
Science of Computer Programming 92 (2014) 25–55
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Formalisation and analysis of Dalvik bytecode ✩

Erik Ramsgaard Wognsen ∗, Henrik Søndberg Karlsen ∗, Mads Chr. Olesen ∗,
René Rydhof Hansen ∗

Department of Computer Science, Aalborg University, Denmark

h i g h l i g h t s

• We present a study of language features used in 1700 Android apps.
• We formalise the semantics of the Dalvik bytecode language.
• We formally specify a control flow analysis for the Dalvik bytecode language.
• We also formalise reflection both in semantics and analysis.
• A prototype implementation of the analysis is discussed.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 August 2012
Received in revised form 1 November 2013
Accepted 17 November 2013
Available online 1 December 2013

Keywords:
Dalvik
Android
Static analysis
Flow logic
Reflection

With the large, and rapidly increasing, number of smartphones based on the Android
platform, combined with the open nature of the platform that allows “apps” to be
downloaded and executed on the smartphone, misbehaving and malicious (malware) apps
are set to become a serious problem. To counter this problem, automated tools for
analysing and verifying apps are essential. Furthermore, to ensure high-fidelity of such
tools, it is essential to formally specify both semantics and analyses.
In this paper we present, to the best of our knowledge, the first formalisation of the
complete Dalvik bytecode language including reflection features and the first formally
specified control flow analysis for the language, including advanced control flow features
such as dynamic dispatch, exceptions, and reflection. To determine which features to
include in the formalisation and analysis, 1700 Android apps from the Google Play app
market (formerly known as Android Market) were downloaded and examined.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since Android was first introduced, more than 100 million Android devices have been activated, and more than 400,000
new devices are activated every day. This makes Android one of the most widespread and fastest growing computing
platforms for smartphones and tablet computers. The combination of the wide distribution and the open nature of the
Android platform, where apps can be downloaded and installed not only from the official Google Play app market1 but
also from unknown, untrusted, and potentially malicious third parties makes it obvious that tools are needed to ensure,
and possibly certify, that apps are well-behaved and do not access information or functionality not explicitly allowed and
intended by the user. The problem is further exacerbated by the often sensitive and private nature of information stored on

✩ This work is based on the paper “Study, Formalisation, and Analysis of Dalvik Bytecode” presented at the Seventh Workshop on Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE 2012) [14] and the master’s thesis of the first two authors [13].

* Corresponding authors.
E-mail addresses: erw@cs.aau.dk (E.R. Wognsen), henrik.karlsen@gmail.com (H.S. Karlsen), mchro@cs.aau.dk (M.C. Olesen), rrh@cs.aau.dk (R.R. Hansen).

1 See https://play.google.com. Last accessed 11 December 2012.
0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.037

http://dx.doi.org/10.1016/j.scico.2013.11.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:erw@cs.aau.dk
mailto:henrik.karlsen@gmail.com
mailto:mchro@cs.aau.dk
mailto:rrh@cs.aau.dk
https://play.google.com
http://dx.doi.org/10.1016/j.scico.2013.11.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.037&domain=pdf


26 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
a smartphone as well as the potential for apps to (ab-)use services that cost the user money, e.g., by secretly sending text
messages to expensive premium numbers [3].

In order to develop trustworthy tools for analysis and especially for certification, we believe it is necessary to have a
formal underpinning of the target platform allowing sound analyses to be developed with confidence. In this paper we first
present a study of 1700 Android apps, carried out in order to determine what Dalvik instructions and language features are
most often used in typical apps. Based on the results of this study, we develop a formal operational semantics for the Dalvik
bytecode language [1]. Dalvik bytecode is similar to Java bytecode. The two most notable differences are: Dalvik is register
based rather than stack based and the local registers are untyped. These differences are reflected in their two instruction
sets. In addition, there are a number of differences in their respective runtime systems, which we will not discuss any
further here. Based on the operational semantics, we develop and formally specify a control flow analysis for the Dalvik
bytecode language. The analysis is intended both as the basis for further and more specialised analyses, but also by itself for
detecting potentially malicious actions, e.g., leaking private information or surreptitiously calling expensive phone numbers.
To the best of our knowledge, this is the first such formalisation of the Dalvik bytecode language and an accompanying
control flow analysis. Since our study revealed that more than half of the apps examined use reflection, we also formalise
the semantics of the reflection API and also extend the control flow analysis to cover many uses of reflection as determined
by the study.

Finally, we have developed a prototype implementation of the control flow analysis in order to investigate properties and
behaviour of the analysis (Section 6). The prototype is strictly meant as a proof-of-concept and not a finished production
tool. Consequently the implementation has some notable limitations regarding the analysis of real apps: there is no support
for libraries and APIs, limited support for reflection, and the exception analysis, although formalised, is not implemented
either. Even with these limitations the prototype has been used to perform a number of useful analyses described in
Sections 7 and 8.

While Android apps are generally developed in Java, compiled to Java bytecode, and only then converted to Dalvik
bytecode, we focus here on Dalvik bytecode because it is the common executable format for all Android apps and, therefore,
offers the best opportunity for performing analyses as close to the code actually executed as possible and allows us to
sidestep issues relating to decompiling and reverse engineering apps, cf. [7].

1.1. Related work

In [4] the tool ComDroid is described as a tool that performs “flow sensitive, intra-procedural static analysis with lim-
ited inter-procedural analysis” of Dalvik bytecode programs. It is designed to analyse the communication between Android
applications through the so-called Intents, the Android equivalent of events, and to find potential security vulnerabilities in
the communication patterns of applications. The same ComDroid tool is used as a component in another analysis tool called
Stowaway, that analyses API calls in applications to determine if they are over-privileged [8]. In order to improve the pre-
cision and efficacy of the analysis, Stowaway incorporates some analysis of the reflection features found in Dalvik bytecode
(through the java.lang.reflect library). Both ComDroid and Stowaway are sophisticated analysis tools covering not
only the Dalvik bytecode language but also important parts of the API and the Android platform itself. However, since the
analyses are not actually specified in detail, neither formally nor informally, it is impossible to evaluate their exact strengths
and weaknesses. Indeed, it is stated in [8] that Stowaway makes a “primarily linear traversal” and that it “experiences prob-
lems with non-linear control flow”. This emphasises the need for a formalisation of both the Dalvik bytecode language as
well as the control flow analysis.

Another approach to analysing Android applications for potential security violations is discussed in [7]. Here Android
applications are analysed by first recovering the Java source through decompilation and then using the Fortify SCA static
analysis tool to detect potential security vulnerabilities. While the paper reports impressive results using this approach, it is
also noted that it was not possible to recover the source code for all the targeted applications and thus making analysis of
those applications impossible. Analysing directly at the bytecode level sidesteps this issue.

The approach described in [24] takes advantage of the fact that most, if not all, Android applications are developed in
Java and adapts the Julia framework (see [28]) for Java bytecode analysis to the specificities of the Java bytecode that results
from developing Android applications (before being converted to Dalvik bytecode). As an example, the Julia-based analysis
can handle the specific use of reflection for XML2 specified graphical views prevalent on the Android platform. It does not
handle the general case of reflection nor the special instances handled by our approach. The Julia framework is theoretically
sound, comprehensive, and well-documented, but the described solution requires access to the Java bytecode version of an
application in order to analyse it.

In [12] the authors formalise a simple language, μ-Dalvik, and translate Dalvik bytecode into μ-Dalvik, with the goal
of performing symbolic execution of Dalvik programs. μ-Dalvik corresponds roughly to the core of the language that we
have formalised, but with some important differences: Dalvik bytecode might be mapped to several μ-Dalvik instructions,
whereas our mapping is always one to one. In addition we have formalised exceptions, the array-length instruction,

2 Extensible Markup Language, a common standard language for document encoding, data interchange, etc.



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 27
Table 1
Percentages of apps in our data set that use various features.

Feature Used by apps Hereof in libraries

Obfuscated source 64.82% –
Has native libraries 20.35% –
java/lang/Thread 90.18% 24.07%
java/lang/reflect 73.00% 55.92%
java/lang/ClassLoader 39.71% 81.19%
java/lang/Runtime;->exec 19.53% 80.44%

and some common cases of reflection, neither of which are formalised in μ-Dalvik. As our study shows, reflection is used
by a majority of apps making it a crucial feature to model.

Much of the work on Dalvik bytecode has been inspired by similar work on Java bytecode, including the current paper
which borrows the main methodology from [11]. One of the first, possibly the first, formal semantics for Java bytecode
language was defined by Bertelsen in [2]. Other early work on formalisation and analysis of Java bytecode includes [10,9]
where a core bytecode language is given a formal semantics and a type system for analysis is proven correct. Spoto provided
one of the first formal semantics used as the basis for abstract interpretation of Java bytecode [29]. This work inspired the
Julia framework for analysis [28] which is based on traditional abstract interpretation parameterised with different abstract
domains. As mentioned above the Julia framework has recently been adapted to cover Dalvik bytecode [24] translated from
Java bytecode. One of the earliest and most comprehensive tools for Java bytecode analysis is the Soot framework [30]. The
work on Soot has focused more on effectiveness and efficiency than on formalisation and thus lacks formal specification
and proof.

2. Study of apps

To identify which Dalvik bytecode instructions and which Java language features are used in typical Android apps, we
collected and examined the 50 most popular free apps of each category of Android Market (now part of Google Play),
1700 apps in total. Notable features include code obfuscation, threading, reflection, native libraries, and dynamic class load-
ing. The apps were collected in November 2011 using Android 2.3.3 on a Samsung Nexus S smartphone.

For efficiency reasons the Dalvik bytecode language contains several specialised variants of many common instructions,
e.g., there are numerous variants of the move instruction. For our study we have grouped instruction variants that are
semantically similar, e.g., most variants of the move instruction belong to the same group. In the semantics (see Section 3)
we use the same notion of grouping to abstract and generalise the original 218 Dalvik bytecode instructions into a set of 39
instructions. The mapping between the original and generalised instructions is given in Appendix A.

In our study we found that, with the exception of the filled-new-array instruction, all types of Dalvik byte-
code instructions are used in more than half of the studied apps. In particular, the instructions invoke-direct and
return-void are used in every app and even the two most rare instructions, sparse-switch and filled-new-
array, are used in 69.7% and 22.3% of the studied apps, respectively. The instructions that occur most frequently are
invoke-virtual and move-result, which are used more than 12 million times each in total in the 1700 apps. In
comparison, filled-new-array is used 1930 times. For full details, see Appendix B.

The observations made from studying the use of Java features are summarised in Table 1 and are explained in detail
below. For the study we have separated code into developer code and library code. Developer code is code that lies within
the natural packages for the application. For an application company.app this means all classes located directly in the
packages /, /company/, /company/app/, and any subpackages in /company/app/. Library code is everything else.

Code obfuscation, especially using ProGuard,3 is used to a large extent. We searched for classes named “a” within apps in
the data set, and used this as an approximation to determine if an app contains any obfuscated code. The same
approach was used in [7] which found 36% of apps to include obfuscated code. We found the class in 64.82% of
the apps. Obfuscation is recommended by Google,4 but makes it harder to manually inspect the code.

Native libraries, i.e., ARM shared object (.so) files, were included in 20.35% of the apps we studied.5 A previous study [7]
found that, of their 1,100 studied apps from September 2010, only 6.45% included shared objects. We presume the
increased usage is because the Android NDK,6 released June 25, 2009, has gained more widespread use in 2011.

Threading, as indicated by the use of monitors, i.e., the Java synchronized keyword, was found in 88% of the apps. Fur-
thermore, 90.18% of the apps include a reference to java/lang/Thread. These observations are not conclusive,
but indicate that multi-threaded programming is wide-spread. However, further studies are needed to substantiate
the results.

3 See http://proguard.sourceforge.net. Last accessed 13 December 2011.
4 See http://developer.android.com/guide/developing/tools/proguard.html. Last accessed 13 December 2011.
5 In addition, 15 apps included the ARM executable gdbserver.
6 Previously “Native Development Kit”, a toolset that facilitates interfacing Java/Dalvik with C/C++ and native (ARM) code.

http://proguard.sourceforge.net
http://developer.android.com/guide/developing/tools/proguard.html


28 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
The Java method Runtime.exec() is used to execute programs in a separate native process and is present in 19.53% of
the apps. We manually inspected some of these uses. Most of them do not use a hardcoded string as the argument
to exec(), but of those that do, we found execution of both the su and logcat programs which, if successful,
gives the app access to run programs as the super user on the platform or read logs (with private data [7]) from
all applications, respectively. Some apps also use the pm install command to install other apps at runtime.

Class loading Of the studied apps 39.71% contain a reference to the Java class loader library, java/lang/ClassLoader,
or a subclass such as the dalvik/system/DexClassLoader. However, only 13.1% of apps use the
loadClass() or defineClass() methods to actually load or define classes at runtime. Class loading allows
the loading of Dalvik executable (DEX) files and JAR files while class definition allows for programmatic definition
of Java classes, e.g., from scripting languages such as Javascript. If the classes being loaded are not present, e.g., if
they are downloaded from the Internet, the app cannot be analysed statically before installation. Furthermore, if
the classes being loaded are created dynamically from other languages, analysing the use before installation would
require the analysis tool to parse/analyse these languages. A simpler solution for handling the apps that use these
features would be to analyse the class just before it is being loaded, on the device. However, we consider this as
out of scope for this paper.

Class Transformation allows developers to change behaviour of classes at runtime, before they are loaded by the VM [22].
It is a Java feature, and is therefore also available in Android. The transformations allowed include adding new
instructions and changing control flow. We found no apps in our data set that use this feature, and will therefore
not return to this subject.

Reflection has been reported to be used extensively in Android apps for accessing private and hidden classes, methods, and
fields, for JSON7 and XML parsing, and for backward compatibility [8]. We confirmed these observations by manual
inspection. Of the 940 apps studied in [8], 61% were found to use reflection, and using automated static analysis
they were able to resolve the targets for 59% of the reflective calls.

73% of the apps in our data set use reflection.8 This indicates that a formalisation of reflection in Dalvik is
necessary to precisely analyse most apps. Reflection resolves classes, methods, and fields from strings. When these
are statically known, static analysis becomes possible. We treat this in Section 5.

