic APIs and add instrumentation code. CMA 
monitors the API according to a configuration file which 
specifies the APIs that CMA will monitor. Runtime logs 
related to them will be generated when the repackaged APK is 
running. A demo of API list file is showed in Figure 6. 

 A runtime log records the executive information of the 
instrumentation in detail, the content of the record was 
separated into multiple items by semicolons, from left to right, 
the record items are: the first item is the package name and the 
invoker class, the second item consists of the method name 
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before the parentheses, arguments and assignment in the 
parentheses, the last item is return value and its type.  

We define the model eature set for all cryptographic 
algorithms misuse mentioned in section 2. The log analyser 
checks each item of the log records, extracts the features of the 
record, and examines if the record matches the misuse model. 

 
Fig. 7. Configuration List 

V.   Experiment 
To estimate the impact of the cryptographic misuse 

problem in Android applications, we analyzed dozens of 
mobile apps and found more than half of them were affected 
by such vulnerabilities. The tested apps were downloaded 
from http://as.baidu.com/, which is one of the most popular 
mobile application download site in China.  

A. Test Subjects 
We selected the following 5 type of apps: shopping, instant 

communication, mobile bank client, social network, payment 
& finance. All of the selected apps involve the sensitive data 
store or transport, thus it is critical for them to use the 
cryptographic algorithms correctly. Most of the selected apps’ 
have been downloaded more than 1,000,000 times. The 
numbers of apps are shown in Table 1.  

TABLE I.  THE NUMBER OF APPS  

App 
types 

shopping instant 
communication 

mobile 
bank 
client 

social 
network 

payment 
& 

finance 

total

Numbers 9 9 11 8 8 45 

B. Experiment Results 
We only found 5 apps have no cryptographic misuse 

vulnerabilities. The numbers of apps that are affected by the 
vulnerabilities are shown in Table 2.  

TABLE II.  THE NUMBER OF APPS AFFECTED 

vulnerabilities S1 S2 S3 S4 H1 A1 A2 A3 
total numbers 8 7 0 8 38 1 3 0 

shopping 4 2 0 2 9 0 0 0 
instant 

communication 
3 1 0 2 8 0 1 0 

mobile bank 
client 

0 2 0 0 6 1 0 0 

social network 0 0 0 3 8 0 2 0 
payment & 

finance 
1 2 0 1 7 0 0 0 

From table 2 we can see that H1 affect the most apps, for 
most apps choose md5 in computing digest. Since the most 
U.S. government applications now require the SHA-2 family 

of hash functions[21], this will be improved years later. The 
reason why asymmetric encryption misuse is much fewer than 
symmetric encryption misuse is the use of asymmetric 
encryption is much fewer than symmetric encryption. 

C. Analysis 
To check the reported cryptographic misuse 

vulnerabilities, we examined the apps manually. The rest of 
section 5 shows examples of how the vulnerabilities were 
identified. 

 
Fig. 8. Example of S2 

S2: Use ECB-mode for Encryption. Using Symmetric 
cryptographic algorithms in ECB mode may weaken the 
security of the application, and CBC mode is recommended. A 
popular shopping client use AES in their mobile client, part of 
its runtime log is shown in Fig. 9. Line 2 shows the developer 
set the argument as “AES/ECB/PKCS7Padding”, which 
means the algorithm use the encryption mode “ECB”.  

 
Fig. 9. Example of S4 

S4: Using a risk or broken algorithm. DES has been 
exposed to be vulnerable to brute force attack. But there are 
still many apps use DES to encrypt the sensitive data. Runtime 
log in Fig. 10 is recorded when P Bank client is running. Line 
1 shows that the argument of Cipher.getInstance() is set as 
“DES” . 

 

Fig. 10. Example of H1 

H1: Reversible one-way hash. To ensure the 
effectiveness and integrity of the transmission content, one-
way hash algorithm is used to generate message digest. As 
describe in section 2, MD5 has been known as vulnerable. 
According to the report provided by CMA, many applications 
still use the improper one-way hash algorithm. As the runtime 
log in Fig. 11, N Bank client uses MD5 to get message digest 

1     V/CMA( 9230): Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;=DES) 

Ljavax/crypto/Cipher;=javax.crypto.Cipher@4242ead8 
2   V/ CMA ( 9230): Ljavax/crypto/Cipher;->init(I=1  

| Ljava/security/Key; =javax.crypto. spec.SecretKeySpec@bc)V 
3   V/CMA( 9230): Ljavax/crypto/Cipher;->doFinal 

([B={-18, 52, -44, -116, 44, 40, -53, 6, 9, -120, 79, -117, -53, 113, 
28, 40})[B={83, 121, 115, 67, 108, 105, 101, 110, 116, 74, 115}

1  V/CMA(18739): java/security/ MessageDigest; >getInstance 
(Ljava/lang/String;=MD5) 
Ljava/security/MessageDigest;=MESSAGE DIGEST MD5 

