
Efficient, Context-Aware Privacy Leakage Confinement for

Android Applications without Firmware Modding

Mu Zhang
Department of EECS
Syracuse University

Syracuse, USA
muzhang@syr.edu

Heng Yin
Department of EECS
Syracuse University

Syracuse, USA
heyin@syr.edu

ABSTRACT
As Android has become the most prevalent operating system in mo-
bile devices, privacy concerns in the Android platform are increas-
ing. A mechanism for efficient runtime enforcement of information-
flow security policies in Android apps is desirable to confine pri-
vacy leakage. The prior works towards this problem require firmware
modification (i.e., modding) and incur considerable runtime over-
head. Besides, no effective mechanism is in place to distinguish
malicious privacy leakage from those of legitimate uses. In this
paper, we take a bytecode rewriting approach. Given an unknown
Android app, we selectively insert instrumentation code into the
app to keep track of private information and detect leakage at run-
time. To distinguish legitimate and malicious leaks, we model the
user’s decisions with a context-aware policy enforcement mecha-
nism. We have implemented a prototype called Capper and eval-
uated its efficacy on confining privacy-breaching apps. Our eval-
uation on 4723 real-world Android applications demonstrates that
Capper can effectively track and mitigate privacy leaks. More-
over, after going through a series of optimizations, the instrumen-
tation code only represents a small portion (4.48% on average) of
the entire program. The runtime overhead introduced by Capper
is also minimal, merely 1.5% for intensive data propagation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Validation; D.4.6 [Operating Systems]: Security and Protection—
Information flow controls

General Terms
Security
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Android; Privacy leakage; Context-aware policy; Bytecode rewrit-
ing
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1. INTRODUCTION
Android continues to dominate in the battle to be the top smart-

phone system in the world, and ranked as the top smartphone plat-
form with 52 percent market share (71.1 million subscribers) in Q1
2013. The success of Android is also reflected from the popular-
ity of its application markets. Tens of thousands of Android apps
become available in Google Play while popular apps (e.g., Adobe
Flash Player 11) have been downloaded and installed over 100 mil-
lion times.

Meanwhile, privacy concerns in the Android platform are in-
creasing. Previous studies [12, 13, 19, 31, 36, 38] have exposed that
both benign and malicious apps are stealthily leaking users’ pri-
vate information to remote servers. Efforts have also been made
to detect and analyze privacy leakage either statically or dynami-
cally [12, 13, 17, 21, 24, 25, 34]. Nevertheless, a good solution to
defeat privacy leakage at runtime is still lacking. We argue that a
practical solution needs to achieve the following goals:

• Information-flow based security. Privacy leakage is fun-
damentally an information flow security problem. A desir-
able solution to defeat privacy leakage would detect sensitive
information flow and block it right at the sinks. However,
most of prior efforts to this problem are “end-point” solu-
tions. Some earlier solutions extended Android’s install-time
constraints and enriched Android permissions [14,29]. Some
aimed at enforcing permissions in a finer-grained manner and
in a more flexible way [6, 8, 27, 39]. Some attempted to im-
prove isolation on various levels and each isolated compo-
nent could be assigned with a different set of permissions [5,
22, 30]. In addition, efforts were made to introduce supple-
mentary user consent acquisition mechanism, so that access
to sensitive resource also requires user approval [23,32]. All
these “end-point” solutions only mediate the access to pri-
vate information, without directly tackling the privacy leak-
age problem.

• Low runtime overhead. An information-flow based solu-
tion must have very low runtime overhead to be adopted
on end users’ devices. To directly address privacy leakage
problem, Hornyack et al. proposed AppFence to enforce
information flow policies at runtime [19]. With support of
TaintDroid [12], AppFence keeps track of the propagation
of private information. Once privacy leakage is detected,
AppFence either blocks the leakage at the sink or shuffle the
information from the source. Though effective in terms of
blocking privacy leakage, its efficiency is not favorable. Due
to the taint tracking on every single Dalvik bytecode instruc-
tion, AppFence incurs significant performance overhead.

• No firmware modding. For a practical solution to be widely
adopted, it is also crucial to avoid firmware modding. Unfor-



tunately, the existing information-flow based solutions such
as AppFence require modifications on the stock software stack,
making it difficult to be deployed on millions of mobile de-
vices.

• Context-aware policy enforcement. Many apps need to ac-
cess user’s privacy for legitimate functionalities and these in-
formation flows should not be stopped. Therefore, to defeat
privacy leakage without compromising legitimate function-
ality, a good solution needs to be aware of the context where
a sensitive information flow is observed and make appropri-
ate security decisions. To the best of our knowledge, we are
not aware that such a policy mechanism exists.

