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Abstract—Component hijacking is a class of vulnerabilities
commonly appearing in Android applications. When these vul-
nerabilities are triggered by attackers, the vulnerable apps can
exfiltrate sensitive information and compromise the data integrity
on Android devices, on behalf of the attackers. It is often unrealis-
tic to purely rely on developers to fix these vulnerabilities for two
reasons: 1) it is a time-consuming process for the developers to
confirm each vulnerability and release a patch for it; and 2) the
developers may not be experienced enough to properly fix the
problem. In this paper, we propose a technique for automatic
patch generation. Given a vulnerable Android app (without
source code) and a discovered component hijacking vulnerability,
we automatically generate a patch to disable this vulnerability. We
have implemented a prototype called AppSealer and evaluated its
efficacy on apps with component hijacking vulnerabilities. Our
evaluation on 16 real-world vulnerable Android apps demon-
strates that the generated patches can effectively track and
mitigate component hijacking vulnerabilities. Moreover, after
going through a series of optimizations, the patch code only
represents a small portion (15.9% on average) of the entire
program. The runtime overhead introduced by AppSealer is also
minimal, merely 2% on average.

I. INTRODUCTION

With the boom of Android devices, the security threats in
Android are also increasing. Although the permission-based
sandboxing mechanism enforced in Android can effectively
confine each app’s behaviors by only allowing the ones granted
with corresponding permissions, a vulnerable app with certain
critical permissions can perform security-sensitive behaviors
on behalf of a malicious app. It is so called confused deputy
attack. This kind of security vulnerabilities can present in
numerous forms, such as privilege escalation [1], capability
leaks [2], permission re-delegation [3], content leaks and
pollution [4], component hijacking [5], etc.

Prior work primarily focused on automatic discovery of
these vulnerabilities. Once a vulnerability is discovered, it can
be reported to the developer and a patch is expected. Some
patches can be as simple as placing a permission validation at
the entry point of an exposed interface (to defeat privilege

escalation [1] and permission re-delegation [3] attacks), or
withholding the public access to the internal data repositories
(to defend against content leaks and pollution [4]), the fixes
to the other problems may not be so straightforward.

In particular, component hijacking may fall into the latter
category. When receiving a manipulated input from a malicious
Android app, an app with a component hijacking vulnerability
may exfiltrate sensitive information or tamper with the sensi-
tive data in a critical data repository on behalf of the malicious
app. In other words, a dangerous information flow may happen
in either an outbound or inbound direction depending on
certain external conditions and/or the internal program state.

A prior effort has been made to perform static analysis
to discover potential component hijacking vulnerabilities [5].
Static analysis is known to be conservative in nature and may
raise false positives. To name a few, static analysis may find a
viable execution path for information flow, which may never
be reached in actual program execution; static analysis may
find that interesting information is stored in some elements
in a database, and thus has to conservatively treat the entire
database as sensitive. Upon receiving a discovered vulnera-
bility, the developer has to manually confirm if the reported
vulnerability is real. It may also be nontrivial for the (often
inexperienced) developer to properly fix the vulnerability and
release a patch for it. As a result, these discovered vulnerabil-
ities may not be addressed for long time or not addressed at
all, leaving a big time window for attackers to exploit these
vulnerabilities. Out of the 16 apps with component hijacking
vulnerabilities we tested, only 3 of them were fixed in one
year.

To close this window, we aim to automatically generate a
patch that is specific to the discovered component hijacking
vulnerability. In other words, we would like to automatically
generate a vulnerability-specific patch on the original program
to block the vulnerability as a whole, not just a set of malicious
requests that exploit the vulnerability.

While automatic patch generation is fairly new in the
context of Android applications, a great deal of research has
been done for traditional client and server programs (with and
without source code). Many efforts have been made to auto-
matically generate signatures to block bad inputs, by perform-
ing symbolic execution and path exploration [6]–[10]. This ap-
proach is effective if the vulnerability is triggered purely by the
external input and the library functions can be easily modeled
in symbolic execution. However, for android applications, due
to the asynchronous nature of the program execution, a suc-
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cessful exploitation may depend on not only the external input,
but also the system events and API-call return values. Other
efforts have been made to automatically generate code patches
within the vulnerable programs to mitigate certain kinds of
vulnerabilities. To name a few, AutoPaG [11] focused on buffer
overflow and general boundary errors; IntPatch [12] addressed
integer-overflow-to-buffer-overflow problem; To defeat zero-
day worms, Sidiroglou and Keromytis [13] proposed an end-
point first-reaction mechanism that tries to automatically patch
vulnerable software by identifying and transforming the code
surrounding the exploited software flaw; and VSEF [14] mon-
itors and instruments the part of program execution relevant to
specific vulnerability, and creates execution-based filters which
filter out exploits based on vulnerable program’s execution
trace, rather than solely upon input string.

In principle, our automatic patch generation technique falls
into the second category. However, our technique is very
different from these existing techniques, because it requires
a new machinery to address this new class of vulnerabilities.
The key of our patch generation technique is to place minimally
required code into the vulnerable program to accurately keep
track of dangerous information originated from the exposed
interfaces and effectively block the attack at the security-
sensitive APIs.

To achieve this goal, we first perform static bytecode
analysis to identify small but complete program slices that
lead to the discovered vulnerability. Then we devise several
shadowing mechanisms to insert new variables and instructions
along the program slices, for the purpose of keeping track of
dangerous information at runtime. In the end, we apply a series
of optimizations to remove redundant instructions to minimize
the footprint of the generated patch. Consequently, the auto-
matically generated patch can be guaranteed to completely
disable the vulnerability with minimal impact on runtime
performance and usability.

We implement a prototype, AppSealer, in 16 thousand
lines of Java code, based on the Java bytecode optimization
framework Soot [15]. We leverage Soot’s capability to perform
static dataflow analysis and bytecode instrumentation. We
evaluate our tool on 16 real-world Android apps with com-
ponent hijacking vulnerabilities. Our experiments show that
the patched programs run correctly, while the vulnerabilities
are effectively mitigated.

Contributions. In summary, this paper has made the following
contributions:

• We propose an automatic patch generation technique
to defeat component hijacking attacks in Android
applications. Its core is to place minimally required
code into the vulnerable program to accurately keep
track of dangerous information and block the attack
right at the sink.

• We implement a prototype system called AppSealer
in 16 thousand lines of Java code. AppSealer firstly
performs static dataflow analysis to generate program
slices of dangerous information flows. Then, it au-
tomatically patches the slices by devising shadowing
mechanisms and inserting new statements. Finally, it

applies a series of optimizations to remove redundant
patch statements and minimize the patch size.

• We evaluate AppSealer on 16 vulnerable Android
apps. The experiments show that our approach is both
effective and efficient. We demonstrate that patched
apps run correctly, while the vulnerability is effec-
tively mitigated. The size of patched program in-
creases only 15.9% on average and the added runtime
overhead is minimal, merely 2% on average.

Paper Organization. The rest of the paper is organized
as follows. Section II describes the problem of automatic
patch generation for preventing component hijacking attacks,
and gives an overview of our patch generation technique.
Section III, IV, and V present the three steps of our proposed
technique, which are taint slice computation, patch statement
placement, and patch optimization. Section VI presents our
experimental results over real Android apps. Discussion and
related work are presented in Section VII and Section VIII,
respectively. Finally, the paper concludes with Section IX.

II. PROBLEM STATEMENT & APPROACH OVERVIEW

In this section, we start with a motivating example to
explain the problem that this paper aims to address and provide
an overview of our proposed technique.

A. Running Example

Figure 1 presents a synthetic running example in Java
source code, which has a component hijacking vulnerability.
More concretely, the example class is one of the Activity com-
ponents in an Android application. It extends an Android Ac-
tivity and overrides several callbacks including onCreate(),
onStart() and onDestroy().

Upon receiving a triggering Intent, the Android framework
creates the Activity and further invokes these callbacks. Once
the Activity is created, onCreate() retrieves the piggy-
backed URL string from the triggering Intent. Next, it saves
this URL to an instance field addr if the resulting string is not
null, or uses the DEFAULT_ADDR otherwise. When the Ac-
tivity starts, onStart() method acquires the latest location
information by calling getLastKnownLocation(), and
stores it to a static field location. Further, onDestroy()
reads the location object from this static field, encodes the data
into a string, encrypts the byte array of the string and sends it
to the URL specified by addr through a raw socket.