Javascript Interfaces allow Javascript in a webpage embedded in an app to control that app. Android supports in-app load-
ing of webpages, through the WebKit API9 that provides a custom embedded web browser. This API includes the
addJavascriptInterface() method whose purpose is to make the methods on a Java object available to
Javascript code. The method is used in 39% of the apps in our data set. The interface allows webpages loaded
by the app to call methods on the Java object. Previous studies have shown that advertisement and analytics li-
braries use this to give the third-party advertisement companies access to sensor information, such as location
updates [18]. We confirmed this use through manual inspection, and furthermore discovered apps that were prac-
tically webpages, and where the Dalvik code merely loads the page and extends the browser functionality, e.g. by
allowing the webpage to send text messages from the phone.

3. Operational semantics

In this section we describe the formalisation of the Dalvik bytecode language using structural operational semantics [25].
With the exception of instructions related to concurrency, we have formalised the full generalised instruction set of 39 in-
structions, reduced from the full Dalvik instruction set comprising 218 instructions, see Appendix A. Below we present the
semantic rules for a few representative instructions and refer to [13] for an exhaustive list. The approach is inspired by a
similar effort to formalising the Java Card bytecode language [27,11].

To simplify our work, we have made three convenient, but minor, generalisations: simplification of the type hierarchy
to avoid dealing with bit-level operations except when absolutely necessary; “inlining” of the constant pools for easier and
more direct reference of strings, types, methods, and fields; and finally idealising the program counter by abstracting away
the length of instructions. While none of these modifications change the expressive power of a Dalvik application, they
greatly simplify presentation and formalisation.

The study described in Section 2 impacted the formalisation in two major ways: it was clear that all of the core byte-
code language had to be formalised and also that the reflection API had to be formalised. In order to ensure that the
formalisation correctly represents the Dalvik (informal) semantics, we based the formalisation on the documentation for
Dalvik [1], inspection of the source code for the Dalvik VM in Android,10 tests of handwritten bytecode, and experiments
with disassembly of compiled Java code.

7 JavaScript Object Notation, a standard data interchange format similar to XML.
8 This number counts direct uses of reflection in the app, not indirect uses through Android APIs that themselves employ reflection such as

Activity.setContentView().
9 See http://developer.android.com/reference/android/webkit/package-summary.html. Last accessed 8 May 2012.

10 See http://source.android.com/source/downloading.html. Last accessed 14 December 2011.

http://developer.android.com/reference/android/webkit/package-summary.html
http://source.android.com/source/downloading.html


E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 29
3.1. Program structure

To facilitate the development of the formal semantics for Dalvik bytecode, it is important to have a good formali-
sation of the formal structure of an app. We follow the general approach of [27,11] and use domains equipped with
accessor-functions: the domain D = D1 × · · · × Dn with functions fi : D → Di is expressed in a record-like format: D =
(f1 : D1) × · · · × (fn : Dn). The access functions are used in an object-oriented style where, for d ∈ D, fi(d) is written d.fi and
fi(d,a1, . . . ,am) is written d.fi(a1, . . . ,am). The notation d[f �→ x] expresses the domain d where the value of access function
f is updated to x. Similarly the notation g[x �→ y] expresses the function g where value x now maps to y. In the following
we use the domains for classes, interfaces, fields, and methods to illustrate our approach. The remaining domains are found
in Appendix C.

A class is specified with a class name, the app in which the class is defined, the Java package it belongs to, a superclass,
as well as sets of implemented interfaces, fields, access flags, implemented methods, and method declarations (for abstract
classes):

Class = (name: ClassName) × (app: App) × (package: Package)×
(super: Class⊥) × (implements:P(Interface)) × (fields:P(Field))×
(accessFlags:P(AccessFlag)) × (methods:P(Method))×
(methodDeclarations:P(MethodDeclaration))

We define the superclass of java/lang/Object to be ⊥, hence the domain Class⊥ for superclasses. For name domains
like ClassName we assume an unlimited supply of unique names.

An interface is similar to a class but with three important differences: in place of a superclass it has a set of
super-interfaces (super : P(Interface)), instead of implemented interfaces it symmetrically has its implementing classes
(implementedBy : P(Class)), and, finally, instead of implemented methods it possibly has one method, a class construc-
tor (clinit : Method⊥). Class constructors are needed to initialise static fields on classes and interfaces and are consequently
the only methods that can be implemented directly in interfaces.

A field of a class or an interface has a name, the class or interface where it is defined, a type, an indication of whether
it is a static field or not, and then its access flags:

Field = (name : FieldName) × (class : Class ∪ Interface)×
(type : Type) × (initialValue : Prim ∪ {null})×
(isStatic : Bool) × (accessFlags : P(AccessFlag))

A method signature specifies how a method can be called: the name of the method, the class or interface where it is
declared (though not necessarily implemented), as well as the argument and return types:

MethodSignature = (name : MethodName) × (class : Class ∪ Interface)×
(argTypes : Type∗) × (returnType : Type ∪ {void})

Method declarations specify everything about a method except its implementation. They appear in interfaces and abstract
classes and besides the method signature specify a kind, a set of access flags, and the checked exceptions the method can
throw. The kind of a method can be direct, which is used for non-overridable methods, i.e., constructors and private or
final methods, static for static methods (that are not direct), and virtual for normal, overridable methods including
methods specified in interfaces. Access flags indicate accessibility and various properties and include public, private,
protected, final, and abstract.

MethodDeclaration = (methodSignature : MethodSignature)×
(kind : {virtual,static,direct})×
(accessFlags : P(AccessFlag))×
(exceptionTypes : P(Class))

An actual method is a method declaration plus implementation details: a mapping from locations in the method (program
counter values) to instructions,11 the number of registers used for local variables,12 a set of exception handlers, and a
mapping from locations of data tables in the bytecode to the contents of these tables13:

Method = (methodDeclaration : MethodDeclaration)×
(instructionAt : PC → Instruction)×
(numLocals : N0) × (handlers : N0 → ExcHandler)×
(tableAt : PC → DataTable)

11 Instruction is simply the set of generalised instructions as given in Appendix A.
12 Dalvik uses registers instead of an operand stack.
13 Data tables consist of hardcoded array data and switch tables.



30 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
For methods, i.e., elements from Method, the class found in the method signature of the method declaration specifies the
class (or interface, in the case of clinit) where the method is implemented. For convenience we introduce unambiguous
shorthands such as m.kind for m.methodDeclaration.kind where m ∈ Method.

3.2. Semantic domains

Having defined the domains for the overall structure of an app, what remains is to define the semantic domains. The
most fundamental semantic domain is that for values. In Dalvik values can be either primitive values or references:

Val = Prim + Ref

For our purpose, it is sufficient to let primitive values consist only of numbers: Prim = Z. References are either the null
reference or an abstract heap location that does not need to be defined in further detail14: Ref = Location ∪ {null}.

Local registers are formalised as a map from register names to values, with ⊥ denoting undefined register contents:
LocalReg = (N0 ∪ {retval}) → Val⊥ . Note that a special register, the retval register, is used to transfer return values
from invoked methods to the invoking methods.15

For convenience we use two distinct domains to formalise the heap by splitting it into one for static fields and one for
dynamic objects and arrays:

StaticHeap = Field → Val and Heap = Ref → (Object + Array)

Objects are formalised as a domain with a class and a mapping from (object) fields to values. Furthermore, in anticipation
we add an annotation component, called origin, that records the program point at which the object was created. It is
important to note that this has no effect on the semantics, i.e., the actual execution of a program, but is only needed to
facilitate the formalisation and proof of correctness for the analysis developed in Section 4:

Object = (class : Class) × (field : Field → Val) × (origin : Method × PC)

For arrays we do not track the creation point, merely the type, length, and valuation:

Array = (type : ArrayType) × (length :N0) × (value :N0 → Val)

We can then define stack frames to consist of a method and a program counter value, i.e., a uniquely determined program
point, and the local registers:

Frame = Method × PC × LocalReg

Special frames, exception frames containing the location of its corresponding exception object on the heap and the address16

of the instruction that threw the exception, are introduced for tracking exceptions that are not handled locally:

ExcFrame = Location × Method × PC

This leads to the following definition of call stacks as a sequence of frames except that the top frame may be an exception
frame representing an as of yet unhandled exception:

CallStack = (Frame + ExcFrame) × Frame∗

Together the heaps and the callstack comprise a semantic configuration:

Configuration = StaticHeap × Heap × CallStack

3.3. Semantic rules

We specify the semantics as a straightforward structural operational semantics where each configuration comprises a
static heap, a heap, and a call stack as defined above. To illustrate the semantics, we present the semantic rules for a few
central instructions, first the basic move instruction:

m.instructionAt(pc) = move v1 v2

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m, pc + 1, R[v1 �→ R(v2)]〉 :: S F 〉
The function instructionAt is an access function on the Method domain that identifies the instruction at a given location in a
specified method. In the new configuration, the static heap, S , and dynamic heap, H , of the top frame are unchanged. Only

14 Dalvik does not support pointer arithmetic so it will suffice to know that we can model an arbitrary number of unique locations.
15 Besides the retval register, Dalvik supports 216 numbered regular registers that we generalise to N0.
16 In general we refer to a pair consisting of a method and a program counter value (PC = N0) as an address. In contexts where the method is given, we

sometimes use address about the program counter value alone.



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 31
the top frame of the call stack is affected: the program counter is incremented, and the register valuation is updated such
that the destination register now maps to the value of the source register.

The invoke-virtual instruction is more involved:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 
= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth,o.class) 
= ⊥
R ′ = [0 �→ ⊥, . . . ,m′.numLocals − 1 �→ ⊥,m′.numLocals �→ R(v1), . . . ,m′.numLocals + n − 1 �→ R(vn)]

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m′,0, R ′〉 :: 〈m, pc, R〉 :: S F 〉
It receives n arguments and the signature of the method to invoke. The first argument, v1, is a reference to the object
on which the method should be invoked (the “this” pointer). The location of the method is resolved using the auxiliary
function resolveMethod as explained below and the resulting method is put into a new frame on top of the call stack, with
the program counter set to 0. A new set of local registers, R ′ , is created where the first m′.numLocals registers are mapped
to ⊥Val such that they are initially undefined. The arguments are then mapped into the next registers. To handle dynamic
dispatch, we define the following function to search for a method matching the given method signature in the ancestry of
the given class:

resolveMethod(meth, cl) =
⎧⎨
⎩

⊥ if cl = ⊥
m if m ∈ cl.methods ∧ meth � m
resolveMethod(meth, cl.super) otherwise

where meth � m is a predicate formalising when a method signature meth is compatible with a given method m ∈ Method,
i.e. when the names, argument types and return types match.

The return instruction pops off the top frame, advances the program counter, and passes on the return value by
updating the retval register:

m.instructionAt(pc) = return v

A � 〈S, H, 〈m, pc, R〉 :: 〈m′, pc′, R ′〉 :: S F 〉 �⇒ 〈S, H, 〈m′, pc′ + 1, R ′[retval �→ R(v)]〉 :: S F 〉
The Dalvik instruction set also contains some specialised instructions, for example const-class which is a shortcut
to create a java/lang/Class instance representing a specified class. This instruction is typically used in conjunction
with reflection which we treat in Section 5. A java/lang/Class object has a field called name which refers to a
java/lang/String object with the name of the class. The instruction therefore creates a Class and a String and
sets the String field value to the (character array) name of the given class and maps the field name on the Class to
the newly created string:

m.instructionAt(pc) = const-class v cl
findClassObject(H, cl) = ⊥

(H ′, locc) = newObject(H,java/lang/Class,m, pc) oc = H ′(locc)

(H ′′, locs) = newObject(H ′,java/lang/String,m, pc) os = H ′′(locs)

H ′′′ = H ′′[locc �→ oc[field �→ oc .field[name �→ locs]], locs �→ os[field �→ os.field[value �→ cl.name]]]
A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H ′′′, 〈m, pc + 1, R[v �→ locc]〉 :: S F 〉

The auxiliary function findClassObject searches the heap for a class object representing the given class. It returns the object
location if the object exists, and returns ⊥ otherwise.

The new objects are created using the auxiliary function newObject, also used in the semantics of the new-instance
instruction, which returns the modified heap along with a fresh reference to the newly created object:

newObject : Heap × Class × Method × PC → Heap × Ref
newObject(H, cl,m, pc) = (H ′, loc)

The produced heap and location have the following properties: loc /∈ dom(H), H ′ = H[loc �→ o], o ∈ Object, o.class = cl, and
o.origin = (m, pc). Note in particular, that the current program point is recorded in the origin field of the newly created
object.

Class objects are unique,17 so if a class object with the desired class was already present on the heap, that one is
returned instead of creating a new one:

m.instructionAt(pc) = const-class v cl
findClassObject(H, cl) = locc 
= ⊥

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m, pc + 1, R[v �→ locc]〉 :: S F 〉

17 This only holds for classes loaded by the same class loader. Since our analysis is defined only for the standard class loader, this is not a problem here.



32 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
3.4. Exceptions

Exceptions can be thrown either explicitly using the throw instruction, or by the system in case of a runtime error, such
as a null pointer dereference. Both situations can be seen directly in the throw instruction whose semantics depends on
its argument:

m.instructionAt(pc) = throw v
R(v) = loce 
= null H(loce).class �Throwable

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈loce,m, pc〉 :: 〈m, pc, R〉 :: S F 〉
m.instructionAt(pc) = throw v

R(v) = null (H ′, loce) = newObject(H,NullPointerException)

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H ′, 〈loce,m, pc〉 :: 〈m, pc, R〉 :: S F 〉
In both situations an exception frame is pushed on the stack and the next step depends on whether an appropriate exception
handler is available in the method. If one is available, the exception frame is discarded and its exception is put in the
retval register of the current method which also jumps to the program counter of the handler:

cl = H(loce).class findHandler(m, pc, cl) = pc′ 
= ⊥
A � 〈S, H, 〈loce,me, pce〉 :: 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m, pc′, R[retval �→ loce]〉 :: S F 〉

If no exception handler is found, the frame of the currently executing method is discarded but the exception frame
retained such that the search continues recursively among the handlers of the next method:

cl = H(loce).class findHandler(m, pc, cl) = ⊥
A � 〈S, H, 〈loce,me, pce〉 :: 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈loce,m, pc〉 :: S F 〉

An exception handler has a type for the exceptions it may catch, a program counter value pointing to the handler code,
and program counter values defining the boundaries of the region covered by the exception handler:

ExcHandler = (catchType : Class⊥) × (handlerAddr : PC) × (startAddr : PC) × (endAddr : PC)

The auxiliary function findHandler finds the exception handler matching the location in the method and the given exception
class, or ⊥ if no appropriate handler is available. It is itself defined using two auxiliary predicates.