In this paper, we aim to achieve all these design goals by taking a
bytecode rewriting approach. Given an unknown Android app, we
selectively rewrite the program by inserting bytecode instructions
for tracking sensitive information flows only in certain fractions of
the program (which are called taint slices) that are potentially in-
volved in information leakage. When an information leakage is
actually observed at a sink node (e.g., an HTTP Post operation),
this behavior along with the program context is sent to the policy
management service installed on the device and the user will be no-
tified to make an appropriate decision. For example, the rewritten
app may detect the location information being sent out to a Google
server while the user is navigating with Google Map, and notify
the user. Since the user is actively interacting with the device and
understands the context very well, he or she can make a proper de-
cision. In this case, the user will allow this behavior. To ensure
good user experiences, the number of such prompts must be min-
imized. To do so, our policy service needs to accurately model
the context for the user’s decisions. As a result, when an informa-
tion leakage happens in the same context, the same decision can be
made without raising a prompt. After exploring the design space
of the context modeling and making a balance between sensitiv-
ity, performance overhead, and robustness, we choose to model the
context using parameterized source and sink pairs.

Consequently, our approach fulfills all the requirements: 1) ac-
tual privacy leaks are captured accurately at runtime, with the sup-
port of inserted taint tracking code; 2) the performance overhead
of our approach is minimal, due to the static dataflow analysis in
advance and numerous optimizations that are applied to the instru-
mentation code; 3) the deployment of our approach is simple, as
we only rewrite the original app to enforce certain information flow
policies and no firmware modification is needed; 4) policy enforce-
ment is context-aware, because the user’s decisions are associated
with abstract program contexts.

We implement a prototype, Capper1, in 16 thousand lines of
Java code, based on the Java bytecode optimization framework
Soot [3]. We leverage Soot’s capability to perform static dataflow
analysis and bytecode instrumentation. We evaluate our tool on
4723 real-world privacy-breaching Android apps. Our experiments
show that rewritten programs run correctly after instrumentation,
while privacy leakage is effectively eliminated.

Contributions.
In summary, this paper makes the following contributions:

• We propose a bytecode rewriting approach to the problem of
privacy leaks in Android applications. It requires no firmware
changes and incurs minimal performance impact.

1Capper is short for Context-Aware Privacy Policy Enforcement
with Re-writing.
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Figure 1: Architecture of Capper

• We design a novel mechanism to model program contexts
with user knowledge. This helps differentiate between be-
nign operations on sensitive data and actual privacy leakage.

• We evaluate Capper on 4723 real Android apps. The exper-
iments show that our approach is both effective and efficient.
We demonstrate that rewritten programs run correctly after
instrumentation, while privacy leakage is effectively elimi-
nated. We show that only a small portion (2.48% on average)
of the program needs to be instrumented and after a series of
optimizations the final program size increases only 4.48% on
average. We also show that our runtime overhead is minimal,
merely 1.5% for intensive data propagation.

2. APPROACH OVERVIEW
In this section, we present an overview of our technique. Further,

we define the problem scope and provide a running example.

2.1 Key Techniques
Figure 1 depicts an overview of our techniques. When a user is

about to install an app onto his Android device, this app will go
through our bytecode rewriting engine (BRIFT) and be rewritten
into a new app, in which sensitive information flows are monitored
by the inserted bytecode instructions. Therefore, when this new app
is actually running on the device and is observed to send out sen-
sitive information, this behavior (along with the program context)
will be reported to the policy management service for decision.

If this behavior under this program context is observed for the
first time, the policy management service will prompt the user to
make a proper decision: either allow or deny such a behavior. The
user’s decision will be recorded along with the program context, so
the policy management service will make the recorded decision for
the same behaviors under the same context.

Therefore, our solution to defeat privacy leakage consists of the
following two enabling techniques.

(1) Bytecode Rewriting for Information Flow Control.
Given a bytecode program, the goal of our bytecode rewriting is

to insert a minimum amount of bytecode instructions into the byte-
code program to trace the propagation of certain sensitive informa-
tion flows (or taint). To achieve this goal, we first conduct static
dataflow analysis to compute a number of program slices that are
involved in the taint propagation. Then we insert bytecode instruc-
tions along the program slices to keep track of taint propagation at
runtime. Further, we perform a series of optimizations to reduce
the amount of inserted instructions. More details are presented in
Section 3.

(2) Context-aware Policy Enforcement.
The user allows or denies a certain information flow in a specific

context. The key for a context-aware policy enforcement is to prop-
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erly model the context. The context modeling must be sensitive
enough to distinguish different program contexts, but not too sen-
sitive. Otherwise, a slight difference in the program execution may
be treated as a new context and may cause unnecessarily annoy-
ing prompts to the user. Further, the context modeling should also
be robust enough to counter mimicry attacks. An attacker may be
able to “mimic” a legitimate program context to bypass the context-
aware policy enforcement. We present more details about the con-
text modeling and policy enforcement in Section 4.