This program is subject to component hijacking attack,
because a malicious app may send an Intent to this Ac-
tivity with a URL specified by the attacker. As a re-
sult, this vulnerable app will send the location informa-
tion to the attacker’s URL. In other words, this vulnerabil-
ity allows the malicious app to retrieve sensitive informa-
tion without having to declare the related permissions (i.e.,
android.permission.ACCESS_FINE_LOCATION and
android.permission.INTERNET).

Besides information leakage, a component hijacking attack
may happen in the reverse direction. That is, a vulnerable
program may allow a malicious app to modify the content of
certain sensitive data storage, such as the Contacts database,
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1 public class VulActivity extends Activity{
2 private String DEFAULT_ADDR = "http://default.url";
3 private byte DEFAULT_KEY = 127;
4
5 private String addr;
6 private static Location location;
7 private byte key;
8
9 /* Entry point of this Activity */

10 public void onCreate(Bundle savedInstanceState){
11 this.key = DEFAULT_KEY;
12
13 this.addr = getIntent().getExtras().getString("url");
14 if(this.addr == null){
15 this.addr = DEFAULT_ADDR;
16 }
17 }
18
19 public void onStart(){
20 VulActivity.location = getLocation();
21 }
22
23 public void onDestroy(){
24 String location =
25 Double.toString(VulActivity.location.getLongitude()) +

"," + Double.toString(VulActivity.location.getLatitude
());

26 byte[] bytes = location.getBytes();
27 for(int i=0; i<bytes.length; i++)
28 bytes[i] = crypt(bytes[i]);
29 String url = this.addr;
30 post(url, bytes);
31 }
32
33 public byte crypt(byte plain){
34 return (byte)(plain ˆ key);
35 }
36
37 public Location getLocation(){
38 Location location = null;
39 LocationManager locationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
40 location = locationManager.getLastKnownLocation(

LocationManager.GPS_PROVIDER);
41 return location;
42 }
43
44 public void post(String addr, byte[] bytes){
45 URL url = new URL(addr);
46 HttpURLConnection conn = (HttpURLConnection)url.

openConnection();
47 ...
48 OutputStream output = conn.getOutputStream();
49 output.write(bytes, 0, bytes.length);
50 ...
51 }
52 }

Fig. 1. Java Code for the Running Example

even though the malicious app is not granted with the related
permissions.

B. Problem Statement

We anticipate our proposed technique to be deployed as a
security service in the Android marketplace, as illustrated in
Figure 2. Both the existing apps and the newly submitted apps
must go through the vetting process by using static analysis
tools like CHEX [5]. If a component hijacking vulnerability
is discovered in an app, its developer will be notified, and a
patch will be automatically generated to disable the discovered
vulnerability. So the vulnerable apps will never reach the end
users. This approach wins time for the developer to come up
with a more fundamental solution to the discovered security
problem. Even if the developer does not have enough skills to
fix the problem or is not willing to, the automatically generated

Android App Market
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Patching

End User
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Fig. 2. Deployment of AppSealer

patch can serve as a permanent solution for most cases (if not
all).

In addition, it is also possible to deploy our technique
with more ad-hoc schemes. For instance, an enterprise can
maintain its private app repository and security service too.
The enterprise service conducts vetting and necessary patching
before an app gets into the internal app pool, and thus
employees are protected from vulnerable apps. Alternatively,
establishing third-party public services and repositories is also
viable and can benefit end users.

Specifically, we would like to achieve the following design
goals:

• No source code access. Our technique should not re-
quire the application source code for patch generation.
It is particularly important for Android ecosystem,
because the developers only submit the executables
(in form of .APK files) to the marketplace.

• Vulnerability-specific patching. The generated patch
using our technique should effectively disable the
vulnerability as a whole, not just a particular set of
exploitation instances.

• Minimal performance overhead. The extra perfor-
mance overhead induced by the patch should be min-
imal, such that the user experience is not affected. In
the context of patch generation, it means that the in-
serted instructions (as the patch) should be minimally
necessary to fix the vulnerability.

• Minimal impact on usability. The normal operations
on the patched app should remain intact. The inter-
vention introduced in the patch should only take place
while an attack is about to take into effect.

C. Approach Overview

Figure 3 depicts the workflow of our automatic patch
generation technique. It takes the following steps:

(1) IR Translation. An Android app generally consists of
a Dalvik bytecode executable file, manifest files, native
libraries, and other resources. Our patch generation is per-
formed on the Dalvik bytecode program. So the other files
remain the same, and will be repackaged into the new app
in the last step. To facilitate the subsequent static analysis,
code insertion, and code optimization, we first translate
Dalvik bytecode into an Intermediate Representation (IR).
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In particular, we first convert the DEX into Java bytecode
program using dex2jar [16], and then using Soot [15],
translate the Java bytecode into Jimple IR.

(2) Slice Computation. On Jimple IR, we perform flow-
sensitive context-sensitive inter-procedural dataflow anal-
ysis to discover component hijacking flows. We track
the propagation of certain “tainted” sensitive information
from sources like internal data storage and exposed in-
terfaces, and detect if the tainted information propagates
into the dangerous data sinks. By performing both forward
dataflow analysis and backward slicing, we compute one
or more program slices that directly contribute to the
dangerous information flow. To distinguish with other
kinds of program slices, we call this slice taint slice, as it
includes only the program statements that are involved in
the taint propagation from a source to a sink.

(3) Patch Statement Placement. With the guidance of the
computed taint slices, we place shadow statements into
the IR program. The inserted shadow statements serve
as runtime checks to actually keep track of the taint
propagation while the Android application is running. In
addition, guarding statements are also placed at the sinks
to block dangerous information flow right on site.

(4) Patch Statement Optimization. We further optimize the
inserted patch statements. This is to remove the redundant
statements that are inserted from the previous step. As
Soot’s built-in optimizations do not apply well on these
patch statements, we devise three custom optimization
techniques to safely manipulate the statements and remove
redundant ones. Thereafter, the optimized code is now
amenable to the built-in optimizations. Consequently, after
going through both custom and built-in optimizations, the
added patch statements can be reduced to the minimum,
ensuring the best performance of the patched bytecode
program.

(5) Bytecode Generation. At last, we convert the modified
Jimple IR into a new package (.APK file). To do so,
we translate the Jimple IR to Java package using Soot,
and then re-target Java bytecode to Dalvik bytecode using
Android SDK. In the end, we repackage the patched DEX
file with old resources and create the new .APK file.

III. TAINT SLICE COMPUTATION

Taking a Jimple IR program and the sources and sinks
specified in the security policies as input, our application-
wide dataflow analysis will output one or more taint slices
for dangerous information flows. Our analysis takes the fol-

lowing steps: 1) we locate the information sources in the IR
program, and starting from each source, we perform forward
dataflow analysis to generate a taint propagation graph; 2) if
a corresponding sink is found in this taint propagation graph,
we perform backward dependency analysis from the sink node
and generate a taint slice.

A. Forward Dataflow Analysis

For each identified taint source, we perform context-
sensitive flow-sensitive forward dataflow analysis to generate
a taint propagation graph. This application-wide dataflow
analysis leverages intra-procedural def-use chain analysis and
call graph analysis, which are provided in Soot. The basic
algorithm is fairly standard and similar to other static dataflow
analysis systems, such as CHEX [5]. In comparison, our anal-
ysis serves as the foundation for automatic patch generation,
and thus needs to be conservative and complete.

Basic Algorithm. More concretely, the algorithm proceeds
as follows. For each located taint source, we perform def-
use chain analysis to identify how this taint propagates in
the hosting function. If a function call is identified to be
included in this def-use chain, we further perform def-use
chain analysis within the callee function. If the callee function
is an API, we will apply our pre-defined Android API model.
After completing def-use chain analysis for one function, its
return value, “this” pointer, some class members, and/or some
function parameters, may be identified to be tainted. In this
case, we will pass this result back to the caller function, and
def-use chain analysis will resume in the context of caller
function. Therefore, this analysis process is recursive in nature.