The first, canHandle, determines whether an exception handler (h) can handle the given exception (cle) for the specific
location (pc) in the method:

canHandle(h, pc, cle) ≡ h.startAddr � pc � h.endAddr ∧ cle � h.catchType

The catch type of a catch-all handler, corresponding to a Java finally clause, is �. The canHandle predicate is used in
another predicate, isFirstHandler, which formalises whether or not the given handler (specified by a list of handlers, η, and
an index, i) is the correct handler according to indices supplied by the compiler:

isFirstHandler(η, i, pc, cle) ≡ canHandle(η(i), pc, cle) ∧ (∀ j : canHandle(η( j), pc, cle) ⇒ j � i)

The indices represent an ordering of the handlers that is used to determine which of two (or more) competing handlers
should be used when an exception is thrown in their common region of responsibility. The highest index corresponds to
the most specific handler.

The function findHandler uses isFirstHandler to find the address (in this case only the program counter value because the
method is given) of the first handler or return ⊥ if no handler is available:

findHandler(m, pc, cle) =
{

η(i).handlerAddr if η = m.handlers ∧ dom(η) 
= ∅ ∧ ∃i : isFirstHandler(η, i, pc, cle)
⊥ otherwise

4. Control flow analysis

In the following we give an overview of the control flow analysis we have designed for Dalvik. Control flow analysis is an
essential component for building more advanced and specialised analyses, e.g., access control and information-flow analyses.
But control flow analysis is also useful on its own, e.g., to find methods that are never called. The control flow analysis also
has to take advanced control flow concepts such as dynamic dispatch, exceptions and reflection into account since these are
integral to Dalvik. The former two are briefly described below while the latter is dealt with in detail in Section 5.

Our control flow analysis is specified as a flow logic [20]. In this approach an analysis is defined through a number of
flow logic judgements that specify what is required of an analysis result in order to be sound. Many other frameworks for
program analysis exist, but the combination of structural operational semantics and flow logic has proven to be flexible and
easy to use for both theoretical developments as well as for implementation. In particular, a similar approach has been used
to specify, reason about, and implement numerous analyses for the Java bytecode language [11] which is similar in nature
to Dalvik. A more detailed comparison with other approaches is outside the scope of this paper.



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 33
4.1. Abstract domains

Before we can define the flow logic judgements for the analysis itself, we first need to define the abstract domains over
which the analysis works. The abstract domains are used in the analysis to represent abstractions of runtime values and
they closely follow the structure of the underlying semantic domains.

We start by defining the most basic abstract domain, namely that for values. An abstract value, similar to a concrete
(semantic) value, can be either an abstract primitive value or an abstract reference:

Val = Prim + Ref and V̂al = P(Val)

For our analysis, it is sufficient to model abstract primitive values simply as integers, Prim = Prim = Z. Note that we use
overlined domain names to indicate an abstract domain based on a concrete domain with the same name while domains
with a “hat” (like V̂al) indicate domains that are complete lattices. The latter property is important for ensuring that the
flow logic specification is well-defined.

Dalvik has native support for string constants that we model simply as Ŝtring = P(String) where we assume the
existence of a primitive string domain String. The native strings are different from the character arrays that live in
java/lang/String objects in the Java standard library and therefore a Dalvik native string cannot, as such, be used
in place of a “proper” Java string. However, for the analysis we may consider the (abstract) native strings to be contained
in the (abstract) Java string objects. An example of this is shown in the analysis of the const-class instruction in Sec-
tion 4.2.

Abstract references are either object references, array references, or a null reference:

Ref = ObjRef + ArrRef + {null}
For object references we take an approach similar to the textual object graphs in [31]: we model all runtime object references
as the class of the runtime object combined with the syntactic creation point of the object. Array references are formalised
simply as the type of the array, i.e., the analysis merges all information about arrays of the same type:

ObjRef = Class × Method × PC and ArrRef = ArrayType

Note that here we directly use the concrete program structure defined in Section 3 to model the abstract program structure.
To enhance readability, specific instances of object and array references are written ‘(ObjRef cl,m, pc)’ and ‘(ArrRef t)’ re-
spectively. In anticipation of later developments, we introduce the following notation for extracting all (abstract) references
to a particular class:

X |cl = {(ObjRef (cl′,m, pc)) ∈ X | cl = cl′}
In order to achieve sufficient precision, the analysis tracks the value of individual registers at every program point,

including any return values produced by a method. This leads to the following abstract domains for program points and
registers:

PC = Method × (PC + END) and Register = Register ∪ {retval,END}
The token ‘END’ is introduced in the analysis as both a special program counter value and as a special register such that
the set of values returned by a method m can be easily referenced.

The domain for tracking register values can then be formalised as a mapping for every (abstract) program point from
registers to abstract values:

̂LocalReg = PC → Register → V̂al

For R̂ ∈ ̂LocalReg we shall write R̂(m,END) as shorthand for R̂(m,END)(END), i.e., the (abstract) return value produced by
method m.

Note that tracking the values of local registers at each program point leads to a control flow analysis that is intra-
procedurally flow sensitive, i.e., flow sensitive within methods. As already mentioned, this is necessary to achieve sufficient
precision for the analysis to be useful. However, it also enables analyses that are intra-procedurally state based such as
tracking (within a method) which classes have been initialised.

The subset ordering on V̂al can be extended point-wise to an ordering on ̂LocalReg. Let R̂1, R̂2 ∈ ̂LocalReg, a1,a2 ∈ PC,
and define

R̂1 � R̂2 iff ∀a ∈ dom(R̂1) : R̂1(a) � R̂2(a)

R̂1(a1) � R̂2(a2) iff ∀r ∈ dom(R̂1(a1)) : R̂1(a1)(r) � R̂2(a2)(r)

In anticipation of the flow logic specification, we define the following notation:

R̂1(a1) �X R̂2(a2) iff ∀r ∈ dom
(

R̂1(a1)
) \ X : R̂1(a1)(r) � R̂2(a2)(r)



34 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
The semantic heap is modelled using two abstract domains: one that tracks the static fields of objects, called the static heap,
and one that tracks references to objects and arrays:

̂StaticHeap = Field → V̂al and Ĥeap = Ref → (Ôbject + Ârray)

The abstract domains for objects and arrays can now be defined:

Ôbject = Field → V̂al and Ârray = V̂al

We could model the structure of arrays but due to imprecise indexes it is of little benefit to the overall precision of the
analysis.

The last abstract domain needed for our analysis is needed to track exceptions that are not handled locally within a
method:

̂ExcCache = Method → P(ObjRef)

Finally, we are now able to define the abstract domain for the overall analysis:

ĈFA = ̂StaticHeap × Ĥeap × ̂LocalReg × ̂ExcCache

In the following we specify what it means for an element of the above domain to be a sound analysis of a given program.

4.2. Flow logic specification

With all the relevant abstract domains defined, we can now specify the flow logic judgements that define our control
flow analysis. Flow logic is a specification-oriented approach to program analysis. Analyses are specified by defining, for
every instruction, a judgement that formalises when an analysis result is a sound approximation of (the effects of) that
instruction [20].

In the remainder of this section, we illustrate the analysis by discussing the judgements for a few interesting instructions
and refer to [13] for the full specification. We start with the judgement for the move instruction which is one of the
simplest. Recall that after a move instruction is executed, the destination register (v1 below) contains the value from the
source register (v2 below) while all others are unchanged. This results in the following judgement:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : move v1 v2

iff R̂(m, pc)(v2) � R̂(m, pc + 1)(v1)

R̂(m, pc) �{v1} R̂(m, pc + 1)

To improve readability we adopt the convention that conditions in judgements are implicitly joined by conjunction, i.e.,
they must all hold in order for the judgement to hold. As a further convenience, we use indentation to indicate the scope
of logical variables bound by a quantifier (used in later judgements).

In words, the above judgement states that ( Ŝ, Ĥ, R̂, Ê) ∈ ĈFA is a sound analysis result for the effects of the move
instruction located in method m at address pc if and only if the following two conditions are fulfilled. The first condition
(R̂(m, pc)(v2) � R̂(m, pc + 1)(v1)) formalises that the set of abstract values in the source register v2, at the current address
(m, pc), must also be present in the set of abstract values for the destination register v1 at the following address (m, pc +1).
The latter condition (R̂(m, pc) �{v1} R̂(m, pc + 1)) requires that all registers, except the destination register v1 which was
updated explicitly, contains at least the same abstract values at the next address as at the current address.

The judgement for the invoke-virtual instruction is somewhat more involved: for each possible object the method
can be called on (these can be found in register v1 containing the “this” pointer), the method is resolved (by dynamic
dispatch using the resolveMethod function from the semantics), the arguments are transferred, and the retval register is
updated with the return value (unless the return type of the method is void). In addition, the judgement must also deal
with exceptions: both the null pointer exception that the instruction may throw itself as well as those that are thrown in
but not handled by the invoked method. The latter are tracked using the exception component of the analysis Ê . Exceptions
and exception handling is discussed in more detail below:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : invoke-virtual v1 . . . vn meth
iff ∀(ObjRef (cl,mt, pct)) ∈ R̂(m, pc)(v1) :

m′ = resolveMethod(meth, cl)
∀1 � i � n : R̂(m, pc)(vi) � R̂(m′,0)(m′.numLocals − 1 + i)
m′.returnType 
= void⇒ R̂(m′,END) � R̂(m, pc + 1)(retval)

∀oref e ∈ Ê(m′) : HANDLE
(R̂,Ê)

(oref e, (m, pc))

R̂(m, pc) �{retval} R̂(m, pc + 1)

HANDLE
(R̂,Ê)

((ObjRef (NullPointerException,m, pc)), (m, pc))

Two things can happen when an exception is thrown: if a local handler exists, control is transferred to that handler with
a reference to the exception object in the retval register. If no local handler exists, the method aborts and the exception is



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 35
put on the call stack in an exception frame. The following auxiliary predicate, also used in the above judgement, formalises
the exception handling semantics:

HANDLE
(R̂,Ê)

((ObjRef (cle,me, pce)), (m, pc)) ≡
findHandler(m, pc, cle) = pc′ 
= ⊥ ⇒

{ObjRef (cle,me, pce)} ⊆ R̂(m, pc′)(retval)

R̂(m, pc) �{retval} R̂(m, pc′)
findHandler(m, pc, cle) = ⊥ ⇒

{ObjRef (cle,me, pce)} ⊆ Ê(m)

With the above predicate, it is trivial to define the analysis for the throw instruction:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : throw v
iff ∀oref e ∈ R̂(m, pc)(v) : HANDLE

(R̂,Ê)
(oref e, (m, pc))

HANDLE
(R̂,Ê)

((ObjRef (NullPointerException,m, pc)), (m, pc))

As the final example we specify the judgement for the const-class instruction, illustrating both how to handle spe-
cialised Dalvik instructions as well as how fields in runtime objects are accessed. Also note how shorthands are introduced
for the long names of the Java API:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : const-class v cl
iff orefStr = ObjRef (java/lang/String,m, pc)

orefCl = ObjRef (java/lang/Class,m, pc)
{cl.name} ⊆ Ĥ(orefStr)(value)

{orefStr} ⊆ Ĥ(orefCl)(name)

{orefCl} ⊆ R̂(m, pc + 1)(v)

dom(Ĥ)|java/lang/Class ⊆ R̂(m, pc + 1)(v)

R̂(m, pc) �{v} R̂(m, pc + 1)

Following the semantics of the instruction (discussed in Section 3) the class name given as argument cl is stored in the
value field of a newly created String object, the reference to which is stored in the name field of a Class object, which
is stored in the destination register v . Finally, to take possible object sharing into account, we copy all abstract references
to java/lang/Class found in the (domain of) the abstract heap to the result register v .

4.3. Correctness of the analysis

We define and prove the semantic soundness of the analysis by means of a subject reduction result. To this end the
relationship between the concrete and abstract domains is formalised. We use representation functions to map semantic
domains to their abstract domains while keeping the best possible representation. For semantic domains that do not have
corresponding abstract counterparts, correctness relations are introduced. We treat the analysis without exceptions. While
this simplifies the presentation, the proof extends in a straightforward way to the full semantics.

4.3.1. Representation functions and correctness relations
As values can be either primitive values or references (see Section 4.1) representation of a concrete value is delegated

depending on type:

βH
Val(v) =

⎧⎨
⎩

βPrim(v) if v ∈ Prim

βH
Ref(v) if v ∈ Ref

⊥V̂al if v = ⊥Val

Since the representation of a reference value depends on the heap as well as the value, as we shall soon see, the represen-
tation function for values in general is parameterised by it as well.

Primitive values are represented as integers in both the concrete and abstract domains (P̂rim = P(Prim) = P(Prim) =
P(Z)) so the best representation is to inject a value into its singleton set: βPrim(p) = {p}.

Since concrete references by themselves are not distinguished by whether they reference an object or an array, the
concrete heap is necessary as a parameter to their representation function:

βH
Ref(loc) =

⎧⎨
⎩

{ObjRef (cl,m, pc)} if H(loc) ∈ Object ∧ H(loc).class = cl ∧ H(loc).origin = (m, pc)

{ArrRef t} if H(loc) ∈ Array ∧ H(loc).type = t
{null} if loc = null



36 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
Register contents are modelled as a mapping from registers to values (see Section 3.2), so a register valuation R ∈ LocalReg
can be represented by representing the values that the registers map to. Similarly for a static heap S ∈ StaticHeap:

βH
LocalReg(R) = βH

Val ◦ R and βH
StaticHeap(S) = βH

Val ◦ S

The dynamic heap is more intricate. Since the analysis abstracts object references into classes, an abstract object reference
may correspond to more than one concrete location. To handle this the representation function for heaps is also parame-
terised on an abstract reference, and the representations of the corresponding concrete objects are joined:

βHeap(H)(ObjRef (cl,m, pc)) =
⊔

loc∈dom(H)

βH
Ref(loc)=(ObjRef (cl,m,pc))

βH
Object(H(loc))

where the representation function for objects is defined as follows:

βH
Object(o) = βH

Val ◦ (o.field)

The representation function for array references is defined in a similar way.