2.2 Problem Scope
Our proposed solution is designed to enforce user preferred pri-

vacy policy on innocent Android apps. Our solution can be used
to block privacy leakage in most of current Android malware apps,
but a dedicated malware author can still find ways to circumvent
our confinement. For instance, malware can exfiltrate private in-
formation through side channels (such as implicit flows and timing
channels). Most of previous solutions (including dynamic mon-
itoring and static analysis approaches) share the same limitation.
Moreover, the proposed technique (again shared by most of previ-
ous solutions) cannot handle native components and Java reflective
calls in a general way. In rare occasions, our system will raise a
warning to the user that the rewritten app may still be unsafe if
we observe a JNI call or a reflective call appears on the informa-
tion propagation path. According to our experimental evaluation in
Section 5, only a small fraction (5%) of apps belong to this cate-
gory. In this case, a security-conscious user may decide not to use
this unsafe app or resort to other solutions.

2.3 Running Example
To elaborate the whole process, we use a synthetic running ex-

ample to explain our approach. Figure 2 presents our synthetic run-
ning example in Java source code. More concretely, the example
class extends an Android Activity and overrides several call-
backs including onStart(), onResume() and onDestroy().
When the Activity starts, onStart() method will get the de-
vice identifier by calling getIMEI(), which returns the real de-
vice ID if it succeeds or empty string otherwise. On receiving the
return value from getIMEI(), the program stores it to a static
field deviceId. Further, both onResume() and onDestroy()
read the device ID from this static field but use it for different pur-
poses. While onResume() shows the device ID on screen via a
Toast notification, onDestroy() encrypts it and sends it to a
remote server through a raw socket. In Section 3 and 4 , we show
how to perform bytecode rewriting and mitigate privacy leakage
with this example.

3. BYTECODE REWRITING
We leverage our BRIFT2 engine to insert the information flow

control logic into a given Android app. BRIFT takes the follow-
ing steps to rewrite a bytecode program: 1) it first translates the
Dalvik executable (i.e., DEX file) to an intermediate representa-
tion (IR) to facilitate analysis and instrumentation; 2) it performs
application-wide static dataflow analysis on IR to identify program
slices for information leakage; 3) to keep track of data propagation
and prevent the actual information leakage, it instruments the IR by
inserting new IR statements along the program slices; 4) to further
improve performance, it applies a series of optimization methods
to remove redundant and unnecessary IR statements; and 5) in the
end, it generates a new Dalvik executable from the IR and uses it

2It is short for Bytecode Rewriting for Information Flow Tracking

1 public class Leakage extends Activity{
2 private byte key = DEFAULT_KEY;
3 private String addr = DEFAULT_ADDR;
4 private static String deviceId;
5
6 public String getIMEI(){
7 TelephonyManager manager = (TelephonyManager)

getSystemService("phone");
8 String imei = manager.getDeviceId();
9 if(imei==null){

10 imei = "";
11 }else{
12 imei = manager.getDeviceId();
13 }
14 return imei;
15 }
16
17 public byte crypt(byte plain){
18 return (byte)(plain ^ key);
19 }
20
21 public void post(String addr, byte[] bytes){
22 OutputStream output = conn.getOutputStream();
23 output.write(bytes, 0, bytes.length);
24 ...
25 }
26
27 public void toastIMEI(String imei){
28 Context app = getApplicationContext();
29 String text = "Your IMEI is " + imei;
30 int duration = Toast.LENGTH_SHORT;
31 Toast toast = Toast.makeText(app, text, duration);
32 toast.show();
33 }
34
35 public void onStart(){
36 Leakage.deviceId = getIMEI();
37 }
38
39 public void onResume(){
40 toastIMEI(Leakage.deviceId);
41 }
42
43 public void onDestroy(){
44 String imei = Leakage.deviceId;
45 byte[] bytes = imei.getBytes();
46 for(int i=0; i<bytes.length; i++){
47 bytes[i] = crypt(bytes[i]);
48 }
49 post(addr, bytes);
50 }
51 }

Figure 2: Java Code for the Running Sample

to repackage the new .apk file. We give a brief explanation for each
step as below. For more details, please refer to our prior work [35].

3.1 Converting DEX into IR
An Android app generally consists of two parts, resources and

a Dalvik executable file. Our bytecode rewriting is performed on
the Dalvik executable file, so the resources remain the same, and
will be repackaged into the new app in the last step. To convert
DEX into IR, we first convert the DEX into a Java bytecode pro-
gram using dex2jar [1]3 and then translate the Java bytecode into an
intermediate representation with Soot [3]. More specifically, Soot
produces Jimple IR to facilitate subsequent dataflow analysis and
instrumentation.