Special Considerations for Android Apps. To ensure com-
pleteness in our dataflow analysis, we have several special
considerations for analyzing Android applications, due to their
object-oriented and event-driven characteristics.

Static field, serving as global variable in Java, can be
shared by multiple methods for asynchronous communication.
In order not to miss the information flow through shared global
region, we conservatively treat all the tainted static fields as
new sources. Though this may yield false positives for analysis,
our inserted runtime checks will guarantee the correct order of
“set” and “get” operations, eliminating the uncertainty during
patch generation phase.

Instance field, unlike a static field, is only accessible
through one certain instance object. In a sense, an instance
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field in Java is analogous to a structure field of a heap
object in C. Although it is possible to statically distinguish
certain accesses to an instance field of two different instance
objects by performing pointer analysis, it is rather difficult
for Android applications. For each Android application, a
significant portion of the program execution is actually done
by the Android framework. The application only serves as a
“plug-in” to this framework. The analysis result that is only
based on the application code will not be complete and correct.
In this work, we adopt a rather simple memory model. That
is, any access to an instance field of an object may reflect
to all the objects of the same class. Again, we take a simple
but conservative analysis approach, and the subsequent patch
generation can ensure the correctness of information flow
detection. Notice that the primitive wrapper class (e.g., Byte,
Integer, etc.) and their combination such as String or Integer
array essentially also contain instance fields. However, static
analysis on bytecode level does not see their internal fields
and always treats them as atomic primitive types. Therefore,
this simple memory model does not apply to them and will
not cause false positives.

Intent is a unique feature in Android applications for
message passing, and thus a possible medium for propagating
information. Explicit Intents are used for inter-class commu-
nications. The sender class can create an explicit Intent by
specifying the name of receiver class, and trigger the receiver
with the Intent via for example startActivity(Intent) or
startActivityForResult(Intent, int). As long as the
receiver’s name is resolvable, the subsequent calling sequence
can be determined statically. Otherwise, we conservatively
consider all the potential targets, reading Intent information
via Intent.getData() or Intent.getExtras(), as prop-
agation destinations. Implicit Intents are used to broadcast. The
manifest.xml, which specifies the registration of BroadcastRe-
ceiver, thus helps construct the relationship between sender and
receiver. Senders and listeners of Android components are so
far handled manually. It is possible to leverage prior work [17]
for better target resolution.

Class inheritance is an object-oriented feature, which al-
lows method overriding. Again, it requires points-to analysis
to determine the type of object instance and thus the call
target. In practice, we leverage Soot’s capability to do call-
graph analysis, which performs class hierarchy analysis. We
then conservatively go through all the possible call targets for
data propagation.

Thread is not unique to Android but needs special consid-
erations. The calling convention for Thread is that, while the
caller makes a call to Thread.start(), the control is passed
over to a corresponding Thread.run(). Therefore, we need
to consider the start-run pair and handle this case in call-graph
analysis.

B. Backward Dependency Analysis

After one or more sinks are identified in the taint prop-
agation graph, we further remove the nodes that can reach
none of the sink nodes. To do that, we first compute a reverse
graph and then start from each sink node to traverse the graph.
After traversal, any unvisited nodes will be removed from the
original graph. In this way, we compute the taint slice, which

encompasses all the IR statements involved in the dangerous
information flow from a given source to a given sink.

C. Running Example

Figure 4 illustrates the taint slices for the running example,
after using both forward dataflow analysis and backward
dependency analysis. There are two slices in this graph,
each one of which represents the data propagation of one
source. The left branch describes the taint propagation of
“gps” information, which originates from the invocation of
getLastKnownLocation(). The data is then saved to a
static field location, before a series of long-to-string and
string-to-bytearray conversions in onDestroy(). Converted
byte array is further passed to crypt() for byte-level en-
cryption. The right branch begins with Intent receiving in
onCreate(). The piggybacked “url” data is thus extracted
from the Intent and stored into an instance field addr.
The two branches converge at post(String,byte[]),
when both the encrypted byte array and “addr” string are
fed into the two parameters, respectively. “addr” string is
used to construct an URL, then a connection, and fur-
ther an OutputStream object, while the byte array serves
as the payload. In the end, both sources flow into the
sink OutputStream.write(byte[],int,int), which
sends the payload to the designated address.

IV. PATCH STATEMENT PLACEMENT

With taint slices in hand, we have a big picture of how
the taint may propagate within the program. The next step
is to place patch statements with the guidance of the taint
slices. We first briefly introduce our tainting policy. Then we
describe how we create shadow variables to record taint status
for different kinds of data variables in the program. Finally,
we explain how to place shadow instructions to keep track of
taint propagation at runtime and block the dangerous tainted
information at the sink nodes.

A. Tainting Policy

We adopt a tainting policy similar to the one in Taint-
Droid [18], striking a balance between precision and per-
formance. However, a key difference between our technique
and TaintDroid is that our technique directly modifies the
bytecode program to keep track of selected tainted information,
whereas TaintDroid modifies the Dalvik Virtual Machine to
monitor taint propagation on the execution of every single
Dalvik instruction. To be more specific, we aim to monitor
dangerous information flow on multiple granularity levels: we
perform variable-level tainting for local variables and objects,
field-level tainting for instance and static fields, message-level
tainting for IPC and file-level tainting for external storage. In
other words, we store one shadow variable (taint status) for
each single local variable, field, message or file. In addition, we
store one shadow variable for entire array, in order to achieve
memory efficiency. We also support table lookup, meaning if
either an array base b or an array index i is tainted, and an
element is obtained from b[i], this element is also tainted.
For structural objects, such as Vector, Hashtable, etc,
we model corresponding APIs for taint propagations. Further
discussion is in Section IV-D.
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<getLocation()>: $r4 = virtualinvoke 
$r3.<getLastKnownLocation(String)>("gps");

<getLocation()>: return $r4;

<onStart()>: $r1 = virtualinvoke r0.<getLocation()>();

<Location location>

<onDestroy()>: $r3 = <Location location>;

<onCreate(Bundle)>: $r2 = virtualinvoke r0.<Intent getIntent()>();

<onCreate(Bundle)>: 
$r3 = virtualinvoke $r2.<Intent: Bundle getExtras()>();

<onCreate(Bundle)>: $r4 = virtualinvoke $r3.<Bundle: String 
getString(String)>("url");

<onDestroy()>: $d0 = virtualinvoke $r3.<getLongitude()>();

<onDestroy()>: $r4 = staticinvoke <toString(double)>($d0);

<onDestroy()>: $r5 = virtualinvoke $r1.<append(String)>($r4);

<onDestroy()>: $r6 = virtualinvoke $r5.<append(String)>(",");

<onDestroy()>: $r9 = virtualinvoke $r6.<append(String)>($r8);

<onDestroy()>: $r10 = virtualinvoke $r9.<StringBuilder: toString()>();

<onDestroy()>: r2 = virtualinvoke $r10.<String: byte[] getBytes()>();

<onDestroy()>: virtualinvoke r0.<post(String,byte[])>($r11, r2);

<post(String,byte[])>: virtualinvoke r6.<write(byte[],int,int)>(r2, 0, $i0);

Static Field

<String addr> Instance Field

<onDestroy()>: $r11 = r0.<String addr>;

<onDestroy()>: $b3 = virtualinvoke r0.<crypt(byte)>($b2)

<crypt(byte)>: b0 := @parameter0: byte

<crypt(byte)>: $b2 = b0 ^ $b1

<crypt(byte)>: return $b2

<onDestroy()>: $b3 = virtualinvoke r0.<crypt(byte)>($b2)

<onDestroy()>: r2[i0] = $b3

<void onDestroy()>: $b2 = r2[i0]

<post()>: r1 := @parameter0: String;
<post()>: r2 := @parameter1: byte[];

<post()>: specialinvoke $r3.<URL: void <init>(String)>(r1);

<post()>: $r4 = virtualinvoke $r3.<URL: openConnection()>();

<post()>: r5 = (java.net.HttpURLConnection) $r4;

<post()>: r6 = virtualinvoke r5.<HttpURLConnection: getOutputStream()>();

Fig. 4. Taint Slices for the Running Example.