Correctness relations A stack frame (of domain Frame) is correctly represented if the abstract representation of its register
valuation is contained in the corresponding abstract register valuation at the right address:

〈m, pc, R〉 RH
Frame R̂ iff βH

LocalReg(R) � R̂(m, pc)

A call stack is a sequence of stack frames, S F = F1 :: · · · :: Fn , that is correctly represented if every stack frame of the call
stack is correctly represented:

S F RH
CallStack R̂ iff ∀1 � i � n : Fi RH

Frame R̂

We can now state that a complete configuration is correct if the abstract representations of the heaps are contained in their
respective corresponding abstract domains:

〈S, H, S F 〉 RConf ( Ŝ, Ĥ, R̂) iff βH
StaticHeap(S) � Ŝ ∧ βHeap(H) � Ĥ ∧ S F RH

CallStack R̂

4.3.2. Subject Reduction Theorem
The theorem states that an analysis result that is correct with respect to a semantic configuration remains correct under

semantic reduction.

Theorem 1 (Subject Reduction). Let A ∈ App and C ∈ Configuration such that ( Ŝ, Ĥ, R̂) ∈ ĈFA, ( Ŝ, Ĥ, R̂) |� A, and A � C �⇒ C ′ .
Then

C RConf ( Ŝ, Ĥ, R̂) ⇒ C ′ RConf ( Ŝ, Ĥ, R̂)

The proof is a tedious but straightforward case analysis on the semantic reductions. We have proved the theorem for
a core of the language, see Appendix D. We expect that the proof can be extended easily to the full language. To handle
exceptions and the return instruction a condition will have to be added such that the callstack can be trusted to be
the result of an actual program execution. A well-formed configuration can be defined as a configuration with such a
well-formed callstack, and it would also have to be shown that well-formedness is preserved under semantic reduction.

4.4. Concurrency

There are two Dalvik instructions related to concurrency: monitor-enter and monitor-exit. They are generated
by the compiler when the Java keyword synchronized is used and they are used in most apps.

In the concurrent execution model, the execution order of instructions is defined by the Java Memory Model,
JSR-133 [23], which formalises how shared variables should be read and written, and how instructions can be re-ordered
to execute as-if-serially when they are concurrent [19]. According to unofficial statements by one of the Dalvik develop-
ers, Alexey Kryshen, on the Stackoverflow website,18 Dalvik tries to comply with the JSR-133 memory model, though there
should be cases where it does not on versions prior to Android 3.0.

In the present work we have formalised neither the semantics nor the analysis of concurrency and the related instruc-
tions. However, we conjecture that our control flow analysis can be extended to a sound analysis even for multi-threaded
apps since the analysis is flow insensitive with respect to heap access. Therefore the analysis already represents an over-
approximation of all possible interleavings of all heap accesses, including those that would otherwise be added by allowing
multi-threaded apps.

18 See http://stackoverflow.com/questions/6973667/dalvik-vm-java-memory-model-concurrent-programming-on-android. Last accessed 29 May 2012.

http://stackoverflow.com/questions/6973667/dalvik-vm-java-memory-model-concurrent-programming-on-android


E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 37
5. Reflection

Reflection allows a program to access class information at runtime, and use this information to create new objects, invoke
methods or otherwise change the control flow of the program. When reflection is used, the types involved are usually not
known statically. Instead, they are retrieved dynamically from strings. The strings can come from sources such as user input,
files included with the app, the Internet, or, in some cases, constant strings in the program. We found that several of the
apps in our data set specify constant strings in the program.

The most used method from the Java reflection API is Method.invoke(). It is an instance method on the
java/lang/reflect/Method class used to invoke dynamically resolved methods. An example can be seen in List-
ing 1 where the method bar(int) on the class pkg.examples.Foo is invoked on an instance of the class with the
argument ‘3’.

1 Class<?> clazz = Class.forName("pkg.examples.Foo");
2 Method method = clazz.getMethod("bar", int.class);
3 Integer result = (Integer) method.invoke(clazz.newInstance(), 3);

Listing 1: A method invoked through reflection in Java.

A Method object can be retrieved using the instance method getMethod() on the Java standard class java/lang/
Class. The instance of Class does not have to represent a class that implements the method in question since it will be
resolved with dynamic dispatch like normal method calls. In Listing 1, the Class object is retrieved using the static method
Class.forName() that, given a fully qualified class name, returns a reference to a Class instance for the specified class.

Another way to obtain a Class object is through the Dalvik instruction const-class (see Section 3 for the semantics
of this instruction). It is generated when the static field class, which is found in all Java classes, is accessed. An alternative
to Class.forName("pkg.examples.Foo") at line 1 in Listing 1 would therefore be Foo.class, given that the
example code is located in the same package as the Foo class and that the class can be found at compile time.

The Method objects are mainly retrieved using the methods getMethod() and getMethods(). The latter returns
an array of all public method declarations on a class while the former returns a single object that is found by specifying
the name and parameter types of the desired method declaration. The methods getMethod() and getMethods() only
find public method declarations. They both find the method declaration objects by traversing the class hierarchy, starting at
the class represented by the Class object and searching upwards through superclasses and interfaces. We uncovered and
reported an undocumented change in the semantics of this traversal which we discuss in Section 5.5. Developers can also
use the getDeclaredMethod() and getDeclaredMethods() methods which only look in the given class but may
also return private methods.

Once a Method object has been obtained, it can be used to retrieve information about the method declaration, for ex-
ample access modifiers, name, and the (checked) exceptions it can throw. Accessing these requires no additional information
besides that which is known statically from the method declaration. To invoke the method, an instance of the class or a
subclass is required (except for static methods). The receiver object can be any Java object created using the regular Java
new statement or through the newInstance() method on a Class object. In addition to creating a new instance, the
newInstance() method calls the parameterless constructor for the class. To use another constructor, an instance of the
Constructor class from the reflection API must be used.

5.1. Reflection in the wild

We have run an automated informal search for constant strings supplied to the two java/lang/Class methods
forName() and getMethod(). Of the 150 apps in three randomly selected market categories (News and Magazines, Pho-
tography, and Productivity),

• 18.7% of the apps use neither forName() nor getMethod()
• 17.3% use at least one of the methods and use only constant strings
• 25.3% use exactly one variable string in total for both methods
• 38.7% use more than one variable string in total for both methods.

Here we searched for instances of the two Class methods with a const-string instruction in the preceding vicin-
ity, writing to the same register read by the method. This approach gives a number of false positives, most prominently
those that simple constant propagation would find. But also in subtler cases, as seen in the 37.3% of the apps containing
a class named InstallReceiver. This class uses forName() with a variable string, but only if it equals the constant
"com.google.android.apps.analytics.AnalyticsReceiver". So with the techniques we formalise in the fol-
lowing sections, it is possible to analyse more than a third of real-world apps. Handling of (the effects of) simple patterns of
reflection usage may increase this number further (as indicated by the large number of apps that only sparingly use variable
strings for reflection).



38 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
5.2. Usage patterns

The use-cases for reflection vary from app to app, and Android developers use it for many different things. However, we
have observed some patterns in usage, most of which we have found through manual inspection of the bytecode.

Hidden API methods are invoked. Certain features in Android are deliberately hidden such that they are not present in the
JAR file for the Android API that app developers use when compiling their Android apps. This is typically done
when an API is not yet considered stable or if the underlying functionality is not implemented on all devices
intended to support it. A prominent example is the Bluetooth API, most of which was hidden in the early releases
of Android. Developers tend to use these features anyway, and use reflection to do so19 [8] instead of precompiling
their own fully featured JAR file for the Android API.

Private API methods and fields are accessed by bypassing access modifiers. Several features of the Android platform are placed
in private methods and fields, such as the ability to create a list of text messages from raw SMS data.

Backward compatibility As new versions of Android are often released with new features, developers tend to use reflection
to check if certain methods/features exist and call these only when they do. This pattern is even encouraged by
Google.20

JSON and XML is generated and parsed with the use of reflection. Some apps use JSON and XML that contain information
about their Java objects, and through reflection generation and parsing can be automated.

Libraries for Android apps are widely available on the Internet, and some of them use reflection. In many apps that use
reflection, it is only used by the included libraries.

In [17] a reflection analysis for standard Java is defined and discussed as well as the use of reflection in a number of large
open source projects. This study revealed some of the same patterns as those reported here, such as object serialisation and
portability/backward-compatibility. However, it was found that reflection was mostly used to create new objects without
invoking new methods on them. In contrast, we found that in Android, invoking methods is among the most common uses
of reflection. Our findings are however consistent with those reported for Android in [8].

5.3. Assumptions

Static analysis of the reflection API is not possible in all cases. We therefore make the following assumptions:

• All classes used through reflection are known statically, such that its components can be analysed. In other words, we
assume that dynamic class loading is not used.

• The program does not use a non-default class loader, as this could change the behaviour of Class.forName() and
related methods. As mentioned in Section 2, class loaders are used in 13.1% of the apps to either load or define new
classes. This raised other problems with regards to static analysis, and they were considered out of scope for this
project.

• The strings used to obtain Method and Class objects used for reflection can be determined statically. This presump-
tion only holds for some of the studied apps. A preliminary rough analysis of our data set shows that 57% and 44% of all
calls to Class.forName() and Class.getMethod() respectively use locally defined constant strings. Of the stud-
ied apps, a total of 19% exclusively use locally defined constant strings for all calls to the methods Class.forName()
and Class.getMethod().

These last results are based on a sampling of const-string instructions syntactically appearing shortly before the
invocation of the reflection methods. They are not based on the limited but inter-procedural data flow capabilities of
our control flow analysis. Even with an inter-procedural analysis, improving the numbers requires the ability to track
strings across collection APIs such as java/util/ArrayList and follow string manipulation such as that of the
java/lang/StringBuilder class. An example of the former is discussed briefly in Section 8. For the latter, existing
string analyses such as [5,15,26] may prove useful.

The operational semantics specified so far all represent single Dalvik instructions. We now change focus and specify
operational semantics and flow logic judgements to represent Java API method calls. This has two reasons: (1) Using our
analysis to analyse the Dalvik instructions that the API method consists of is not possible for APIs implemented natively in C
or C++. (2) Analysing reflection at the level of API calls makes it simpler and more precise to recognise the special patterns
employed when using reflection. Therefore, we have chosen to specify the operational semantics for the API methods as if

19 See http://developer.sonymobile.com/2011/10/28/code-examples-using-hidden-android-apis/. Last accessed 5 May 2013.
20 When our original work was done, the description of reflection for backward compatibility was part of the official Android developer’s web-

site at http://developer.android.com/resources/articles/backward-compatibility.html but the page has since been removed. The same content is now
available at the Android Developers Blog, controlled by the Open Handset Alliance, at http://android-developers.blogspot.com/2009/04/backward-
compatibility-for-android.html.

http://developer.sonymobile.com/2011/10/28/code-examples-using-hidden-android-apis/
http://developer.android.com/resources/articles/backward-compatibility.html
http://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html
http://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html


E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 39
they each were single, although advanced, Dalvik instructions. Most of the reflection API calls can throw exceptions, but for
presentation purposes we only describe these in some cases.

5.4. Class objects

When the Java method Class.forName(string) is used, it generates the Dalvik instruction invoke-static with
the signature

Ljava/lang/Class;− > forName(Ljava/lang/String; )Ljava/lang/Class;
For readability in the semantics and judgements, we identify such specialised calls using meth = java/lang/

Class->forName, with the method signature shortened. For this method the invoke-static instruction takes one
register argument: a reference to a string that identifies the class or interface one wants to refer to as a Class object. As
is the case with the const-class instruction (see Section 3.3), the corresponding class object may already exist. For this
rule we additionally use the auxiliary function lookupClass to find the class in the semantic Class domain from the supplied
fully qualified class name. If no class object exists a new one is allocated on the heap and the name field is updated to
point to the string reference of the class name:

m.instructionAt(pc) = invoke-static v1 meth
meth = java/lang/Class->forName loc = R(v1) o = H(loc)

cl = lookupClass(o.field(value)) ∈ Class findClassObject(H, cl) = ⊥
(H ′, loccl) = newObject(H,java/lang/Class,m, pc) ocl = H ′(loccl)

o′
cl = ocl[field �→ ocl.field[name �→ loc]] R ′ = [retval �→ loccl]

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H ′[loccl �→ o′
cl], 〈m, pc + 1, R ′〉 :: S F 〉

Since no new frame is pushed on the stack, the program counter is incremented directly. If the class object already
exists, a reference to it is returned:

m.instructionAt(pc) = invoke-static v1 meth
meth = java/lang/Class->forName loc = R(v1) o = H(loc)

cl = lookupClass(o.field(value)) ∈ Class findClassObject(H, cl) = loccl 
= ⊥
A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m, pc + 1, R[retval �→ loccl]〉 :: S F 〉

For the analysis, register v1 may contain several values but we can safely ignore anything other than strings, as the API
method will only accept a string as an argument. Every string reference in v1 is transferred to a new location on the heap,
into the field name on the object identified by the type java/lang/Class, the current method and program counter. To
take object sharing into account we copy all references to java/lang/Class (including the newly created one) to the
retval register:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : invoke-static v1 meth
iff meth = java/lang/Class->forName

oref = ObjRef (java/lang/Class,m, pc)
∀oref ′ ∈ R̂(v1)|java/lang/String : {oref ′} ⊆ Ĥ(oref )(name)

dom(Ĥ)|java/lang/Class ⊆ R̂(m, pc + 1)(retval)

R̂(m, pc) �{retval} R̂(m, pc + 1)

5.5. Method objects

A Method object represents a method declaration, i.e., an element in the MethodDeclaration domain. This means that
Class.getMethod() finds a method declaration resolved from the class or interface represented by the Class ob-
ject. Two auxiliary functions are used in the semantics to handle method resolution and object creation respectively:
resolvePublicMethodDeclaration and newMethodObject.