3.2 Application-wide Dataflow Analysis
On Jimple IR, we perform flow-sensitive context-sensitive inter-

procedural analysis to track the propagation of certain tainted sen-
sitive information and detect if the taint propagates into the sinks
(e.g., Internet and file system). The result of this forward dataflow
3It is also possible to use alternative tools, such as Dare [28],
ded [13], etc., for this conversion.



analysis is a taint propagation graph. If one or more sinks appear
in this graph, it indicates a potential information leakage. Then for
each sink in the graph, we perform backward dependency analysis
to compute a “slice”. Taint propagation outside this slice is irrel-
evant to the leakage and thus can be ignored. We call this slice
taint slice, because it represents a program slice that contributes to
a leakage from an information source to a sink. We present the
analysis result for the running example in Appendix A.

3.3 Static Instrumentation
Static dataflow analysis is usually conservative and may lead to

false positives. Therefore, we insert instrumentation code in these
taint propagation slices. The inserted code serves as runtime checks
to actually keep track of the taint propagation while the Android
application is running. The sinks are also instrumented to examine
the taint and confine the information leakage.

We create shadows, for each data entity defined or used within
the slices, to track its runtime taint status. The data entities out-
side the slices do not need to be shadowed, because they are ir-
relevant to the taint propagation. We create shadows for different
types of data entities individually. Static or instance fields are shad-
owed by adding boolean fields into the same class definition. A
local variable is shadowed with a boolean local variable within the
same method scope, so that compiler optimizations can be applied
smoothly on related instrument code.

Shadowing method parameters and return value requires spe-
cial considerations. Firstly, the method prototype needs modifi-
cation. Extra “shadow parameters” are added to parameter list to
pass the shadows of actual parameters and return value from caller
to callee. Secondly, parameters are passed-by-value in Java, and
therefore primitive-typed local shadow variables (boolean) need to
be wrapped as objects before passing to a callee. Otherwise, the
change of shadows in the callee cannot be reflected in the caller. To
this end, we define a new class BoolWrapper. This class only
contains one boolean instance field, which holds the taint status,
and a default constructor, as shown below. Notice that the Java
Boolean class cannot serve the same purpose because it is treated
the same as primitive boolean type once passed as parameter.
public class BoolWrapper extends java.lang.Object{
public boolean b;
public void <init>(){
BoolWrapper r0;
r0 := @this: BoolWrapper;
specialinvoke r0.<java.lang.Object: void <init>()>();
return; }

}

With the created shadows, we instrument sources, data propaga-
tion code and sinks. At the source of information flow, we intro-
duce taint by setting the corresponding shadow variable to “true”.
For data propagation code, we instrument an individual instruction
depending on its type. 1) If the instruction is an assignment state-
ment or unary operation, we insert a definition statement on cor-
relative shadow variables. 2) If it is a binary operation, a binary
OR statement is inserted to operate on shadow variables. If one of
the operators is a constant, we replace its shadow with a constant
“false”. 3) Or, if it is a function call, we need to add code to bind
shadows of actual parameters and return value to shadow param-
eters. 4) Further, if the instruction is a API call, we model and
instrument the API with its taint propagation logic.

We generally put APIs into the following categories and handle
each category with a different model. “get” APIs have straightfor-
ward taint propagation logic, always propagating taint from param-
eters to their return values. Therefore, we generate a default rule,
which propagates taint from any of the input parameters to the re-
turn value. Similarly, simple “set” APIs are modeled as they prop-

agate taint from one parameter to another parameter or “this” ref-
erence. APIs like Vector.add(Object) inserts new elements
into an aggregate construct and thus can be modeled as a binary
operation, such that the object is tainted if it is already tainted or
the newly added element is tainted. APIs like android.content.
ContentValues.put(String key, Byte value) that operate
on (key, value) pairs can have more precise handling. In this case,
an element is stored and accessed according to a “key”. To track
taint more precisely, we keep a taint status for each key, so the taint
for each (key, value) pair is updated individually.

Then, at the sink, we insert code before the sink API to check
the taint status of the sensitive parameter. If it turns out the critical
parameter is tainted, the inserted code will query a separate policy
service app for decision and a warning dialog is then displayed to
the user.

We also devise taint cleaning mechanism. That is, if a variable
is redefined to be an untainted variable or a constant outside taint
propagation slices, we thus insert a statement after that definition
to set its shadow variable to 0 (false).