B. Creating Shadow Variables

In order to keep track of taint propagation at runtime,
we need to create a shadow for each data entity that may
become tainted. In other words, these data entities must appear
in the taint slices. The data entities outside the slices do not
need to have their shadows, because they are irrelevant to the
taint propagation. More specifically, we need to shadow the
following types of data entities: 1) local variable; 2) function
parameter; 3) function return value; and 4) class data field
(including both static field and instance field). They need to
be shadowed in different ways.

Local Variables. To shadow local variables, we can create
a boolean variable for each local variable within the same
function scope. To support taint tracking of multiple sources,
we introduce one separate shadow variable for one single taint
source. For example, to shadow a local variable r4, we create
a boolean variable r4 s0 t for one taint source and r4 s1 t
for another. The shadow variable r4 s0 t is set to 1 (true) if
r4 is tainted from the first source, and 0 (false) otherwise. The
code snippet below depicts this case.

$r4 = virtualinvoke $r3.<android.location.
LocationManager: android.location.Location
getLastKnownLocation(java.lang.String)>("gps");

r4_s0_t = 1;

Notice that another design option is to always use a
collection object (e.g., Vector) to hold and pass all the taints of
a variable. We do not take this design option for two reasons:
1) operations on collection objects are more expensive than
simple operations on boolean variables; and 2) the compiler

normally refuses to optimize collection objects due to their side
effects. Using boolean variables as shadow, on the contrary, is
more lightweight and amenable to various standard compiler
optimization methods such as constant propagation, dead code
elimination, etc.

Static/Instance Fields. Static and instance fields are shadowed
by adding boolean fields in the class definition. The code
snippet below shows how we add a boolean static field to
shadow a static field in the class definition. Notice that, fields,
that are declared in different children classes of the same
parent, are associated with different dedicated shadow fields.
This helps to accurately determine the taint status for objects
of derived classes.

private static android.location.Location location;
public static boolean location_s0_t;

Parameters and Return Value. To shadow function param-
eters and the return value, we have to modify the function
prototype to add parameters. These new parameters are used to
shadow the function parameters and the return value. However,
we cannot directly add boolean parameters like we do for
local variables and static and instance fields. This is because
primitive boolean parameters are passed by value in Java’s
calling convention. It means that the changes in these boolean
parameters will not be reflected back to the caller, resulting in
broken taint propagation. To solve this problem, we have to
pass an object reference instead of a simple boolean variable as
a function parameter. We define a new class BoolWrapper
for this purpose. This class only contains one boolean instance
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field, which holds the taint status, and a default constructor, as
shown below. Notice that the Java Boolean class cannot serve
the same purpose because it is treated the same as primitive
boolean type once passed as parameter.

public class BoolWrapper extends java.lang.Object{
public boolean b;
public void <init>(){
BoolWrapper r0;
r0 := @this: BoolWrapper;
specialinvoke r0.<java.lang.Object:

void <init>()>();
return;

}
}

C. Instrumenting the Source

Right after the taint source statement, we can simply
insert an assignment to set the corresponding shadow variable
to 1 (true), indicating that the tainted source has just been
introduced.

To address component hijacking problem, we consider
external Intents as sources. In other words, if an Intent comes
from inside the app, we do not set the taint. Consequently,
we need to differentiate the internal requests and external
ones. Unfortunately, except for IPC through a bound Service
or Activities started by startActivityForResult(),
so far, there exists no way to know the origin of an In-
tent by Android design. Thus, we have to rewrite existing
Intent code in the app so that internal Intent can carry an
extra secret integer, and further, at the public interfaces (e.g.,
Activites, BroadcastReceivers), we distinguish internal and
external Intents by checking the secret with an introduced
method isExternalIntent(). Notice that this method
does not exist in the original app, so the attacker can hardly
exploit it. Further, the method name can be randomized during
rewriting process. To prevent an attacker from forging an
internal Intent, we generate a random secret number every time
the app starts. Of course, it is always possible to adjust our
design provided Intent origin is supported by future Android
framework.

D. Instrumenting Taint Propagation

For each node within the taint slices, depending on its
statement type, we need to instrument it in different way.

Simple Assignments. For each simple assignment statement
in the taint slice, we need to insert a statement thereafter
to propagate taint accordingly. For definition statement and
unary operation, we insert an definition statement on the
shadow variables. For binary operation, we insert a binary OR
operation on the shadow variables. Note that in the original
statement, not all variables are shadowed, because they do not
appear in the def-use chain and will certainly not be tainted. In
this case, we replace their shadow variable with a constant 0
(false), indicating that they are always clean. The code snippet
below illustrates these cases. Hereafter, we will omit the source
label (e.g., s0, s1) for convenience when presenting shadow
variable names, if all taint propagations in the snippet are for
one single source.

r1 = r2; //definition statement
r1_t = r2_t;

r3 = UNOP r4; //unary operation
r3_t = r4_t;

r3 = r4 BINOP r5 //binary operation
r3_t = r4_t | r5_t;

r6 = r7 BINOP r8
r6_t = r7_t | 0; //r8 is not shadowed

Function Calls. If the statement to be instrumented is a
function call defined within the application, we need to insert
statements to bind shadow variables for actual arguments to
the shadow variables for the formal parameters. As mentioned
earlier, in order to reflect the value changes from the callee
back to the caller, we create new instances of boolWrapper
class and pass the references into the extended parameter
list. The code snippet below shows how we instrument an
invocation to crypt in our running example.

$b2_t_w = new BoolWrapper;
specialinvoke $b2_t_w.<BoolWrapper: void <init>()>();
$b2_t_w.<BoolWrapper:boolean b> = $b2_t;

r0_t_w = new BoolWrapper;
specialinvoke r0_t_w.<BoolWrapper: void <init>()>();
r0_t_w.<BoolWrapper:boolean b> = r0_t;

$b3_t_w = new BoolWrapper;
specialinvoke $b3_t_w.<BoolWrapper: void <init>()>();
$b3_t_w.<BoolWrapper:boolean b> = $b3_t;

$b3 = virtualinvoke r0.<VulActivity: byte crypt(
byte,BoolWrapper,BoolWrapper,BoolWrapper)>

($b2, $b2_t_w, r0_t_w, $b3_t_w);

$b3_t = $b3_t_w.<BoolWrapper:boolean b>;
r0_t = r0_t_w.<BoolWrapper:boolean b>;
$b2_t = $b2_t_w.<BoolWrapper:boolean b>;

More specifically, we have expanded the parameter list of
crypt to include three extra BoolWrapper references, one
for shadowing the first argument, one for shadowing “this”
pointer, and the last one for the return value. Before the
invocation, the three BoolWrapper instances are created
and initialized to receive their taint statuses. Then after the
invocation, the taint statuses in these BoolWrapper instances
are passed back to the shadow variables in the caller’s context.

We also add instrumentation code in the function body of
crypt to pass taint status from formal parameters into local
variables and in the end pass the new status back, as shown
below.

public byte crypt(byte, BoolWrapper,
BoolWrapper, BoolWrapper) {
r0 := @this: VulActivity;
b0 := @parameter0: byte;
w_p0 := @parameter1: BoolWrapper;

w_t := @parameter2: BoolWrapper;

w_r := @parameter3: BoolWrapper;

r0_t = w_t.<BoolWrapper: boolean b>;

b0_t = w_p0.<BoolWrapper: boolean b>;

$b2_t = w_r.<BoolWrapper: boolean b>;

$b1 = r0.<VulActivity: byte key>;
$b2 = b0 ˆ $b1;
$b2_t = b0_t | 0;

w_t.<BoolWrapper: boolean b> = r0_t;

w_p0.<BoolWrapper: boolean b> = b0_t;

w_r.<BoolWrapper: boolean b> = $b2_t;

return $b2;
}
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API Calls. Some statements involve calling Android APIs.
Since the method body of an Android API is not included
in the program, we have to add instrumentation code to
implement the taint propagation logic for that API. These APIs
can be generally put into the following categories:

• APIs like getString() and toString(), have
very simple taint propagation logic, always propagat-
ing taint from parameters to their return values. There-
fore, we generate a default rule, which propagates taint
from any of the input parameters to the return value.