The resolvePublicMethodDeclaration function takes as arguments a class name, a method name, and a type signature (in
total, a method signature), and searches through the class and interface hierarchy for a matching method declaration. The
function only finds methods that are defined as public and which are not constructors.

The function newMethodObject is given the method declaration and the existing heap and returns the updated heap and
the location of the Method object where the relevant fields have been initialised. In fact it creates three new objects:



40 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
a Method, a Class, and a String, because the field declaringClass on the Method object references a Class
where the field name references a String with the actual class or interface name:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/Class->getMethod

clnameo = H(R(v1)).field(name) clname = H(clnameo).field(value)

mname = H(R(v2)).field(value) types = H(R(v3)).field(value)

m = resolvePublicMethodDeclaration(clname,mname, types)
m 
= ⊥ (H ′, locm) = newMethodObject(H,m)

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H ′, 〈m, pc + 1, R[retval �→ locm]〉 :: S F 〉
We have defined the search order of the resolvePublicMethodDeclaration function as follows: The current class, the su-
perclasses of the current class and finally the interface hierarchy of the current class. The interface hierarchies of the
superclasses are not searched despite the fact that methods declared in these would be found if standard method resolution
was used instead of reflection. This unexpected behaviour is consistent with the Java documentation [22] and the behaviour
in Android 2.3. However, the search order has changed in Android 4.0 to be consistent with the “natural” behaviour where
interfaces of superclasses are searched as well. This change in behaviour is undocumented and we have reported this as a
bug.21 Regardless of search order, the function is able to find more than one applicable method declaration due to covariant
return types. In such cases, the one with the most specific return type is returned, and if a single return type is not more
specific than the others, an arbitrary method declaration is returned.

In the analysis, we define mref for readability to be the reference to the new Method object. For all references to
Class objects in v1, there are one or more class names referenced by a String on the heap in the field name. The
set of class names is bound to clnames. For each of the String references from v2 the string values (method names)
are bound to mnames. The set of method names is also put in the field name on the heap at mref . Furthermore, we
use resolvePublicMethodDeclarationsFromNames to do a search through the class and interface hierarchy for valid method
declarations, similar to the semantic resolvePublicMethodDeclaration, but for sets of class and method names. However, it
does not take argument types into account since we do not model arrays precisely enough to do a reasonable comparison
of the argument types. For each of the resulting method declarations (m′): the class name of the method declaration is
created as a String, the string reference is put into a (newly created) Class object. Taking potential object sharing into
account, all references to the Class object are copied to the field declaringClass for mref on the heap. Finally, a
reference to the method object is present in the retval register:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : invoke-virtual v1 v2 v3 meth
iff meth = java/lang/Class->getMethod

mref = (ObjRef (java/lang/reflect/Method,m, pc))
∀orefC ∈ R̂(m, pc)(v1)|java/lang/Class :

∀orefS ∈ Ĥ(orefC)(name)|java/lang/String :
clnames = Ĥ(orefS)(value)

∀oref ′
S ∈ R̂(m, pc)(v2)|java/lang/String :

mnames = Ĥ(oref ′
S)(value)

{oref ′
S} ⊆ Ĥ(mref )(name)

∀m′ ∈ resolvePublicMethodDeclarationsFromNames(mnames, clnames) :
β(m′.class.name) � Ĥ(ObjRef java/lang/String,m, pc)(value)

{ObjRef (java/lang/String,m, pc)} ⊆
Ĥ(ObjRef (java/lang/Class,m, pc))(name)

dom(Ĥ)|java/lang/Class ⊆ Ĥ(mref )(declaringClass)

{mref } ⊆ R̂(m, pc + 1)(retval)

R̂(m, pc) �{retval} R̂(m, pc + 1)

5.6. Instantiation

The API method Class.newInstance() is used to instantiate new objects through reflection. It requires a Class
object representing the class to be instantiated. The class must be a regular class, not an interface, abstract class, primitive
type or array class. In such cases, an exception is thrown (this is left out of the semantics and analysis to simplify presen-
tation but could easily be added). The Class object contains a fully qualified class name and we use the auxiliary function
lookupClass to find the corresponding class in the semantic Class domain. Next, the new instance is created on the heap
using the same function newObject as in the regular new-instance instruction. Unlike the new-instance instruction,

21 See the Android Issue Tracker (issue 31485) at http://code.google.com/p/android/issues/detail?id=31485.

http://code.google.com/p/android/issues/detail?id=31485


E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 41
Class.newInstance() also calls the default constructor for the class being instantiated. We use an auxiliary function
lookupDefaultConstructor to find this constructor, and if none exists the function will return ⊥ and an exception should be
thrown. The constructor is given registers where the argument register has been initialised to a reference to the newly allo-
cated object. Control is transferred to the constructor by adding a new stack frame, just like regular method invocation, but
a reference to the newly allocated object is also put into the retval register on the stack frame for the current method.
A constructor cannot return a value, and therefore this reference cannot be replaced before control is returned to the current
method:

m.instructionAt(pc) = invoke-virtual v1 meth
meth = java/lang/Class->newInstance

loccl = R(v1) 
= null ocl = H(loccl)

on = H(ocl.field(name)) cl = lookupClass(on.field(value))

(H ′, loc) = newObject(H, cl,m, pc) m′ = lookupDefaultConstructor(cl) 
= ⊥
R ′ = [0 �→ ⊥, . . . ,m′.numLocals − 1 �→ ⊥,m′.numLocals �→ H ′(loc)]

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H ′, 〈m′,0, R ′〉 :: 〈m, pc, R[retval �→ loc]〉 :: S F 〉
The flow logic judgement specifies that for all the Class references given to the method, String references exist on

the heap to specify the class name, and for each of these class names (clname) the semantic class must be found using the
function lookupClass. A reference for each of these classes is put into the retval register for the current method, a default
constructor is found and the new object reference is placed as an argument to the constructor:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : invoke-virtual v1 meth
iff meth = java/lang/Class->newInstance

∀oref ∈ R̂(m, pc)(v1)|java/lang/Class :
∀oref ′ ∈ Ĥ(oref )(name)|java/lang/String :

∀clname ∈ Ĥ(oref ′)(value) :
cl = lookupClass(clname)
{ObjRef (cl,m, pc)} ⊆ R̂(m, pc + 1)(retval)

m′ = lookupDefaultConstructor(cl)
{ObjRef (cl,m, pc)} ⊆ R̂(m′,0)(m′.numLocals)

R̂(m, pc) �{retval} R̂(m, pc + 1)

5.7. Method invocation

Once a Method object is created it can be used to invoke the method it represents. The API method Method.invoke()
takes two arguments besides the Method object (v1) itself: an object reference (v2) for the receiver object on which the
method should be invoked, and an array of arguments (v3). The receiver object should be null if the method is static,
and the method implementation will then be resolved from the declaring class in the Method object. We do not formalise
the invocation on static methods as this is a straightforward simplification of the case with a receiver object. We use the
auxiliary function methodSignature to extract information from a Method object to create a corresponding signature in the
semantic MethodSignature domain. The actual method to invoke is resolved using resolveMethod, just like in the regular
invoke-virtual instruction:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/reflect/Method->invoke R(v1) = loc1 
= null

o1 = H(loc1) o1.class �java/lang/reflect/Method
meth′ = methodSignature(H,o1) R(v2) = loc2 
= null o2 = H(loc2)

R(v3) = loc3 a = H(loc3) ∈ Array m′ = resolveMethod(meth′,o2.class)
a′ = unboxArgs(a,m′.argTypes, H) bf = boxingFrame(m′.returnType)

R ′ = [0 �→ ⊥, . . . ,m′.numLocals − 1 �→ ⊥,m′.numLocals �→ a′.value(0), . . . ,

m′.numLocals + a′.length − 1 �→ a′.value(a′.length − 1)]
A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m′,0, R ′〉 :: bf :: 〈m, pc, R〉 :: S F 〉

Before the arguments are transferred to the resolved method registers they may have to be unboxed: the API method
(Method.invoke()) receives the arguments in an array with elements of type Object (Java varargs). This means that
if the invoked method has any formal arguments of primitive types, the API method unboxes the primitive values that were
boxed before the call occurred. The primitive values are extracted from the box object based on the argument types of the
resolved method. We use an auxiliary function, unboxArgs, to unbox all the relevant arguments and return an array with
the correctly typed values. These values are then transferred into the relevant registers that are put into a new stack frame
along with the method to invoke. The unboxed array, a′ , is longer than a if any of the unboxed values are of wide data
types, i.e., long or double.



42 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
The API method always returns a value of type Object, and if the invoked method returns a primitive value it must
therefore be boxed by the API method. The return value is not available until the invoked method returns, and therefore
we cannot yet box the value. Instead, we add an additional stack frame with a special method to be run after the invoked
method. We use an auxiliary function boxingFrame to generate this frame. The function takes the return type of the invoked
method as an argument, such that the boxing method is able to determine if the return value should be boxed, and what
class it should be boxed in. If boxing is to occur, it boxes the return value from the retval register and replaces it with a
reference to the boxed value. The boxing method then returns as a regular method by incrementing the program counter of
the frame below and updating its retval register.

In the analysis, for all the Method object references in v1, we use the auxiliary function methodSignatures to extract and
create all possible method signatures that correspond with the information on the heap for the given Method object. All
these method signatures must be resolved on all the object references for receiver objects in v2. We do not store the order
of the arguments in the array referenced in v3, and therefore we cannot determine which of the arguments that must be
unboxed. Instead, we transfer all values as they were, as well as unboxing all arguments that are object references, if the
class (clo) is a class that can be unboxed. The latter is determined by the auxiliary function isBoxClass. Depending on the
return type of the invoked method, the return value of Method.invoke() is either null (if void), passed unchanged (if
it is already of a reference type) or boxed (if it is of a primitive type). The function primToBoxClass translates a return type
to the corresponding boxing class, e.g. int to Integer, and the return value of the method is then boxed by putting the
value in the field value on the heap for the found class and the current method and program counter. In addition, the
same object reference is put in the retval register for the next program counter in the current method. Finally, we handle
any exceptions that are referenced in the exception cache since the invoked method might have thrown an exception:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : invoke-virtual v1 v2 v3 meth
iff meth = java/lang/reflect/Method->invoke

∀orefM ∈ R̂(m, pc)(v1)|java/lang/reflect/Method :
∀meth′ ∈ methodSignatures(Ĥ,orefM) :

∀(ObjRef (clr,mr, pcr)) ∈ R̂(m, pc)(v2) :
m′ = resolveMethod(meth′, clr)
{ObjRef (clr,mr, pcr)} ⊆ R̂(m′,0)(m′.numLocals)
∀1 � i � arity(meth′) :

∀aref ∈ R̂(m, pc)(v3) ∩ ArrRef :
Ĥ(aref ) � R̂(m′,0)(m′.numLocals + i)
∀(ObjRef (clo,mo, pco)) ∈ Ĥ(aref ) : isBoxClass(clo) ⇒

Ĥ(ObjRef (clo,mo, pco))(value) � R̂(m′,0)(m′.numLocals + i)
m′.returnType = void⇒ β(null) � R̂(m, pc + 1)(retval)

m′.returnType ∈ RefType ⇒ R̂(m′,END) � R̂(m, pc + 1)(retval)

m′.returnType ∈ PrimType ⇒
clb = primToBoxClass(m′.returnType)
R̂(m′,END) � Ĥ(ObjRef (clb,m, pc))(value)

{ObjRef (clb,m, pc)} ⊆ R̂(m, pc + 1)(retval)

∀oref e ∈ Ê(m′) : HANDLE
(R̂,Ê)

(oref e, (m, pc))

R̂(m, pc) �{retval} R̂(m, pc + 1)

6. Prototype implementation

The control flow analysis, specified as flow logic judgements, is not in itself immediately useful for analysing actual Dalvik
bytecode apps. In this section we describe a prototype implementation of a tool that converts the flow logic judgements
into a Prolog program that can then be executed in order to compute an analysis result.

Our prototype combines several existing tools with our Python-based parser and constraint generator as shown in Fig. 1.
First, apktool extracts the bytecode content of an app and, leveraging another tool, baksmali, translates the bytecode to smali,
a human readable format akin to assembly languages with instruction mnemonics, inlined constants and various annota-
tions. We feed this output to our parser which builds lists of classes, methods, instructions, etc., and a tree representing
the type hierarchy in the app. Our constraint generator traverses the lists and emits Prolog rules for method resolution, ex-
ception handlers, entry points, etc., as well as rules for each instance of each Dalvik instruction in the program. The Prolog
program can then be queried for any information that the analysis specifies. This can for example happen interactively or
as part of a more specific, programmed analysis. As an example of the latter, we generate call graphs with a special query
and further process the output to visualise the call graph of an app.

The source code for the prototype is available at: https://bitbucket.org/erw/dalvik-bytecode-analysis-tool.

https://bitbucket.org/erw/dalvik-bytecode-analysis-tool


E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 43
Fig. 1. Diagram of the prototype of the analysis tool. Rectangles represent data processors and ellipses represent data.

6.1. Examples

Here we demonstrate the conversion of flow logic judgements to Prolog source code. For example, the judgement for the
const instruction is:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : const v c
iff β(c) � R̂(m, pc + 1)(v)

R̂(m, pc) �{v} R̂(m, pc + 1)

For a const instruction located at PC 48 in method m1 in some app, these two Prolog clauses will be generated:

1 % 48: const v5, 0x1
2 hatR(m1, 49, 5, 0x1).
3 hatR(m1, 49, V, Y) :-
4 hatR(m1, 48, V, Y),
5 V \= 5.