3.4 Optimization
We further optimize the added instrumentation code. This is to

remove the redundant bytecode instructions that are inserted from
the previous step. As Soot’s built-in optimizations do not apply
well on this instrumentation code, we devise three custom opti-
mization techniques to safely manipulate the instrumentation code
and remove redundant ones. Thereafter, the optimized code is now
amenable to the built-in optimizations. Consequently, after going
through both custom and built-in optimizations, the added instru-
mentation code can be reduced to a minimum, ensuring the best
performance of the rewritten bytecode program.

To be more specific, we have devised four steps of optimizations,
described as follows.

• O1: In instrumentation, we add a shadow parameter for ev-
ery single actual parameter and return value. However, some
of them are redundant because they don’t contribute to taint
propagations. Therefore, we can remove the inserted code
which uses solely these unnecessary shadow parameters.

• O2: Next, we remove redundant shadow parameters from
parameter list and adjust method prototype. Consequently,
instrumentation code, that is used to initialize or update the
taint status of these shadow parameters, can also be elimi-
nated.

• O3: Further, if inserted taint tracking code is independent
from the control-flow logic of a method, we can lift the taint-
ing code from the method to its callers. Thus, the taint prop-
agation logic is inlined.

• O4: After custom optimizations, instrumentation code is amenable
to Soot’s built-in optimization, such as constant propagation,
dead code elimination, etc.

3.5 Code Generation
At last, we convert the modified Jimple IR into a new package

(.apk file). More concretely, we translate the Jimple IR to Java
package using Soot, and then re-target Java bytecode to Dalvik
bytecode with Android SDK. In the end, we repackage the new
DEX file with old resources and create the new .apk file.

3.6 Rewritten Running Example
Figure 3 presents the rewritten program after the instrumenta-

tion and optimizations. For the sake of readability, we present the



rewritten code in Java as a “diff” to the original program, even
though the rewritten program is actually generated on the Jimple
IR level. The statements with numeric line numbers are from the
original program, whereas those with special line number “I” are
inserted statements. The underlines mark either newly introduced
code or modified parts from old statements. We hereby use this
code to exemplify our design and implementation choices.

We can see that a boolean variable deviceId_s0_t is created
to shadow the static field deviceId. “s0” denotes the source
label which distinguishes different taint sources, while “_t” is the
suffix for shadow in our implementation. Then in onStart(),
the shadow variable deviceId_s0_t is set to be the “status”
field in an object ret_s0_wrapper.
ret_s0_wrapper is an object of “BoolWrapper” structure

which is introduced for the purpose of wrapping and passing primitive-
typed shadow variables. In Start(), such an object is created and
passed to getIMEI(BoolWrapper), and further will be updated in
the latter with the shadow of return value.

The shadow return value of getIMEI(BoolWrapper) is ob-
tained from the local shadow variable imei_s0_t, which is ini-
tialized to be “true” if privacy access branch is taken (Ln.12), or
cleaned to be “false” if imei is set as a constant (Ln.10). Without
a cleaning mechanism, the value of corresponding shadow variable
will remain “true” even if the taint status has already changed.

In the method onDestroy(), deviceId is used and sensitive
data can thus be propagated to “bytes” array. In the meantime,
bytes_s0_t, the shadow of “bytes” array is also assigned with
deviceId_s0_t. We here choose to keep one single shadow for
an entire array for efficiency. Further, the array is passed to the
crypt() method in a loop and we update its taint status in ev-
ery iteration. It is notable that taint propagation was devised in the
callee (i.e., crypt()) at the beginning. However, due to optimiza-
tions, the taint logic in crypt() has been lifted up to the body of
onDestroy() and further optimized there.

In the end, the shadow of the byte array is wrapped and passed to
post(), where a sink API OutputStream.write() is encoun-
tered. We check the taint status of its first parameter (i.e., data
packet) and query the policy service for decision if it is tainted.

4. CONTEXT-AWARE POLICY
Once our inserted monitoring code detects an actual privacy leak-

age, policy service will enforce privacy policy based on user pref-
erences. To be specific, the service app inquires user’s decision
upon detection and offers the user options to either “one-time” or
“always” allow or deny the specific privacy breaching flow. The
user can then make her decision according to her user experience
and the policy manager will remember users preference for future
decision making situations if the “always” option is chosen.

There exist two advantages to enforce a privacy policy with user
preference history. Firstly, it associates user decisions with certain
program contexts and can thus selectively restrict privacy-related
information flow under different circumstances. Privacy-related
outbound traffic occurs in both benign and malicious semantics.
However, from dataflow analysis perspective, it is fairly hard to dis-
tinguish between, for example, a coordinates-based query towards
a benign map service and a location leakage via some covert ma-
licious process within, say, a wallpaper app. On the contrary, it is
fairly straight-forward for a user to tell the difference because she
knows the application semantics. With human knowledge, it is pos-
sible to avert overly strict restriction and preserve usability to the
largest extent.