• APIs like android.widget.TextView.setText()
can be modeled as a simple assignment. They propa-
gate taint from one parameter to another reference or
“this” reference.

• APIs like Vector.add(Object) can be modeled
as a binary operation, such that the object is tainted
if it is already tainted or the newly added element is
tainted.

• APIs like android.content.ContentValues.put(
String key, Byte value) that operate on (key,
value) pairs can have more precise handling. In this
case, the elements are stored and accessed according
to a “key”. To track taint more precisely, we keep a
taint status for each key, so the taint for each (key,
value) pair is updated individually.

Tracking References. We shadowed local variable in our
design, while some of local variables are references to objects.
Further, some of them are referencing the same object. If one
of the references is tainted, all other references should also be
tainted. In order to maintain the internal equivalence of such
references, we leverage the common origin of the references as
a bridge. To be more specific, once the shadow variable of one
reference is set, we set the taint variable of its origin; whenever
the taint status of a reference needs to be examined, we
evaluate the shadow variable of corresponding origin instead.
Simply put, instead of tracking multiple references, we rely on
the taint status of the unique origin.

E. Cleaning the Taint

It is not enough to only instrument the statements in the
taint slice, because the slice only includes the statements
involved in taint propagation. Statements outside the slice may
clean a tainted variable in the slice. To properly clean the
taint, for each variable appearing in the def-use chain inside
the slice, we need to find all its definitions. Then for the
definitions outside the slice, we need to insert a statement after
that definition to set its shadow variable to 0 (false). The code
snippet below shows such a case in our running example.

$r4 = virtualinvoke $r3.<android.os.Bundle: java.
lang.String getString(java.lang.String)>("url");

r4_s1_t = 1;

if $r4 != null goto label0;
$r4 = r0.<VulActivity: java.lang.String DEFAULT_ADDR>
r4_s1_t = 0;

label0:

F. Instrumenting the Sink

We instrument the sink to check the taint status of the
sink variables. If they are tainted by certain sources, we can
raise a pop-up dialog to the user, asking for decision. Our
decision dialog offers the user two choices, “restart the app”
or “continue running”. If the user chooses the first option, we
defeat the dangerous execution by immediately restarting the
app. Though this solution is not perfect, it is acceptable in
the Android environment because application context can be
saved to Shared Preferences programmatically for restore. It is
possible that malicious message also gets saved, but so does the
corresponding shadow variable. Therefore, whenever program
state is recovered, taint tracking resumes and the attack is
still blocked. Again, our goal is not to replace the final patch
from developers, but rather to automatically and quickly offer
a viable solution, which can serve users’ need temporarily.

Below shows how we instrument the raw socket sending
as the sink in our running example. In this case, we trigger
decision making procedure if both the outgoing data parameter
is tainted by source s0, and OutputStream (constructed with
URL) is tainted by source s1.

public void post(java.lang.String, byte[],
BoolWrapper, BoolWrapper, BoolWrapper) {
....

if r2_s0_t == 1 && r6_s1_t == 1 goto label0;

goto label1;
label0:

staticinvoke <Policy:

void promptForUserDecision()>();

label1:
virtualinvoke r6.<java.io.OutputStream:

void write(byte[],int,int)>(r2, 0, $i0);
...

}

V. PATCH OPTIMIZATION

A. Optimization Phases

After the patch statements being placed in right positions,
we further perform a series of optimizations to reduce the
amount of patch statements as much as possible. As an op-
timization framework, Soot is capable of conducting common
optimizations on Java bytecode program. However, directly
applying these existing optimization methods will not generate
good results, because of the uniqueness in our inserted patch
statements. Therefore, we develop three custom optimizations
and apply them sequentially on the instrumented code. After
going through these custom optimizations, the program is more
amenable to Soot’s built-in optimizations. Therefore, we apply
Soot’s built-in optimizations in the end to generate a nearly
optimal patch.

Removing Redundant BoolWrappers (O1). As described
earlier, we introduce a new class BoolWrapper to en-
able taint propagation across the function boundary. Many
BoolWrapper related statements are redundant and can be
optimized. However, Soot refuses to optimize these statements,
because these statements operate on an instance field in the
class, which may cause side effects to the rest of the pro-
gram execution. In this case, we are confident that redundant
BoolWrapper related statements can be removed safely. So,
we force to optimize these statements. In particular, to remove
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redundant BoolWrapper-related statements, we perform copy
propagation and dead assignment elimination on them within
each instrumented function.

Removing Redundant Function Parameters (O2). After
removing redundant BoolWrapper related statements, a Bool-
Wrapper parameter in the function prototype may become
completely useless. In other words, in the function body,
the BoolWrapper parameter is only used in the “Identity”
statement (the Jimple IR statement binding formal parameter
to corresponding local variable), and is never used later. If
this is true, we can remove this parameter from the function
prototype. In addition, we need to adjust the remaining Identity
statements in the function body, because the indexes of the
subsequent parameters have changed. Further, because of the
change in the function prototype, all the invocations to this
function also need to be adapted accordingly. The optimized
crypt is then shown below, in which the second parameter
is removed and the function size is reduced from 15 to 10
statements.

public byte crypt(byte, BoolWrapper, BoolWrapper)
{

r0 := @this: VulActivity;
b0 := @parameter0: byte;
w_p0 := @parameter1: BoolWrapper;
w_r := @parameter2: BoolWrapper;
b0_t = w_p0.<BoolWrapper: boolean b>;
b1 = r0.<VulActivity: byte key>;
$b2 = b0 ˆ $b1;
b2_t = b0_t | 0;
w_r.<BoolWrapper: boolean b> = $b2_t;
return $b2;

}

Inlining Instrumentation Code (O3). Code inlining is a
standard compiler optimization technique. By inlining the body
of a small function into its callers, the function call overhead
(including parameter passing, function prologue and epilogue,
etc.) can be avoided, and the inlined code can be further
specialized under the caller’s context. We adopt this idea to
further optimize the added instrumentation code. That is, we
want to inline the added instrumentation code (i.e., taint logic)
from the callee’s function body into the caller’s context. This
is feasible only if the added instrumentation statements are
not influenced by the other statements in the callee’s function
body. More precisely, within the function scope, we compute
a backward slice [19] for these instrumentation statements. In
order to inline these statements into the caller’s context without
side effects, the backward slice should not have statements that
may cause side effects, such as function calls, static/instance
fields, etc. If this is true, it is safe to inline the computed slice
into the caller’s context, and the callee’s function prototype
and function body can then be recovered to their original
form, meaning that the callee’s function body is no longer
instrumented.

In our running example, crypt is such a case. Its taint
logic is simple enough and has no side effect. So the instru-
mentation statements are removed and inlined into the caller’s
context. The crypt implementation is then recovered in its
original form. The code below illustrates that the instrumenta-
tion statements from crypt have been inlined into its caller
OnDestroy, so the taint propagation logic in crypt is now
enforced in the caller’s context.

$b3 = virtualinvoke r0.
<VulActivity: byte crypt(byte)>($b2);

tmp21 = $b2_t;

tmp23 = tmp21 | 0;

$b3_t = tmp23

Soot’s Built-in Optimizations (O4). After these custom op-
timizations, we can finally apply Soot’s built-in optimizations
to further reduce the instrumentation overhead. Soot provides
a variety of intra-procedural optimizations. In particular, con-
stant propagation, copy propagation, dead assignment elimi-
nation, unreachable code elimination, and unused local elimi-
nation play important roles in this optimization process. In the
running example, the instrumentation statements, which have
been extracted from crypt to its caller, are now optimized
into only one statement, as shown below.

$b3 = virtualinvoke r0.
<VulActivity: byte crypt(byte)>($b2);

$b3_t = $b2_t | 0;

Note that in this example, the inserted statement can be
further optimized to $b3_t = $b2_t. However, Soot does
not optimize arithmetic expressions. To achieve the optimal
instrumentation performance, we have implemented this opti-
mization in Soot. In the end, only one definition statement is
needed to propagate taint for the crypt function.