44 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
As can be seen, this conversion and instantiation is fairly straightforward.
An example of a slightly more advanced instruction is iput which sets an instance field to a given value on a given

object, provided the object’s class matches the one that is part of the (fully qualified) field name. Its flow logic judgement
is:

( Ŝ, Ĥ, R̂, Ê) |� (m, pc) : iput v1 v2 fld
iff ∀(ObjRef (cl,m′, pc′)) ∈ R̂(m, pc)(v2) :

cl�fld.class ⇒
R̂(m, pc)(v1) � Ĥ(ObjRef (cl,m′, pc′))(fld)

R̂(m, pc) � R̂(m, pc + 1)

As an instantiation of the Prolog code for iput, we show one from the method Lru/watabou/moon3d/MoonView;->
<init>(Landroid/content/Context;)V which we here abbreviate to m2:

1 % 3: iput v1, p0, Lru/watabou/moon3d/MoonView;->targetSunAngle:F
2 hatH((CL, CLAddrMID, CLAddrPC), ’targetSunAngle’, Y) :-
3 hatR(m2, 3, 2, (CL, CLAddrMID, CLAddrPC)),
4 subclass(CL, ’Lru/watabou/moon3d/MoonView;’),
5 hatR(m2, 3, 1, Y).
6 hatR(m2, 4, V, Y) :-
7 hatR(m2, 3, V, Y).

The references from register p022 at the current program counter are extracted. The subclass condition check is implicit:
if the subclass/2 goal fails, the hatH/3 relation does not hold for those particular arguments and another reference
from register p0 can be tried. If it succeeds, the variable Y is bound to each value from the source register in turn. Also, all
registers are transferred to the next program point.

6.2. Modelling Java and Android

This section discusses features and program components that are not implemented in the apps and must therefore be
modelled separately.

6.2.1. API methods
Methods that are called but not implemented in an app may be from Java standard classes, Android APIs, and from other

apps signed by the same developer key. They can also come from classes loaded at runtime but apps that do this are not
amenable to static analysis before installation in the first place as discussed in Section 2.

Without handling external methods in some way, it is not possible to resolve the implemented methods. The potential
effects of a single method are far-reaching. Using reflection, any method, including private ones, can be called, and anything
reachable on the heap from the references given to the unknown method can be changed, again including private and final
fields. It is even possible that debugging or diagnostics APIs allow programmatic access to the full heap.

In a specialised analysis it would be useful to be able to trust Java and Android API methods not to do anything malicious,
for example by just setting their return values to top, but due to the possibilities of affecting the heap, every API method
would require some inspection to determine its effects on the heap. APIs can also be handled as we have done with parts
of the reflection API by modelling the methods with individual flow judgements. Alternatively they could be compiled to
Dalvik bytecode and analysed along with the app. This last approach might impact the running time of the analysis by
increasing the effective size of the app considerably and would only work for the parts of the Java standard classes that are
implemented in Java.

6.2.2. Java features
One Java feature we needed to represent is the java/lang/Class instances that represent primitive types. They are

stored as static fields named TYPE on the corresponding box classes, so an sget instruction is produced by the Dalvik
compiler instead of const-class. For example, the java/lang/Class instance representing the int type is stored
as Integer.TYPE. We model this with two Prolog facts like the following for each of the eight primitive Java types
plus void:

1 hatS(’Ljava/lang/Integer;’, ’TYPE:Ljava/lang/Class;’, (’Ljava/lang/Class;’, java, 1)).
2 hatH((’Ljava/lang/Class;’, java, 1), ’name’, ’int’).

Here, (java, 1) is introduced as the creation point of the java/lang/Class instance. The program counter values
from 1 to 9 are used for the 9 objects.

22 Registers numbered by parameter, such as p0, are aliases for other registers. In this method p0 corresponds to v2 (because numLocals is 2). We perform
this translation prior to generating the Prolog code.



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 45
6.2.3. Reflection
In order to make analysis of apps with reflection tractable, we rely on the assumptions about the use of reflection made

in Section 5.3. Briefly, they are: all classes used through reflection are known statically, the program only uses the standard
class loader, and strings used to obtain object representations of methods or classes can be determined statically.

Essentially these assumptions ensure that all uses of reflection can be resolved statically. Apps that break the first and
the last assumption cannot easily be analysed, if at all. Apps that use a non-standard class loader may still be analysed,
depending on the specifics of the class loader used. Intuitively, if the used class loader implements a restricted subset of
the standard class loader it can be handled by the current implementation. For other class loaders, that do not work like
the standard class loader, a formalisation and/or representation of that class loader is needed to enable analysis with our
prototype.

6.2.4. Entry points
Android apps are simply collections of classes with methods that can be called by the Android system. As an immediate

consequence, apps do not have a single uniquely determined entry point. Furthermore, parameters can be passed to the
entry points, both from the libraries and the Android system but also from within the app itself. In order for an analysis to
soundly capture all of this information, not only the app but the entire system would have to be formalised and analysed.
Although an interesting challenge, such comprehensive modelling is out of scope for our analysis and prototype. Instead we
opt for an approximate solution in which we simulate calls to potential event handler methods.

We have identified 1695 event handler methods in the Android API such as onCreate() for activities,
onLocationChanged() for location services, or onPictureTaken(). Some are declared on interfaces, others on
classes. We generate Prolog facts to simulate calls to the methods on all classes in the app that implement one of the
relevant API interfaces and on all subclasses of the relevant API classes. We also call the constructors on subclasses of the
four main app components that are instantiated by Android: activities, services, broadcast receivers, and content providers.
The remaining many minor app components are listeners that are instantiated by the app itself before they are registered
such that Android can call them.

All of these entry point methods are instance methods and as a simple over-approximation, we invoke the methods on
all object references of the class, the method is implemented in, using the Prolog anonymous variable to ignore the creation
point. The arguments passed to the entry point methods are �P̂rim for primitive arguments. For arguments of reference type,
objects with the artificial creation point (android, 0) are passed to show that the exact creation point of the argument is
unknown and could be in the Android system itself.

Class constructors (see Section 3.1) also form entry points but they do not need to be called explicitly as they do not
depend on arguments. All instructions generate constraints whether the method they reside in is called or not.

7. Evaluating the prototype

Here we perform an experiment to examine the practical aspects of our formal analysis as implemented in the prototype.
Therefore we only take the formalised features into account, hence APIs and libraries are not accounted for. Reflection is
handled in the limited ways described in Section 5. While the exception analysis has been formalised it is excluded here as
well. Yet, while unsound, our prototype has a stronger theoretical foundation than any tool we have studied so far.

We have tested the prototype with many forms of interactive querying and with call graph extraction on several apps
from our data set, and in practice memory usage is a bigger issue than running time. As an evaluation of the perfor-
mance of the prototype we show in Fig. 2 memory usage during call graph extraction, i.e., the computation of the domain
MethodCall = Method →P(Method). Here, the formalised analysis (ĈFA as defined in Section 4.1, sans the exception compo-
nent) is used to find the object references that govern dynamic dispatch as well as values that affect reflective calls.

The app size used in Fig. 2 is measured in the number of methods, and the evaluation is based on apps with up to
2000 methods in the three market categories News and Magazines, Photography, and Productivity.

A memory ceiling of 5 GiB was set and experiments that hit the ceiling and were aborted are indicated. The data shows
the expansion by doubling of the evaluation stacks in the XSB Prolog engine with groupings of values around 1, 2, and
4 GiB. The values lying between these groups result from the two main stacks being expanded independently. Analysis of
approximately half of the apps with more than 1000 methods exceeds the memory limit.

The CPU time of the experiments that completed within the memory limit ranged from 0.05 to 1227 s with 89% of
the runs being below 200 s on an Intel Core i7 processor. The time used for extraction and disassembly of the bytecode
from the APK file is negligible and not included. The conversion from smali source to Prolog is included and typically takes
less than 10 s for the largest apps in this experiment. Most of the running time is spent compiling the generated Prolog
source and evaluating the call graph query, with time distributed almost equally between these two tasks. Consequently,
subsequent queries will be answered much faster than the first one for an app.

Turning the above experiment into an estimate of the percentage of real-world apps the prototype can handle, Fig. 3
shows the distribution of app sizes in our data set. Apps with 1000 methods or less comprise 42% of the data set, indicating
that the prototype in its current state can analyse this part of the apps with 5 GiB of memory at its disposal. Fig. 2 reveals an
exponential tendency, suggesting both that almost the same number of apps can be handled with only 2.5 GiB memory, for
example, but also that exceptionally large apps with 20,000–50,000 methods will use disproportionate amounts of memory.



46 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
Fig. 2. Memory usage evaluation. Crosses represent experiments running out of memory.

Fig. 3. Histogram of number of methods per app. The last bin contains all apps with more than 10,000 methods.

Indeed our tests reveal that some apps require too much memory to analyse, even on a server with 68 GB memory available
to us.

Since we have implemented and improved the analysis simultaneously, readability and debuggability of the Prolog code
has been important to us. The prototype is strictly proof-of-concept but we expect that it would be possible to improve the
efficiency of the analysis considerably.

The large majority of clauses are concerned with copying register values for every step of a method. An optimisation
would concern copying values directly to the program points where they are read, thus bringing down the number of
clauses significantly. Many Dalvik instructions produce runtime exceptions and their clauses often make up one third of
the generated Prolog program. This is another opportunity for more efficient handling. In the above experiments runtime
exceptions were not considered.

Currently the solver runs only a single thread so with respect to running time there are big gains to be had by paral-
lelising the computation appropriately, as has been done for the analysis of timed automata in [6,16]. In [21] it is shown



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 47
how the framework can be extended to general program analysis, such as the analysis specified in this paper. The parallel
implementation of the framework is shown to scale almost linearly, up to a factor of 40 on a 48-core machine [6].

Another implementation approach, similar in spirit to our current approach, would be to use a Datalog solver. Prolog
allowed us to rapidly design and implement a proof-of-concept prototype to validate the analysis as well as the implemen-
tation strategy of generating constraints. Using Datalog is a suitable avenue for future work.

8. Looking for malware

As an example of an approach to malware detection, we have examined apps that send text messages to see which
phone numbers are used as destinations. In many cases, it was not possible to learn the numbers because they come from
API methods that we do not yet support. The typical pattern for legitimate apps that send text messages is to retrieve
numbers from the database with the user’s contact list. This requires a large number of API calls, some to connect to
the database, some to read the content, and some to store and retrieve the results from Java collections. However, to test
tracking values across collection APIs, we created special cases of the invoke-virtual instruction for calls to methods
on the java/util/ArrayList standard class (including add(), get(), and toArray()), as well as special cases of
invoke-direct for two of its constructors. Similar to regular Java arrays, we treated ArrayLists as unordered collections.
Combined with tracking of the return value of the android/database/Cursor;->getString() method which is
used, among other things, to retrieve phone numbers of contacts, we were able to verify for an app that only contact phone
numbers were used as the destination argument of the android/telephony/SmsManager;->sendTextMessage()
method.

A typical pattern for malware is to send messages to hardcoded numbers. We found an app in our data set for which
the analysis determined that the string “1277” is the only possible value given as the destination for text messages. The
number is a Danish premium number but the description of the app on Google Play did state that the app sends a premium
message for each look-up, so the app cannot be classified as malicious even though it seems to make money on inattentive
users.

Some apps that use hardcoded numbers (whether malicious or not) are specialised and store different numbers for
different countries in XML files. These require a considerable number of API calls to parse and extract, so in general finding
this type of malware requires implementing more API methods. We also note that the above result in which only phone
numbers of contacts are used is not enough, on its own, to classify an app as benign. A malicious app could for example
covertly create new contact entries with expensive numbers beforehand. However, some malware authors are looking for
financial gain from a minimal coding effort. In the next section we present such a case.

8.1. The FakePlayer Trojan

We also analysed a known malicious app posing as a movie player [3], named Android/FakePlayer.A and AndroidOS.Fake-
Player by anti-virus vendors. It is a very small app with 15 methods in nine classes. Five of the classes are standard Android
“R” resource classes with a constructor each. Running the analysis takes 0.3 s and less than 10 MB of memory. It identifies
45 method calls comprising 27 unresolved API calls, six calls to the java/lang/Object constructor API method, six calls
within the app, hereof four unique, and, finally, six calls to the sendTextMessage() API method, hereof two unique.
Fig. 4 shows a portion of the call graph. The unresolved part includes calls to the Android android/widget/TextView
API to display a message prompting the user to wait for access to the video library. There is also a number of calls to
the android/database API that by manual inspection appear pointless. No API to actually play videos to the user are
accessed.

Independently of the unresolved calls our analysis shows the hardcoded phone numbers by querying the destination
argument of sendTextMessage():

invoke(’Landroid/telephony/SmsManager;->sendTextMessage(Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Landroid/app/PendingIntent;
Landroid/app/PendingIntent;)V’, 1, (’Ljava/lang/String;’, M, PC)),
hatH((’Ljava/lang/String;’, M, PC), ’value’, Y).

This query yields the Russian phone numbers 3353 and 3354 for which each text message may cost around €4–8.23

9. Conclusion

In this paper we have discussed the results from studying 1700 popular Android apps available from the Google Play
app market. The apps were studied to determine which instructions and language features are most commonly used in
“real-life” Android apps. In addition to guiding the design of the semantics and the control flow analysis, we believe that
our study is of independent interest. The insights gained into the design and implementation of Android apps are very

23 See http://sms-price.ru/number/3353/ and http://sms-price.ru/number/3354/. Last accessed 5 June 2012.

http://sms-price.ru/number/3353/
http://sms-price.ru/number/3354/


48 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
Fig. 4. A small part of the FakePlayer callgraph.

useful, necessary even, for developing new analyses, designing heuristics to cover advanced language system features, and
for prioritising which among the many language features, libraries, and components in an Android system to focus on in
future work.

The main insights revealed by our study was: (1) that almost all instructions in the Dalvik instruction set are used in
most apps; (2) use of advanced language/system features, e.g., reflection, dynamic class loading etc. is widespread.

Based on the app study, we have developed a formal operational semantics for the core Dalvik bytecode language,
incorporating all major core language features, including dynamic dispatch, exceptions, and reflection. Concurrency is the
most notable omission and is the topic of future work. Of the non-core language features that have not been included in the
formalisation, libraries are the most important. Without a good model of libraries and their APIs, it is almost impossible to
perform analysis of real-life apps. The formal semantics is, of course, a prerequisite for formally developing a sound program
analysis and the basis for a proof of correctness. However, a formal semantics is also useful as succinct yet detailed and
unambiguous documentation of a language and, in particular, of advanced and subtle language features. In our semantics,
this is especially evident in the rules dealing with reflection. We believe that our semantics can serve as a useful tread stone
for the Dalvik community, both for developing and discussing (new) language features, but also for better tool support able
to handle also corner cases.