Secondly, it avoids repetitive warning dialogs and improves user
experience. Once an “always” decision is made, this decision will

1 public class Leakage extends Activity{
...

4 private static String deviceId;
I public static boolean deviceId_s0_t;

...
6 public String getIMEI(BoolWrapper ret_s0_wrapper){

...
8 String imei = manager.getDeviceId();
9 if(imei==null){

10 imei = "";
I imei_s0_t = false;

11 }else{
12 imei = manager.getDeviceId();

I imei_s0_t = true;
13 }

I ret_s0_wrapper.status = imei_s0_t;
14 return imei;
15 }

...
21 public void post(String addr, byte[] bytes,

BoolWrapper bytes_s0_wrapper){
I boolean bytes_s0_t = bytes_s0_wrapper.status;

22 OutputStream output = conn.getOutputStream();
I boolean isAllow = false;
I if(bytes_s0_t == true)
I isAllow = queryPolicyService(0, 0, addr);
I if(isAllow){

23 output.write(bytes, 0, bytes.length);}
I else{ ... }

24 ...
25 }

...
35 public void onStart(){

I BoolWrapper ret_s0_wrapper = new BoolWrapper();
I ret_s0_wrapper.status = false;

36 Leakage.deviceId = getIMEI(ret_s0_wrapper);
I Leakage.deviceId_s0_t = ret_s0_wrapper.status;

37 }
...

43 public void onDestroy(){
44 String imei = Leakage.deviceId;
45 byte[] bytes = imei.getBytes();

I boolean bytes_s0_t = Leakage.devicdId_s0_t;
46 for(int i=0; i<bytes.length; i++){
47 bytes[i] = crypt(bytes[i]);

I bytes_s0_t = bytes_s0_t || false;
48 }

I BoolWrapper bytes_s0_wrapper = new BoolWrapper();
I bytes_s0_wrapper.status = bytes_s0_t;

49 post(addr, bytes, bytes_s0_wrapper);
50 }
51 }

Figure 3: Java Code for the Rewritten Program

be remembered and used for the same scenario next time. Thus,
the user doesn’t need to face the annoying dialog message over and
over again for the exactly identical situation.

However, it is non-trivial to appropriately model the program
context specific to a user decision and the challenge lies in the way
semantics is extracted from a dataflow point of view. We hereby
discuss some possible options and our solution.

4.1 Taint Propagation Trace
To achieve high accuracy, we first consider using the exact ex-

ecution trace as pattern to represent a specific information flow.
An execution trace can be obtained at either instruction or method
level. It consists of all the instructions or methods propagating sen-
sitive data from a source to a sink, and therefore can uniquely de-
scribe a dataflow path. When a user decision is made for a certain
information flow, its execution trace is computed and saved as a
pattern along with user preference. Next time when a new leakage
instance is detected, the trace computation will be done on the new
flow and compared with saved ones. If there exists a match, action
taken on the saved one will be applied correspondingly.



Nevertheless, there exist two major drawbacks with this approach.
Firstly, dynamic tracing is considerably heavy-weight. Comparison
of two traces is also fairly expensive. This may affect the respon-
siveness of interactive mobile apps. Secondly, each dataflow in-
stance is modeled overly precisely. Since any execution divergence
will lead to a different trace pattern, even if two leakage flows occur
within the same semantics, it is still difficult to match their traces.
This results in repeated warning messages for semantically equiva-
lent privacy-related dataflows.

4.2 Source and Sink Call-sites
Trace-based approach is too expensive because the control gran-

ularity is extremely fine. We therefore attempt to relax the strict-
ness and achieve balance in the accuracy-efficiency trade-off. We
propose a call-site approach which combines source-sink call-sites
to model privacy flow. That is to say, information flows of same
source and sink call-sites are put into one category. Once an ac-
tion is taken on one leakage flow, the same action will be taken
on future sensitive information flow in the same category. To this
end, we introduce labels for source and sink call-sites. Informa-
tion flows starting from or arriving at these call-sites are associated
with corresponding labels, so that they can be differentiated based
on these labels.

With a significant improvement of efficiency, this approach is
not as sensitive to program contexts as the traced-based one - dif-
ferent execution paths can start from the same origin and end at the
same sink. However, we rarely observed this inaccuracy in prac-
tice because the app execution with same source and sink call-sites
usually represents constant semantics.

4.3 Parameterized Source and Sink Pairs
In addition to source/sink call-sites, parameters fed into these

call-sites APIs are also crucial to the semantic contexts. For exam-
ple, the user may allow an app to send data to certain trustworthy
URLs but may not be willing to allow access to the others. There-
fore, it is important to compare critical parameters to determine if
a new observed flow matches the ones in history.