B. Optimized Patch for Running Example

Figure 5 presents the optimized patch for the running ex-
ample. For the sake of readability, we present the patch code in
Java as a “diff” to the original program, even though this patch
is actually generated on the Jimple IR level. Statements with
numeric line numbers are from the original program, whereas
those with special line number “P” are patch statements. The
underlines mark either newly introduced code or modified parts
from old statements.

We can see that a boolean variable “addr s0 t” is created to
shadow the instance field “addr”, and another boolean variable
“location s1 t” is created to shadow the static field “location”.
Then in onCreate(), the shadow variable “addr s0 t” is set
to 1 (tainted) when the Activity is created upon an external
Intent. Otherwise it will be set to 0 (untainted). The shadow
variable “location s1 t” is set to 1 inside onStart(),
after getLocation() is called. Note that this initial-
ization is originally placed inside getLocation() after
Ln.40, and a BoolWrapper is created for the return value
of getLocation(). After applying the inlining optimiza-
tion(O3), this assignment is lifted into the caller function
onStart() and the BoolWrapper variable is also removed.

Due to the optimizations, many patch statements placed
for tracking tainted status have been removed. For example,
the taint logic in crypt() has been lifted up to the body
of onDestroy() and further optimized there. The tainted
values should also be properly cleaned up. For instance,
“addr s0 t” is set to 0 after Ln.15, where “addr” is assigned
a constant value, which means that if no “url” is provided in
the Intent, the “addr” should not be tainted.

In the method onDestroy(), when the information flows
through the post() method, we wrap the local shadow
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1 public class VulActivity extends Activity{
...

5 private String addr;
P public boolean addr_s0_t;
6 private static Location location;
P public static boolean location_s1_t;

...
10 public void onCreate(Bundle savedInstanceState){

...
13 this.addr=getIntent().getExtras().getString("url");
P if(isExternalIntent()){
P this.addr_s0_t = true;
P }else{
P this.addr_s0_t = false;
P }

14 if(this.addr == null){
15 this.addr = DEFAULT_ADDR;
P this.addr_s0_t = false;

16 }
17 }
18
19 public void onStart(){
20 VulActivity.location = getLocation();
P VulActivity.location_s1_t = true;

21 }
22
23 public void onDestroy(){

...
29 String url = this.addr;
P BoolWrapper bytes_s1_w = new BoolWrapper();
P bytes_s1_w.b = VulActivity.location_s1_t;
P BoolWrapper url_s0_w = new BoolWrapper();
P url_s0_w.b = this.addr_s0_t;
P post(url, bytes, url_s0_w, bytes_s1_w);

31 }
...

44 public void post(String addr, byte[] bytes,
BoolWrapper addr_s0_w, BoolWrapper bytes_s1_w){

P boolean output_s0_t = addr_s0_w.b;
P boolean bytes_s1_t = bytes_s1_w.b;

...
48 OutputStream output = conn.getOutputStream();
P if(output_s0_t == true && bytes_s1_t == true)
P promptForUserDecision();

49 output.write(bytes, 0, bytes.length);
50 ...
51 }
52 }

Fig. 5. Java Code for the Patched Running Example

variables for corresponding parameters and pass these Bool-
Wrapper objects to new post() as additional parameters. In
the end, we retrieve the taints in post() and check the taint
statuses before the critical networking operation is conducted
at Ln.49. Consequently, we stop this component hijacking
attack right before the dangerous operation takes place.

VI. EXPERIMENTAL EVALUATION

To evaluate the efficacy, correctness and efficiency of
AppSealer, we conducted experiments on real-world Android
applications with component hijacking vulnerabilities and gen-
erated patches for them. We first present our experiment setup
and in Section VI-A. We then discuss summarized results in
Section VI-B, and study several cases in detail in Section VI-C.
Next, we verify the effectiveness of these patches in Sec-
tion VI-D. Finally we measure the runtime performance in
Section VI-E.

A. Experiment Setup

We collect 16 vulnerable Android apps, which expose
internal capabilities to public interfaces and are subject to
exploitation. Table I describes their exposed interfaces, leaked
capabilities and possible security threats.
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Fig. 6. Relative Size of Slices in Percentage.

Most of these vulnerable apps accidentally leave their in-
ternal Activities open and unguarded. Thus, any Intent
whose target matches the vulnerable one can launch it. Others
carelessly accept any Intent data from a public Service
without input validations. Unauthorized external Intent can
therefore penetrate the app, through these public interfaces,
and exploit its internal capabilities. Such leaked capabilities,
including SQLite database query and Internet access, are
subject to various security threats. For instance, Intent data
received at the exposed interface may cause SQL Injection;
external Intent data sending to Internet may cause delegation
attack.

To detect and mitigate component hijacking vulnerabilities,
AppSealer automatically performs analysis and rewriting, and
generates patched apps. We conduct the experiment on our
test machine, which is equipped with Intel(R) Core(TM) i7
CPU (8M Cache, 2.80GHz) and 8GB of physical memory.
The operating system is Ubuntu 11.10 (64bit).

To verify the effectiveness and evaluate runtime perfor-
mance of our generated patches, we further run them on a real
device. Experiments are carried out on Google Nexus S, with
Android OS version 4.0.4.

B. Summarized Results

We configure AppSealer to take incoming Intents from
exposed interfaces as sources, and treat outgoing Internet
traffic and internal database access as sinks. A taint slice is then
a potential path from the Intent receiver to these privileged
APIs. We compute the slice for each single vulnerable instance,
and conduct a quantitative study on it.

Figure 6 shows the proportional size of the slices, compared
to the total size of the application. We can see that most of the
taint slices represent a small portion of entire applications, with
the average proportion being 11.7%. However, we do observe
that for a few applications, the slices take up to 45% of the
total size. Some samples (e.g., com.kmshack.BusanBus) are
fairly small. Although the total slice size is only up to several
thousands Jimple statements, the relative percentage becomes
high. Apps like com.cnbc.client operate on incoming Intent
data in an excessive way, and due to the conservative nature
of static analysis, many static and instance fields are involved
in the slices.

We also measure the program size on different stages
of patch generation and optimizations. We observe that the
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TABLE I. OVERVIEW OF VULNERABLE APPS

ID Package-Version Exposed Interface Leaked Capability Threat Description
1 CN.MyPrivateMessages-52 Activity Raw Query SQL Injection
2 com.akbur.mathsworkout-92 Activity Internet Delegation Attack
3 com.androidfu.torrents-26 Activity Selection Query SQL Injection
4 com.appspot.swisscodemonkeys.paintfx-4 Activity Internet Delegation Attack
5 com.cnbc.client-1208 Activity Selection Query SQL Injection.
6 com.cnbc.client-1209 Activity Selection Query SQL Injection.
7 com.espn.score center-141 Activity Internet Delegation Attack
8 com.espn.score center-142 Activity Internet Delegation Attack
9 com.gmail.traveldevel.android.vlc.app-131 Service Internet Delegation Attack

10 com.kmshack.BusanBus-30 Activity Raw Query SQL Injection
11 com.utagoe.momentdiary-45 Service Raw Query SQL Injection
12 com.yoondesign.colorSticker-8 Activity Raw Query SQL Injection
13 fr.pb.tvflash-9 Activity Selection Query SQL Injection
14 gov.nasa-5 Activity Selection Query SQL Injection
15 hu.tagsoft.ttorrent.lite-15 Service Internet Delegation Attack
16 jp.hotpepper.android.beauty.hair-12 Activity Raw Query SQL Injection
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different stages.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R

un
tim

e 
(in

 s
ec

)
App ID

O4

O3

O2

O1

Instru

Analysis

Fig. 8. Cumulative Runtime. Runtime for slices computation, patch
statement placement and four phases of patch optimizations.

increase of the program size is roughly proportional to the slice
size, which is expected. After patch statement placement, the
increased size is, on average, 41.6% compared to the original
program.

Figure 7 further visualizes the impact of the four optimiza-
tions to demonstrate their performance. The five curves on the
figure represent the relative sizes of the program, compared
to the original app size, on different processing stages, respec-
tively. The top curve is the program size when patch statement
placement has been conducted, while the bottom one stands
for the app size after all four patch optimizations. We can see
that 1) for some of these apps, the increase of program size due
to patch statement placement can be big, and up to 130%; and
2) these optimizations are effective, because they significantly
reduce the program sizes. In the end, the average size of patch
code drops to 15.9%.