In this paper, the formal semantics was used for designing and formally specifying, in a very direct way, a sound control
flow analysis. As was the case for the semantics, we believe that the formal specification of a fundamental analysis, such
as the control flow analysis, is useful for a wider community for understanding the issues involved in analysing Dalvik
bytecode. In addition, many advanced analyses, e.g., secure information flow analysis, use control flow analysis as a building
block. Providing this building block, backed by a formal semantics, significantly simplifies the development of new, advanced
analyses. During the development of the flow logic specification, the main difficulties turned out to be, again, the reflection
features as well as subtle interactions between apps and the Android system.

Finally, a prototype implementation of the analysis was developed by systematically, and almost mechanically, turning
the flow logic specification for a program under analysis into a corresponding Prolog program. By executing and querying the
Prolog program the analysis result can be established. The prototype was mainly developed as a testbed for variations of and
extensions to the control flow analysis. Furthermore, even though high performance was not a goal of the prototype, working
with the prototype helped identify particularly costly parts of the analysis, e.g., that taking all the built-in exceptions into
account in the exception analysis is prohibitively expensive.



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 49
Future work The work described in this paper leaves many avenues open for future work. However, we have identified the
following four areas as most promising: (1) extending the semantics and analysis to handle concurrency; (2) extending the
analysis of reflection, e.g., by adding string analysis; (3) formal modelling/specification of the Android system and libraries,
e.g., by making formal (abstract) models/specifications for the APIs and use these for analysis; and (4) development of a
more comprehensive and efficient implementation, e.g., using Datalog.

Acknowledgements

We would like to thank the anonymous reviewers for catching subtle (and not so subtle) errors and for providing detailed
and constructive feedback.

Appendix A. Generalised instruction set

New instruction Opcode Corresponding original instructions

nop 00 nop
move 01..09 move, move/from16, move/16, move-wide, . . .
move-result 0a..0c move-result, move-result-wide, move-result-object
move-exception 0d move-exception
return-void 0e return-void
return 0f..11 return, return-wide, return-object
const 12..19 const/4, const/16, const, const/high16, . . .
const-string 1a..1b const-string, const-string/jumbo
const-class 1c const-class
monitor-enter 1d monitor-enter
monitor-exit 1e monitor-exit
check-cast 1f check-cast
instance-of 20 instance-of
array-length 21 array-length
new-instance 22 new-instance
new-array 23 new-array
filled-new-array 24..25 filled-new-array, filled-new-array/range
fill-array-data 26 fill-array-data
throw 27 throw
goto 28..2a goto, goto/16, goto/32
packed-switch 2b packed-switch
sparse-switch 2c sparse-switch
cmp 2d..31 cmpl-float, cmpg-float, cmpl-double, . . .
if 32..37 if-eq, if-ne, if-lt, if-ge, if-gt, if-le
ifz 38..3d if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
aget 44..4a aget, aget-wide, aget-object, aget-boolean, . . .
aput 4b..51 aput, aput-wide, aput-object, aput-boolean, . . .
iget 52..58 iget, iget-wide, iget-object, iget-boolean, . . .
iput 59..5f iput, iput-wide, iput-object, iput-boolean, . . .
sget 60..66 sget, sget-wide, sget-object, sget-boolean, . . .
sput 67..6d sput, sput-wide, sput-object, sput-boolean, . . .
invoke-virtual 6e, 74 invoke-virtual, invoke-virtual/range
invoke-super 6f, 75 invoke-super, invoke-super/range
invoke-direct 70, 76 invoke-direct, invoke-direct/range
invoke-static 71, 77 invoke-static, invoke-static/range
invoke-interface 72, 78 invoke-interface, invoke-interface/range
unop 7b..8f neg-int, not-int, neg-long, not-long, . . .
binop 90..cf add-int, sub-int, . . . , add-int/2addr, . . .
binop-lit d0..e2 add-int/lit16, rsub-int, mul-int/lit16, . . .

Appendix B. Occurrences of instructions

The generalised instructions in our data set ordered by the percentage of the 1700 apps in our data set that use the
instruction.

Instruction Occurs in # of occurrences Part of total occ.

invoke-direct 100.00% 4,533,934 4.80%
return-void 100.00% 2,683,104 2.84%
invoke-virtual 99.59% 12,718,970 13.47%
const 99.53% 8,157,468 8.64%
move-result 99.47% 12,391,920 13.13%

(continued on next page)



50 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
Table 1 (continued)

Instruction Occurs in # of occurrences Part of total occ.

invoke-super 99.47% 215,434 0.23%
const-string 99.29% 5,200,603 5.51%
new-instance 99.29% 2,900,269 3.07%
invoke-static 99.24% 3,833,347 4.06%
iput 99.12% 3,389,122 3.59%
iget 99.06% 8,062,226 8.54%
ifz 99.06% 3,984,192 4.22%
goto 98.76% 3,263,902 3.46%
return 98.06% 2,166,727 2.29%
move-exception 97.71% 761,554 0.81%
check-cast 97.53% 1,055,790 1.12%
if 97.24% 1,304,228 1.38%
binop-lit 96.59% 1,232,732 1.31%
invoke-interface 96.35% 1,761,883 1.87%
move 96.24% 5,503,780 5.83%
new-array 95.47% 557,610 0.59%
sget 95.18% 1,792,583 1.90%
aput 94.88% 1,864,219 1.97%
binop 94.53% 1,218,279 1.29%
aget 94.47% 734,425 0.78%
unop 94.00% 530,779 0.56%
sput 93.88% 607,269 0.64%
array-length 93.65% 263,662 0.28%
const-class 93.53% 182,077 0.19%
throw 93.47% 521,299 0.55%
packed-switch 93.35% 86,468 0.09%
nop 92.76% 56,951 0.06%
cmp 92.00% 189,789 0.20%
monitor-exit 88.76% 287,310 0.30%
monitor-enter 88.76% 134,466 0.14%
fill-array-data 86.71% 97,906 0.10%
instance-of 85.76% 144,576 0.15%
sparse-switch 69.71% 21,149 0.02%
filled-new-array 22.29% 1930 0.00%

Total 94,413,932 100.00%

Appendix C. Structural domains

The semantic domains that were left out of the text are listed here. The domains included in App could be specified
further for an extension of the semantics into the Android API.

App = (name : AppName) × (classes : P(Class))×
(interfaces : P(Interface)) × (manifest : Manifest)×
(certificate : Certificate) × (resources : P(Resource))×
(assets : P(Asset)) × (libs : P(Lib))

Package = (name : PackageName) × (app : App) × (classes : P(Class))

DataTable = ArrayData ∪ SparseSwitch ∪ PackedSwitch

ArrayData = (size : N0) × (data : N0 → Prim)

SparseSwitch = (sparseTargets : N0 → PC)

PackedSwitch = (firstKey : N0) × (size : N0) × (packedTargets : N0 → PC)

The type domains are specified using BNF notation:

Type ::= RefType | PrimType
PrimType ::= PrimSingle | PrimDouble

PrimSingle ::= boolean | char | byte | short | int | float
PrimDouble ::= long | double

RefType ::= Class | ArrayType
ArrayType ::= ArrayTypeSingle | ArrayTypeDouble

ArrayTypeSingle ::= array (RefType | PrimSingle)

ArrayTypeDouble ::= array PrimDouble



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 51
Class hierarchy functions and the subtyping relation:

super∗(⊥) = ∅
super∗(cl) = {cl.super} ∪ (cl.super).super∗

implements∗(⊥) = ∅
implements∗(cl) = cl.implements ∪ (cl.super).implements∗ ∪ (cl.implements).super∗

super∗(ifaces) =
⋃

iface∈ifaces

iface.super ∪ (iface.super).super∗

cl ∈ Class

cl� cl

cl′ ∈ super∗(cl)

cl� cl′
iface ∈ implements∗(cl)

cl� iface

t � t′

(array t)�(array t′)

Appendix D. Subject reduction proof

We here present four cases of the subject reduction proof introduced in Section 4.3. The cases demonstrate updates to a
register value and the heap as well as the central invoke-virtual instruction and object sharing in the const-class
instruction.

D.1. The move case

By definition:

m.instructionAt(pc) = move v1 v2

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m, pc + 1, R[v1 �→ R(v2)]〉 :: S F 〉
For the proof we assume an analysis result satisfying the judgement for the instruction parameterised by its program point
as well as an instantiation of the theorem assumption with an expansion of the domains to facilitate referencing:

( Ŝ, Ĥ, R̂) |� (m, pc) : move v1 v2 (D.1)

〈S, H, 〈m, pc, R〉 :: S F 〉 RConf ( Ŝ, Ĥ, R̂) (D.2)

From (D.1) and the flow logic judgement (see Section 4.2) we get

R̂(m, pc)(v2) � R̂(m, pc + 1)(v1) (D.3)

R̂(m, pc) �{v1} R̂(m, pc + 1) (D.4)

and from (D.2) it follows that

βH
StaticHeap(S) � Ŝ (D.5)

βHeap(H) � Ĥ (D.6)

βH
LocalReg(R) � R̂(m, pc) (D.7)

From (D.7) and the definition of � (see Section 4.1) we have

βH
Val

(
R(v2)

) � R̂(m, pc)(v2) (D.8)

While (D.8) holds for any v2 we are interested in the specific v2 given as an argument to the instruction. Combining (D.8)
and (D.3),

βH
Val

(
R(v2)

) � R̂(m, pc)(v2) � R̂(m, pc + 1)(v1) (D.9)

From (D.4) we get

∀r ∈ dom
(

R̂(m, pc)
) \ {v1} : R̂(m, pc)(r) � R̂(m, pc + 1)(r) (D.10)

Now (D.9) covers the case where we consider register v1 and (D.10) covers all other cases. Therefore:

βH
LocalReg

(
R[v1 �→ R(v2)]

) � R̂(m, pc + 1) (D.11)

The case then follows from (D.5), (D.6), and (D.11).



52 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
D.2. The iput case

By definition:

m.instructionAt(pc) = iput v1 v2 fld
R(v2) = loc 
= null o = H(loc)

o.class�fld.class o′ = o[field �→ o.field[fld �→ R(v1)]]
A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H[loc �→ o′], 〈m, pc + 1, R〉 :: S F 〉

We assume

( Ŝ, Ĥ, R̂) |� (m, pc) : iput v1 v2 fld (D.12)

〈S, H, 〈m, pc, R〉 :: S F 〉 RConf ( Ŝ, Ĥ, R̂) (D.13)

From (D.12) we get

R̂(m, pc) � R̂(m, pc + 1) (D.14)

and

∀(ObjRef cl,m′, pc′) ∈ R̂(m, pc)(v2) :
cl�fld.class ⇒

R̂(m, pc)(v1) � Ĥ(ObjRef cl,m′, pc′)(fld)

(D.15)

From (D.13) follows

βH
StaticHeap(S) � Ŝ (D.16)

βHeap(H) � Ĥ (D.17)

βH
LocalReg(R) � R̂(m, pc) (D.18)

Combining (D.18) and (D.14),

βH
LocalReg(R) � R̂(m, pc) � R̂(m, pc + 1) (D.19)

Two out of the three parts of the correctness of the new configuration follow from (D.16) and (D.19).
For the final part, the dynamic heap, we recall from Section 4.3 that the abstract representation of the concrete heap is

the union of the representations of its objects who are in turn represented as the representations of their fields. Since we
know from (D.17) that the existing representation is part of the analysis result, we can reduce the problem of showing

βHeap(H[loc �→ o[field �→ o.field[fld �→ R(v1)]]]) � Ĥ (D.20)

to showing

βH
Val(R(v1)) � Ĥ(ObjRef cl,m′, pc′)(fld) (D.21)

From (D.18) we have

βH
Val(R(v1)) � R̂(m, pc)(v1) (D.22)

Because the semantic step has been taken, the premises of the semantic rule must have been satisfied, so from (D.15) we
get

R̂(m, pc)(v1) � Ĥ(ObjRef cl,m′, pc′)(fld) (D.23)

Combining (D.22) and (D.23) finishes the proof of this case.

D.3. The const-class sharing object case

There are two sub-cases for const-class: one that creates a new object and one that re-uses and shares an already
existing object. Here we look only at the latter case.

By definition:

m.instructionAt(pc) = const-class v cl
findClassObject(H, cl) = locc 
= ⊥

A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m, pc + 1, R[v �→ locc]〉 :: S F 〉
We assume



E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 53
( Ŝ, Ĥ, R̂) |� (m, pc) : const-class v cl (D.24)

〈S, H, 〈m, pc, R〉 :: S F 〉 RConf ( Ŝ, Ĥ, R̂) (D.25)

From (D.25) it follows that

βH
StaticHeap(S) � Ŝ (D.26)

βHeap(H) � Ĥ (D.27)

βH
LocalReg(R) � R̂(m, pc) (D.28)

Further, it follows from (D.24) that

∀v ′ : v 
= v ′ ⇒ R̂(m, pc + 1)(v ′) = R̂(m, pc)(v ′) (D.29)

and

dom(Ĥ)|java/lang/Class ⊆ R̂(m, pc + 1)(v)

Now, since locc = findClassObject(H, cl) it follows that H(locc) ∈ Object with H(locc).class = java/lang/Class,
H(locc).class = cl, and H(locc).origin = (m′, pc′) for some (m′, pc′), it follows from (D.27) that:

βH
Object(H(locc)) � βHeap(H)(ObjRef (java/lang/Class,m′, pc′))

where βH
Val(locc) = (ObjRef (java/lang/Class,m′, pc′)). We can now calculate as follows:

(βH
Val ◦ R[v �→ locc])(v) = βH

Val(locc)

= {(ObjRef (java/lang/Class,m′, pc′))}
⊆ dom(Ĥ)|java/lang/Class
⊆ R̂(m, pc + 1)(v)

(D.30)

Combining (D.29) and (D.30) we have

βH
LocalReg(R[v �→ locc]) � R̂(m, pc + 1) (D.31)

The case now follows from (D.26), (D.27), and (D.31).