2  V/CMA(18739):Ljava/security/MessageDigest;- 
>update([B={100, 101, ……, 0, 0, -70, 47, 0, } 

3  V/CMA(18739): Ljava/security/MessageDigest;->digest() 
[B={-67, -32, 93, -45, -19, -13, 4, 81, -36, 25, - 
 107, -81, -66, -43, -98, -125} 

1   V/CMA(16248): Ljavax/crypto/spec/SecretKeySpec;-
><init>([B={122, 121, 33, 67, 97, 68, 51, 123, 51, 54, 42, 119, 
53, 54, 35, 99} | Ljava/lang/String;=AES)V 

2  V/CMA(16248): Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;=AES/ECB/PKCS7Padding)Ljava
x/crypto/Cipher;=javax.crypto.Cipher@40637c38 

3   V/CMA(16248): Ljavax/crypto/Cipher;->init(I=1 | 
Ljava/security/Key;=javax.crypto.spec.SecretKeySpec@4a8)V 

107, 83, 106}

1    # DEFAULT API LIST 
2    # Digest 
3    Ljava/security/MessageDigest;->getInstance 
4    Ljava/security/MessageDigest;->update 
5    Ljava/security/MessageDigest;->digest 
6    # Cipher 
7    Ljavax/crypto/Cipher;->getInstance 
8    Ljavax/crypto/spec/SecretKeySpec;-><init> 
9    Ljavax/crypto/Cipher;->init 
9    Ljavax/crypto/Cipher;->doFinal 
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value. Line 1 shows the client calls the 
MessageDigest.getInstance() to construct the MessageDigest 
instance, whose argument is specified as “MD5”.  

 
Fig. 11. Example of A1 

A1: Inadequate key length. The key length of RSA is an 
important factor to its reliability. Fig. 11 shows the CMA log 
of M Bank who use RSA to protect the communication data. 
The key is in line 4, whose length is 64Bytes, equals to 
512bits. 

 

 

 

 

 

 

 

 

Fig. 12. Example of A2 

A2: RSA algorithm without OAEP. Part of runtime log 
of a famous social network client is showen in Fig.13. The 
client initializes the RSA Cipher object with the parameter 
“RSA”, while the padding is none. This implementation  
matches the model of A2. 

VI.   Conclusion 
In this paper, we systematic studied the cryptographic 

misuse vulnerabilities and perform an investigation of the 
current cryptographic misuse vulnerabilities in Android apps. 
We concluded the cryptographic misuse model and build an 
prototype system named Crypto Misuse Analyzer(CMA), 
which can effectively identify the crypto misuse vulnerabilities 
based on the pre-defined model. Our investigation shows that 
more than half of apps have the cryptographic misuse 
vulnerabilities. But our work is limited in the cryptographic 
APIs misuse. In future work, we plan to continue our current 
work on Android native codes and other kind of misuse 
vulnerabilities. 
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1 V/CMA(6225): Ljavax/crypto/Cipher;->getInstance 
(Ljava/lang/String;=RSA/ECB/PKCS1Padding) 
Ljavax/crypto/Cipher;=javax.crypto.Cipher@422c3590 

2 V/CMA(6225): Ljavax/crypto/Cipher;->init(I=1| 
Ljava/security/Key; 
=OpenSSLRSAPublicKey{modulus=b4…9,publicExponent=10001
})V 

3 V/CMA (6225): Ljavax/crypto/Cipher;->doFinal([ 
B={65, 65, 65, 56, 51, 56, 51, 53, 49, 50, 51, 51, 53, 53}) 

4 [B={54, 101, 103, -18, 88, -105, -72, -106, 39, 34, 46, -34, 7, -58, -
11, 66, -116, -15, -128, 75, 22, 9, -81, -12, -123, -39, -121, 100, -88, 
-75, 106, 100, -25, -58, -49, -30, -31, 82, -2, -94, -123, -70, 106, 75, 
89, -42, 57, -53, 71, 77, 107, -68, 27, -40, -117, 120, -9, 27, -56, -
44, 121, -99, 121, 43} 

1  V/CMA(19121): Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;=RSA)Ljavax/crypto/Cipher;=javax.
crypto.Cipher@406a0cc0 

2  V/CMA(19121): Ljava/security/KeyFactory;-
>getInstance(Ljava/lang/String;=RSA)Ljava/security/KeyFactory;=j
ava.security.KeyFactory@4069fbe0 

3  V/CMA(19121): Ljava/security/KeyFactory;-
>generatePublic(Ljava/security/spec/KeySpec;=java.security.spec.R
SAPublicKeySpec@4063b548)Ljava/security/PublicKey;=RSA 
Public Key\n            modulus: 85..b4c862b\n    public exponent: 
10001\n 

4  V/CMA(19121): Ljavax/crypto/Cipher;->init(I=1 | 
Ljava/security/Key;=RSA Public Key\n            modulus: 
85…b4c862b\n    public exponent: 10001\n)V 
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