Notice that checking parameters can minimize the impact of mimicry
attack. Prior research shows that vulnerable Android apps are sub-
ject to various attacks [9, 16, 18, 24, 37]. For instance, an exposed
vulnerable app component can be exploited to leak private infor-
mation to an attacker-specified URL. Without considering the URL
parameter, it is difficult, if not possible, to distinguish internal use
of critical call-sites from hijacking the same call-sites to target a
malicious URL. Once a flow through some call-sites is allowed
and user preference is saved, mimicking attack using same call-
sites will also get approved. On the contrary, a parameter-aware
approach can differentiate outgoing dataflows according to the des-
tination URL, and thus, exploitation of a previously allowed call-
sites will still raise a warning.

API Description Source or Sink Critical Parameter
Send data to Internet Sink destination URL
Send SMS message Sink target phone number
Query contacts database Source source URI

Table 1: APIs and Critical Parameters

Besides the URL of a Internet API, we also consider some other
critical combinations of an API and its parameter. Table 1 sum-
marizes our list. The target of a sink API is sensitive to secu-
rity. Similar to Internet APIs, target phone numbers are crucial
to sendTextMessage() APIs and thus need watching. On the
other hand, some source call-sites also need to be distinguished ac-
cording to the parameters. For instance, the API that queries con-

tacts list may obtain different data depending on the input URI (e.g.,
ContactsContract.CommonDataKinds.Phone for phone num-
ber, ContactsContract.CommonDataKinds.Email for email).

4.4 Implementation
We implement the policy service as a separate app. This isolation

guarantees the security of the service app and its saved policies.
In other words, even if the client is exploited, the service is not
affected or compromised, and can still correctly enforce privacy
policies.

The service app communicates with a rewritten client app solely
through Android IPC. Once a client app wants to query the service,
it encapsulates the labels of source and sink call-sites as well as
the specific critical parameter into an Intent as extra data pay-
load. The client app is then blocked and waiting for a response.
Since this transaction is usually fast, the blocking won’t affect the
responsiveness of the app mostly. On the service side, it decodes
the data and searches for a match in its database. If there exists a
match, it returns immediately with the saved action to the client.
Otherwise, the service app will display a dialog message within a
created Activity. The user decision is saved if the user prefers,
or not saved otherwise. Either way, user’s option is sent back to
the client. On receiving the response from service, the rewritten
app will either continue its execution or skip the sink call-site with
respect to the reply.

It is noteworthy that we have to defend against spoofing attack
and prevent forged messages from being sent to a client app. To ad-
dress that, we instrument the client app to listen for the service re-
ply with a dynamically registered BroadcastReceiver. When
a broadcast message is received, the receiver is immediately unreg-
istered. Thus, attack window is reduced due to this on-demand re-
ceiver registration. Further, to restrict who can send the broadcast,
we protect the receiver with a custom permission. Broadcaster
without this permission is therefore unable to send messages to
the client app. To defeat replay attack, we also embed a session
token in the initial query message, and the client app can therefore
authenticate the sender of a response message.

Similarly, we need to protect a policy service from spoofing, too.
The service app has to check the caller identity from a bound com-
munication via getCallingUid(), so that a malicious appli-
cation cannot pretend to be another app and trick the service to
configure the policies for the latter.

4.5 Policy Enforcement in Running Example
We distinguish an information flow based on call-sites and their

critical input. Therefore, here in this example, queryPolicyService()
takes three parameters. The first “0” and second “0” represent the
labels of source and sink call-sites, respectively. The third one is
an object taking the critical input and is specific to a call-site API.

With the reply from policy service (i.e., isAllow), the enforce-
ment logic devised in the app will be exercised. If the user decision
is to block the dataflow, we need to properly skip the output.write()
and disable the leakage.

5. EXPERIMENTAL EVALUATION
To evaluate the efficacy, correctness and efficiency of Capper,

we conducted experiments on real-world Android applications. In
the policy setting, we consider IMEI, owner’s phone number, lo-
cation, contacts to be the sensitive information sources, and net-
work output APIs (e.g., OutputStream.write(), HttpClient.
execute(), WebView.loadUrl(), URLConnection.
openConnection() and SmsManager.sendTextMessage()) as
the sinks. The action on the sink can be “block” or “allow”. User



can also check an “always” option to have the same rule applied to
future cases of the same semantic context. Note that this policy is
mainly for demonstrating the usability of Capper. More work is
needed to define a more complete policy for privacy leakage con-
finement.

We first present our experiment setup and in Section 5.1. We then
discuss summarized analysis results in Section 5.2, and describe a
detailed analysis in Section 5.3. Finally we measure the runtime
performance in Section 5.4.