D.4. The invoke-virtual case

By definition:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 
= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth,o.class) 
= ⊥
R ′ = [0 �→ ⊥, . . . ,m′.numLocals − 1 �→ ⊥,

m′.numLocals �→ R(v1), . . . ,m′.numLocals + n − 1 �→ R(vn)]
A � 〈S, H, 〈m, pc, R〉 :: S F 〉 �⇒ 〈S, H, 〈m′,0, R ′〉 :: 〈m, pc, R〉 :: S F 〉

We assume

( Ŝ, Ĥ, R̂) |� (m, pc) : invoke-virtual v1 . . . vn meth (D.32)

〈S, H, 〈m, pc, R〉 :: S F 〉 RConf ( Ŝ, Ĥ, R̂) (D.33)

From (D.32) we get

∀(ObjRef cl,mt, pct) ∈ R̂(m, pc)(v1) :
m′ = resolveMethod(meth, cl)
∀1 � i � n :

R̂(m, pc)(vi) � R̂(m′,0)(m′.numLocals − 1 + i)

(D.34)

From (D.33) follows

βH
StaticHeap(S) � Ŝ (D.35)

βHeap(H) � Ĥ (D.36)

βH
LocalReg(R) � R̂(m, pc) (D.37)



54 E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55
It remains to be shown that the new stack frame, 〈m′,0, R ′〉, is correctly represented in R̂ . It follows from (D.33) that
the rest of the stack, 〈m, pc, R〉 :: S , is correctly represented. Therefore we now need to show

βH
LocalReg(R ′) � R̂(m′,0) (D.38)

and that the m′ referenced in the analysis is the same as the one in the semantics. The latter follows because R̂(m, pc)(v1)

is a sound over-approximation of R(v1) and thus, by the induction hypothesis, must contain an abstract representation of
the correct object reference. The same method lookup is used in the semantics and in (D.34) so the correct method must
be included in the analysis.

By the definition of �, (D.38) is equivalent to

∀r ∈ dom(R ′) : βH
Val(R ′(r)) � R̂(m′,0)(r) (D.39)

Since R ′ is used both to transfer parameter values to the called method as well as for storing (the value of) local variables
in the called method, we split this into two cases for r ∈ dom(R ′):

1. 0 � r � m′.numLocals − 1
2. m′.numLocals � r � m′.numLocals + n − 1

From the semantics it follows that R ′(r) = ⊥Val for all r such that 0 � r � m′.numLocals − 1 and thus

βH
LocalReg(R ′)(r) = βH

Val(R ′(r))
= βH

Val(⊥Val)

= ⊥V̂al

� R̂(m′,0)(r) (D.40)

which completes the first sub-case. For the second sub-case we have from the definition of R ′ in the semantics and
Eqs. (D.37) and (D.34) that for 1 � i � n:

βH
Val(R ′(m′.numLocals − 1 + i)) = βH

Val(R(vi))

� R̂(m, pc)(vi)

� R̂(m,0)(m′.numLocals − 1 + i) (D.41)

Combining Eqs. (D.40) and (D.41) we conclude that βH
LocalReg(R ′) � R̂(m′,0) which finishes the proof.

References

[1] Bytecode for the Dalvik VM. Available from the Android Project website: http://source.android.com/tech/dalvik/dalvik-bytecode.html, last accessed 14
December 2011.

[2] P. Bertelsen, Semantics of Java byte code, Student project report, Technical University of Denmark, 1997.
[3] J. Blasco, Analysis of Trojan-SMS.AndroidOS.FakePlayer.a. Alienvault Labs website: http://labs.alienvault.com/labs/index.php/2010/analysis-of-trojan-sms-

androidos-fakeplayer-a/, Aug 2010, last accessed 20 November 2011.
[4] E. Chin, A. Felt, K. Greenwood, D. Wagner, Analyzing inter-application communication in Android, in: Proceedings of the Annual International Confer-

ence on Mobile Systems, Applications, and Services, 2011.
[5] A.S. Christensen, A. Møller, M.I. Schwartzbach, Precise analysis of string expressions, in: Proceedings 10th International Static Analysis Symposium

(SAS), in: LNCS, vol. 2694, Springer-Verlag, June 2003, pp. 1–18, available from http://www.brics.dk/JSA/.
[6] A.E. Dalsgaard, A. Laarman, K.G. Larsen, M.C. Olesen, J.v.d. Pol, Multi-core reachability for timed automata, in: Proceedings of Formal Modeling and

Analysis of Timed Systems (FORMATS 2012), in: Lecture Notes in Computer Science, vol. 7595, Springer, 2012, pp. 91–106.
[7] W. Enck, D. Octeau, P. McDaniel, S. Chaudhuri, A study of Android application security, in: Proceedings of the 20th USENIX Security Symposium

(SEC’11), USENIX Association, San Francisco, CA, USA, Aug 2011, pp. 315–330.
[8] A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions demystified, in: Proceedings of the 18th ACM Conference on Computer and

Communications Security (CCS 2011), 2011, pp. 627–638.
[9] S.N. Freund, J.C. Mitchell, A type system for object initialization in the Java bytecode language, in: Proceedings of the ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’98), ACM Press, Vancouver, British Columbia, Canada, 1998, pp. 310–328.
[10] S.N. Freund, J.C. Mitchell, A formal framework for the Java bytecode language and verifier, in: Proceedings of the ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’99), ACM Press, Denver, CO, USA, Nov 1999, pp. 147–166.
[11] R.R. Hansen, Flow logic for language-based safety and security, Ph.D. thesis, Technical University of Denmark, 2005.
[12] J. Jeon, K.K. Micinski, J.S. Foster, SymDroid: Symbolic execution for Dalvik bytecode, http://www.cs.umd.edu/~jfoster/papers/symdroid.pdf, Jul 2012.
[13] H.S. Karlsen, E.R. Wognsen, Static analysis of Dalvik bytecode and reflection in Android, Master’s thesis, Aalborg University, Jun 2012, available from

http://projekter.aau.dk/projekter/en/studentthesis/static-analysis-of-dalvik-bytecode-and-reflection-in-android%284dd9e717-c5d2-4603-a2d7-0f043fe9ea
1f%29.html.

[14] H.S. Karlsen, E.R. Wognsen, M.C. Olesen, R.R. Hansen, Study, formalisation, and analysis of Dalvik bytecode, in: Inormal Proceedings of The Seventh
Workshop on Bytecode Semantics, Verification, Analysis and Transformation, BYTECODE 2012, 2012.

[15] A. Kieżun, V. Ganesh, P.J. Guo, P. Hooimeijer, M.D. Ernst, HAMPI: A solver for string constraints, in: Proceedings of the 2009 International Symposium
on Software Testing and Analysis (ISSTA 2009), Chicago, IL, USA, Jul 2009.

[16] A. Laarman, M.C. Olesen, A. Dalsgaard, K.G. Larsen, J. van de Pol, Multi-core emptiness checking of timed Buchi automata using inclusion abstraction,
in: Proceedings of the 25th International Conference on Computer Aided Verification (CAV 2013), in: Lecture Notes in Computer Science, Springer,
Saint Petersburg, Russia, 2013, pp. 968–983.

[17] B. Livshits, J. Whaley, M.S. Lam, Reflection analysis for Java, Tech. rep., Stanford University, Oct 2005.

http://source.android.com/tech/dalvik/dalvik-bytecode.html
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib62657274656C73656E39373A62797465636F646573656D616E74696373s1
http://labs.alienvault.com/labs/index.php/2010/analysis-of-trojan-sms-androidos-fakeplayer-a/
http://labs.alienvault.com/labs/index.php/2010/analysis-of-trojan-sms-androidos-fakeplayer-a/
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib7761676E65723A636F6D64726F6964s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib7761676E65723A636F6D64726F6964s1
http://www.brics.dk/JSA/
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4D756C7469436F726552656163686162696C697479666F7254696D65644175746F6D617461s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4D756C7469436F726552656163686162696C697479666F7254696D65644175746F6D617461s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib6170706C69636174696F6E7365637572697479s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib6170706C69636174696F6E7365637572697479s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib616E64726F69645F7065726D697373696F6E735F64656D7973746966696564s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib616E64726F69645F7065726D697373696F6E735F64656D7973746966696564s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4672654D697439383A4A564D7479706573797374656Ds1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4672654D697439383A4A564D7479706573797374656Ds1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4672654D697439393A666F726D616C62797465636F6465s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4672654D697439393A666F726D616C62797465636F6465s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib68616E73656E30353A706864s1
http://www.cs.umd.edu/~jfoster/papers/symdroid.pdf
http://projekter.aau.dk/projekter/en/studentthesis/static-analysis-of-dalvik-bytecode-and-reflection-in-android%284dd9e717-c5d2-4603-a2d7-0f043fe9ea1f%29.html
http://projekter.aau.dk/projekter/en/studentthesis/static-analysis-of-dalvik-bytecode-and-reflection-in-android%284dd9e717-c5d2-4603-a2d7-0f043fe9ea1f%29.html
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib62797465636F64652D7061706572s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib62797465636F64652D7061706572s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4B69657A756E4747484532303039s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4B69657A756E4747484532303039s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4D756C7469436F7265456D7074696E657373436865636B696E676F6654696D656442756368694175746F6D6174617573696E67496E636C7573696F6E4162737472616374696F6Es1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4D756C7469436F7265456D7074696E657373436865636B696E676F6654696D656442756368694175746F6D6174617573696E67496E636C7573696F6E4162737472616374696F6Es1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4D756C7469436F7265456D7074696E657373436865636B696E676F6654696D656442756368694175746F6D6174617573696E67496E636C7573696F6E4162737472616374696F6Es1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib7265666C656374696F6E5F616E616C797369735F666F725F6A617661s1


E.R. Wognsen et al. / Science of Computer Programming 92 (2014) 25–55 55
[18] T. Luo, H. Hao, W. Du, Y. Wang, H. Yin, Attacks on WebView in the Android system, in: Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC 2011), 2011, pp. 343–352.

[19] J. Manson, B. Goetz, JSR 133 (Java memory model) FAQ, Webpage available at http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html, Feb
2004.

[20] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis, Springer Verlag, 1999.
[21] M.C. Olesen, Program analysis as model checking, Ph.D. thesis, Aalborg University, 2013, in press.
[22] Oracle Corporation, Java Platform, Standard Edition 6: API Specification, available from http://docs.oracle.com/javase/6/docs/api/overview-summary.html,

last accessed 23 May 2012.
[23] Oracle Corporation, JSR 133: Java Memory Model and Thread Specification Revision, available from http://jcp.org/en/jsr/detail?id=133, last accessed 29

May 2012.
[24] É. Payet, F. Spoto, Static analysis of Android programs, Inf. Softw. Technol. 54 (11) (2012) 1192–1201.
[25] G.D. Plotkin, A structural approach to operational semantics, DAIMI FN-19, Computer Science Department (DAIMI), Aarhus University, Sep 1981.
[26] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, D. Song, A symbolic execution framework for JavaScript, in: Proceedings of the 31st IEEE

Symposium on Security and Privacy (S&P 2010), May 2010, pp. 513–528.
[27] I. Siveroni, Operational semantics of the Java Card virtual machine, J. Log. Algebr. Program. 58 (1–2) (Jan/Mar 2004) 3–25.
[28] F. Spoto, Julia: A generic static analyser for the Java bytecode, in: Proceedings of the 7th Workshop on Formal Techniques for Java-like Programs

(FTfJP’2005), 2005.
[29] F. Spoto, T.P. Jensen, Class analyses as abstract interpretations of trace semantics, ACM Trans. Program. Lang. Syst. 25 (5) (2003) 578–630.
[30] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, P. Co, Soot — a Java optimization framework, in: Proceedings of the Conference of the

Centre for Advanced Studies on Collaborative Research (CASCON 1999), 1999, pp. 125–135.
[31] J. Vitek, R.N. Horspool, J.S. Uhl, Compile-time analysis of object-oriented programs, in: Proceedings International Conference on Compiler Construction

(CC’92), in: Lecture Notes in Computer Science, vol. 641, Springer Verlag, 1992.

http://refhub.elsevier.com/S0167-6423(13)00330-4/bib61747461636B735F6F6E5F77656276696577s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib61747461636B735F6F6E5F77656276696577s1
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib4E4E4839393A505041s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib6D6368726F546865736973s1
http://docs.oracle.com/javase/6/docs/api/overview-summary.html
http://jcp.org/en/jsr/detail?id=133
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib50533A495354323031323A616E64726F6964s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib706C6F746B696E38313A736F73s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib736178656E6131306B75647A75s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib736178656E6131306B75647A75s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib73697665726F6E6930343A6A63766D5F73656D616E74696373s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib73706F746F3A6674666A70323030353A6A756C6961s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib73706F746F3A6674666A70323030353A6A756C6961s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib534A3A746F706C617332303033s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib5648534C47433A636173636F6E313939393A736F6F74s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib5648534C47433A636173636F6E313939393A736F6F74s1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib56485539323A4F4Fs1
http://refhub.elsevier.com/S0167-6423(13)00330-4/bib56485539323A4F4Fs1

	Formalisation and analysis of Dalvik bytecode
	1 Introduction
	1.1 Related work

	2 Study of apps
	3 Operational semantics
	3.1 Program structure
	3.2 Semantic domains
	3.3 Semantic rules
	3.4 Exceptions

	4 Control ﬂow analysis
	4.1 Abstract domains
	4.2 Flow logic speciﬁcation
	4.3 Correctness of the analysis
	4.3.1 Representation functions and correctness relations
	Correctness relations

	4.3.2 Subject Reduction Theorem

	4.4 Concurrency

	5 Reﬂection
	5.1 Reﬂection in the wild
	5.2 Usage patterns
	5.3 Assumptions
	5.4 Class objects
	5.5 Method objects
	5.6 Instantiation
	5.7 Method invocation

	6 Prototype implementation
	6.1 Examples
	6.2 Modelling Java and Android
	6.2.1 API methods
	6.2.2 Java features
	6.2.3 Reﬂection
	6.2.4 Entry points


	7 Evaluating the prototype
	8 Looking for malware
	8.1 The FakePlayer Trojan

	9 Conclusion
	Acknowledgements
	Appendix A Generalised instruction set
	Appendix B Occurrences of instructions
	Appendix C Structural domains
	Appendix D Subject reduction proof
	D.1 The move case
	D.2 The iput case
	D.3 The const-class sharing object case
	D.4 The invoke-virtual case

	References