C. Detailed Analysis

Here we present detail analysis for these vulnerable apps
to discuss the effectiveness and accuracy of our generated
patches.

Apps with Simple Exploiting Paths. Some of the apps are
vulnerable but exploitation paths are fairly simple. App 4, 7,
8, 9, 11, 12 fall into this category. Upon obtaining Intent data
from an open Activity or Service, these apps directly use it
either as URL to load a webpage in WebView, conduct a
HTTP GET, or as a SQL string to query an internal database.

Consequently, the exploitation path is guaranteed to happen
every time a malicious Intent reaches the vulnerable interfaces.
In this case, simply blocking the exposed interface might be
as good as our patching approach.

However, for other apps, a manipulated input may not
always cause an actual exploitation.

Apps with Pop-up Dialogs. Some apps ask user for consent
before the capable sink API is called. App 2, 3, 5, 6, 10, 13
share this same feature. If the user does not approve further
operations, the exploitation will not occur. In this case, block-
ing at the open interface causes unnecessary interventions. Our
approach, on the other hand, disables the vulnerability and
requires only necessary mediations.

com.akbur.mathsworkout (version code 92) is one
of these examples. This app is a puzzle game, which is subject
to data pollution and leaks Internet capability. Granted with
Internet permission, the app is supposed to send user’s “High
Score” to a specific URL. However, the Activity to receive
“High Score” data is left unguarded. Thus, an malicious app
can send a manipulated Intent with a forged “score” to this
vulnerable Activity, polluting the latter’s instance field. This
field is accessed in another thread and the resulting data is sent
to Internet, once the thread is started. However, starting this
background thread involves human interactions. Unless a “OK”
button is clicked in GUI dialog, no exploitation will happen.
Our patch correctly addresses this case and only displays the
warning when sending thread is about to call the sink API (i.e.
HttpClient.execute()).
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com.cnbc.client (version code 1208 and 1209) asks
for user’s consent in a more straight-forward way. This finance
app exposes an Activity interface that can access internal
database, and thus is vulnerable to SQL injection attack. The
exposed Activity is intended to receive the “name” of a stock,
and further save it to or delete it from the “watch list”.
Malicious Intent can manipulate this “name” and trick the
victim app to delete an important one or add an unwanted
one. Nevertheless, the deletion requires user’s approval. Before
deletion, the app explicitly informs the user and asks for
decision. Similarly, if the user chooses “Cancel”, no harm
will be done. Our patch automatically enforces necessary
checks but avoids intervention in this scenario. Notice that
taint slices of this app take a great portion (27%) of the
program, and therefore it is extremely hard to confirm and
fix the vulnerability, or further discover aforementioned secure
path with pure human effort. In contrast, AppSealer automat-
ically differentiates secure and dangerous paths, and in the
meantime manages to significantly reduce the amount of patch
statements.

Apps with Selection Views. A similar but more generic case is
that apps provide views such as AdapterView for selection.
The actual exploit only occurs if an item is selected. Apps 1,
14, 16 are of this kind.

CN.MyPrivateMessages (version code 52) is a com-
munication app which suffers the SQL injection attack. An
vulnerable Activity may save a manipulated Intent data to
its instance field during creation. The app then displays an
AdapterView for user to select call logs. Only upon selection
does the event handler obtain data from the polluted field and
use it to perform a “delete” operation in database.

Apps with Multiple Threads. Some samples extensively
create new threads during runtime and pass the manipulated
input across threads (e.g., app 2, 10, 15). Asynchronous
program execution makes it hard for developers or security
analysts to reproduce the exploitation and thus to confirm the
vulnerability.

D. Effectiveness Evaluation

We run our generated patches on a physical device to verify
the effectiveness of our generated patches.

Patch Behavior in Benign Context. Firstly, we test the pro-
gram execution under normal circumstances. In other words,
only internal Intents are delivered to vulnerable public inter-
faces, and thus they should not cause patch code to raise
warnings. Our test combines automatic testing mechanism
with interactive manual examination. While automatic testing
helps to improve code coverage, manual efforts are made
to trigger specific execution paths which lead to component
hijacking vulnerability. Our automated testing is conducted
with monkey [20], which produces random GUI events to
feed an Android app. We did not observe any crashes in this
test. This demonstrates the feasibility of our approach. Next,
we manually explore different parts of the program. In our
observation, patched apps act the same as corresponding vul-
nerable ones, and the original program execution is preserved
with no interruption. This shows that our patch does not affect
normal usability.

Fig. 9. Hijacking information flow detected during runtime.

Patch Behavior under Attacks. Then, we attempt to launch
component hijacking exploits on patched apps to find out
whether patch code correctly mitigates the attack by informing
user of the risk. To launch the attack, we send custom
Intents from a testing app. In this custom Intent, a specific
vulnerable component is configured to be the receiver and
the payload is delicately organized to carry the manipulated
inputs. We manage to launch component hijacking attack on
6 vulnerable apps (app 1,2,4,5,6,10). On the vulnerable ones,
exploitations succeed; on the patched ones, a warning dialog
pops up when an attack is about to happen. Figure 9 illustrates
the case when the attack is detected and a warning is raised.
It is worth mentioning that launching a successful exploit is
nontrivial and time consuming. Thus, it is also hard, if not
possible, for inexperienced developers to reproduce the attack.
This might explain why many vulnerable apps had not been
fixed since they were discovered.

E. Performance Evaluation

We evaluate both offline patching time cost and runtime
performance of the patched apps.

Performance of Patch Generation. Figure 8 illustrates the
time consumption of patch generation for 16 vulnerable An-
droid apps in our experiment. To be specific, it depicts the
execution time of slices computation, patch statement place-
ment, and four phases of patch optimization. We do not show
the bytecode conversion times here, because code conversion
by dex2jar is usually within several seconds and thus not
significant as compared to the other steps. We find that more
than 81.3% of the apps (13 out of 16) are processed within 60
seconds and the majority (15 out of 16) can be patched within
3 minute. However, still one app costs excessive time to finish.
Slice computation with global dataflow analysis dominates the
overall processing time. In comparison, the runtime of patch
statement placement and optimization is fairly short.

Runtime Performance. To estimate the runtime overhead
of the patched programs, we conduct experiment on Google
Nexus S, with Android OS version 4.0.4. We patch the 16
vulnerable apps, run both the original apps and patched ones
on the physical device, and compare the runtime performance
before and after patching.

We rely on the timestamps of the Android frame-
work debugging information (logcat logs) to compute the
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Activity load time as benchmark. The Activity load
time is measured from when Android ActivityManager
starts an Activity component to the time the Activity
thread is displayed. This includes application resolution by
ActivityManager, IPC and graphical display. The runtime
is thus measured by adding up load time of all Activites that
appear in one execution trace. Activity startup is usually fairly
fast, and thus this measurement is susceptible to system noise.
Noise may even cause negative slowdown. To limit the side-
effect of noise, we measure the runtime 10 times and use the
average value to calculate runtime overhead for every case.

We first test the runtime performance of all 16 apps under
normal circumstances. In other words, no attack is conducted.
We start the apps, navigate through several Views, reach the
vulnerable interfaces, walk through a series of Views again,
and eventually get to the capable components. The program
execution thus involves both intensively patched components
and other code which is not relevant to component hijack-
ing dataflow. Results show that patched apps usually incur
insignificant overhead. The average slowdown of 16 apps is
approximately 2%.

Further, we attempt to investigate the worst case. That is,
the execution trace involves largely, if not solely, those app
components that are heavily patched. To this end, we launch
component hijacking attack on the 6 apps (app 1,2,4,5,6,10)
to trigger the vulnerable interfaces directly and wait until
exploited components start. the overall overhead is still small,
with an average of 5% and a standard deviation of 2.8%.
The maxmum overhead is relatively higher (9.6%), due to
the heavy patching in the onCreate() method of the app
(com.kmshack.BusanBus).

VII. DISCUSSION

In this section, we discuss the limitations of our system and
possible solutions. We also shed light on future directions.

Soundness of Patch Generation. The soundness of our ap-
proach results from that of slice computation, patch statement
placement and patch optimizations.

We perform standard static dataflow analysis to compute
taint slices. Static analysis, especially on event-driven, object-
oriented and asynchronous programs, is known to introduce
false positives. However, such false positives can be verified
and mitigated during runtime, with our devised shadowing
mechanism and inserted patch code.

Our patch statement placement follows the standard taint
tracking techniques, which may introduce imprecision. Specif-
ically, our taint policy follows that of TaintDroid. While
effective and efficient in a sense, this multi-level tainting is
not perfectly accurate in some cases. For instance, one entire
file is associated with a single taint. Thus, once a tainted object
is saved to a file, the whole file becomes tainted causing over-
tainting. Other aggregate structures, such as array, share the
same limitation. It is worth noting that improvement of tainting
precision is possible. More complex shadowing mechanism
(e.g., shadow file, shadow array, etc.) can be devised to
precisely track taint propagation in aggregations. However,
these mechanisms are more expensive considering runtime cost
and memory consumption.

Our optimizations take the same algorithms used in com-
pilers, such as constant propagation, dead code elimination.
Thus, by design, original program semantics is still preserved
when patch optimization is applied.

In spite of the fact that our approach may cause false posi-
tives in theory, we did not observe such cases in practice. Most
vulnerable apps do not exercise sophisticated data transfer for
Intent propagation, and thus it is safe to patch them with our
technique.

Conversion between Dalvik bytecode and Jimple IR. Our
patch statement placement and optimizations are performed
at Jimple IR level. So we need to convert Dalvik bytecode
program into Jimple IR, and after patching, back to Dalvik
bytecode. We use dex2jar [16] to translate Dalvik bytecode
into Java bytecode and then use Soot [15] to lift Java bytecode
to Jimple IR. This translation process is not always successful.
Occasionally we encountered that some applications could not
be converted. Enck et al. [21] pointed out several challenges
in converting Dalvik bytecode into Java source code, includ-
ing ambiguous cases for type inference, different layouts of
constant pool, sophisticated conversion from register-based to
stack-based virtual machine and handling unique structures
(e.g., try/finally block) in Java.

In comparison, our conversion faces the same, if not less,
challenges, because we do not need to lift all the way up to
Java source code. We consider these problems to be mainly
implementation errors. Indeed, we have identified a few cases
that Soot performs overly strict constraint checking. After we
patched Soot, the translation problems are greatly reduced. We
expect that the conversion failures can be effectively fixed over
time.

A complementary implementation option is to engineer a
Dalvik bytecode analysis and instrumentation framework, so
that operations are directly applied on Dalvik bytecode. Since
it avoids conversions between different tools, it could introduce
minimal conflicts and failures.

Fully Automatic Defense. For most vulnerable samples in
our experiment, we are able to manually verify the component
hijacking vulnerabilities. However, due to the object-oriented
nature of Android programs, computed taint slices can some-
times become rather huge and sophisticated. Consequently, we
were not able to confirm the exploitable paths for some vul-
nerable apps with human effort, and thus could not reproduce
the expected attack. Developers are faced with the same, if
not more, challenges, and thus fail to come up with a solution
in time. Devising a fully automated mechanism is therefore
essential to defend this specific complicated vulnerability.

In principle, our automatic patching approach can still
protect these unconfirmed cases, without knowing the real
presence of potential vulnerability. That is to say if a vulnera-
bility does exist, AppSealer will disable the actual exploitation
on the fly. Otherwise, AppSealer does not interrupt the program
execution and thus does not affect usability. With automated
patching, users do not have to wait until developers fix the
problem.
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VIII. RELATED WORK

In this section, we discuss the previous work that is
related to automatic patch & signature generation, analysis &
mitigation on smartphone privacy issues, vulnerabilities and
malware, bytecode rewriting and information-flow control.

Automatic Patch & Signature Generation. Efforts to auto-
matically generate patch for vulnerable program, or signature
to filter out malicious input is closely related to our work.
AutoPaG [11] automatically analyzes the program source code
and identifies the root cause for out-of-bound exploit, and thus
generates a fine-grained source code patch to temporarily fix it
without any human intervention. IntPatch [12] utilizes classic
type theory and dataflow analysis framework to identify po-
tential integer-overflow-to-buffer-overflow vulnerabilities, and
then instruments programs with runtime checks. Sidiroglou and
Keromytis [13] rely on source code transformations to quickly
apply automatically created patches to vulnerable segments of
the targeted applications, that are subject to zero-day worms.
Newsome et al. [14] propose an execution-based filter which
filters out attacks on a specific vulnerability based on the
vulnerable program’s execution trace. ShieldGen [6] generates
a data patch or a vulnerability signature for an unknown
vulnerability, given a zero-day attack instance. Razmov and
Simon [22] automate the filter generation process based on
a simple formal description of a broad class of assumptions
about the inputs to an application.

Analysis & Mitigation on Smartphone Privacy Issues, Vul-
nerabilities and Malware. Many efforts have been made to
discover and address emerging threats in smartphones. Privacy
leakage has caught attentions and is studied over different
platforms, such as iOS, Android and Windows Phone [18],
[21], [23], [24]. Mitigation mechanisms are thus proposed.
Some work rewrite applications to insert mediation code [24]–
[26]; others modify Android framework [27], [28] or operating
system [29] to enforce privacy policies. Studies are also carried
out to prevent attacks on application vulnerabilities, such as
privilege escalation [30], [31], permission re-delegation [3],
capability leaks [2], content leaks and pollution [4] and com-
ponent hijacking [5]. Malware causes enormous damage to
smartphone users and thus is a significant threat. Efforts are
made to detect unknown malware [32], analyze and understand
malware and its evolution [33]–[36] and mitigate malware
impact [37].

Bytecode Rewriting. Our approach requires rewriting existing
bytecode program, thus is related to prior work with bytecode
rewriting techniques. The Privacy Blocker application [26]
performs static analysis of application binaries to identify and
selectively replace requests for sensitive data with hard-coded
shadow data. I-ARM-Droid [38] rewrites Dalvik bytecode to
interpose on all the API invocations and enforce the desired
security policies. Aurasium [25] repackages Android apps to
sandbox important native APIs so as to monitor security and
privacy violations. Livshits and Jung [24] implement a graph-
theoretic algorithm to place mediation prompts into bytecode
program and thus protect resource access. In comparison, our
work rewrites the bytecode program in a more extensive way.
Inserted patch statements are able to monitor and control
specific dataflow in the rewritten app.

Information Flow Control. In effect, our patch statements
exercise information-flow control (IFC) during runtime. IFC
has been studied on different contexts. Chandra and Franz [39]
implement an information flow framework for Java virtual ma-
chine which combines static analysis to capture implicit flows.
JFlow [40] extends the Java language and adds statically-
checked information flow annotations. Jia et al. [41] proposes
a component-level runtime enforcement system for Android
apps. duPro [42] is an efficient user-space information flow
control framework, which adopts software-based fault isolation
to isolate protection domains within the same process. Zeng
et al. [43] introduces an IRM-implementation framework at a
compiler intermediate-representation (IR) level. In constrast,
we take static rewriting approach, which requires no support
from developers and no modification to runtime. In addition,
we focus on a specific vulnerability and enforce control on
solely relevant information flow.

IX. CONCLUSION

We developed a technique to automatically generate patch
for Android applications with component hijacking vulner-
ability. Given a vulnerable Android app, we first perform
static bytecode analysis to identify small but complete program
slices that lead to the discovered vulnerability. Then we devise
several shadowing mechanisms to insert new variables and in-
structions along the program slices, for the purpose of keeping
track of dangerous information at runtime. To further improve
performance, we apply a series of optimizations to remove
redundant instructions to minimize the footprint of the gener-
ated patch. Our evaluation on 16 real-world vulnerable Android
applications demonstrates that AppSealer can effectively track
and mitigate component hijacking vulnerabilities. Moreover,
after going through a series of optimizations, the patch code
only represents a small portion (15.9% on average) of the
entire program. In addition, the runtime overhead introduced
by AppSealer is also minimal, merely 2% on average.
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