5.1 Experiment Setup
We collect 11,939 real-world Android applications from Google

Play, and perform a preparatory package-level investigation into
these apps.

Use of Native Components.
Out of the 11,939 apps, 2631 of them enclose at least one native

library in the package. This shows that a small portion of Android
apps (22%) need auxiliary native code to function. In addition,
we discover that a large amount of these native libraries are com-
monly used across these apps. These native libraries are often used
for video/audio processing, encoding/decoding, etc. For example,
libandroidgl20.so, an OpenGL graphical library for Android sys-
tem, is used by 265 apps.

Framework Compatibility.
Fragmentation is a well-known issue for Android platform. Apps

are developed with different versions of framework SDK, as well
as supporting libraries including Google Maps, Google Analytics,
Admob, and therefore require different sets of Google APIs for
analysis and instrumentation. In our experiment, we prepare a set
of specific libraries which consist of Android SDK of API level 16
(Android 4.1, Jelly Bean), Google Maps of API level 16, Google
Analytics SDK v2 and Google Admob SDK, version 6.2.1. We
then inspect the Manifest files and exclude those apps that don’t fit
into our setting. In the end, we obtain 4915 applications and use
them as our experiment sample set. Of course, to use Capper in
the field, multiple sets of APIs are needed to accommodate diverse
SDK requirements in the apps.

We then perform bytecode rewriting on these apps to enable run-
time privacy protection. We conduct the experiment on our test
machine, which is equipped with Intel(R) Xeon(R) CPU E5-2690
(20M Cache, 2.90GHz) and 200GB of physical memory. The op-
erating system is CentOS 6.3 (64bit).

To verify the effectiveness and evaluate runtime performance of
the rewritten apps, we further run them on a real device. Experi-
ments are carried out on Google Nexus S, with Android OS version
4.0.4.

5.2 Summarized Analysis Results
Figure 4 illustrates the partition of 4915 realworld apps. Amongst

these apps, Capper did not finish analyzing 314 of them within 30
minutes. These apps are fairly large (many over 10 MB). Application-
wide dataflow analysis is known to be expensive for these large
programs. We further extended the analysis timeout to 3 hours, and
122 more apps were successfully analyzed and rewritten. Given
sufficient analysis time, we believe that the success rate can further
increase from currently 96% to nearly 100%.

Out of the 4723 apps that were completely processed by Capper,
1414 apps may leak private information, according to our static
analysis, and Capper successfully performed bytecode rewriting
on them. We observed that most of them leak IMEI and loca-
tion information. These types of information are frequently sent

67%

24%

2% 3%

4% No Need for Rewriting

Safely Rewritten

Unsafe with Native Code

Unsafe with Reflection

Timeout

Figure 4: Bytecode Rewriting Results on 4915 Realworld Android
Apps

out by apps due to analytic or advertisement reasons. Apps may
also sometimes leak owner’s phone number or phone numbers from
contacts. For the rest of them (67%), static analysis couldn’t find
a viable path from the sensitive information sources to the network
output sinks. It means that these apps do not leak private informa-
tion, so no rewriting is needed for these apps.

For these 1414 apps that were rewritten, we further investigate
their use of native code and reflection. Our study shows that un-
known native code is invoked within the taint slices for 118 (2%)
apps. As a bytecode-level solution, our system cannot keep track
of information flow processing in the native code. So the informa-
tion flow may be broken on these unknown native calls. The rest
3% contain reflective calls within the slices. If the class name and
method name cannot be resolved statically, we do not know how
information is propagated through this function. Therefore, totally
5% apps may be unsafe and may not be fully enforced with the
specified policies. The best suggestion for the end user is not to use
these unsafe rewritten apps due to the potential incompleteness in
policy enforcement. More discussion on this issue is presented in
Section 6.

We compute the taint propagation slice for each single leakage
instance, and conduct a quantitative study on them. Figure 5a gives
the number of generated taint propagation slices for every app.
While most of the apps retrieve privacy-related information mod-
erately, some apps leak user’s privacy through up to 31 taint slices.
Such apps usually enclose various Ads libraries, each of which ac-
quires private data separately.

Figure 5b shows the proportional size of the slices, compared
to the total size of the application. We can see that most of the
program slices represent a small portion of the entire application,
with the average proportion being 2.48%. However, we do observe
that for a few applications, the slices take up to 54% of the to-
tal size. Some samples (e.g., com.tarsin.android.dilbert) are fairly
small. Although the total slice size is only up to several thousands
Jimple statements, the relative percentage becomes high. Apps like
de.joergjahnke.mario.android.free and de.schildbach.oeffi operate
on privacy information in an excessive way, and due to the conser-
vative nature of static analysis, many static and instance fields are
involved in the slices.

We measure the program size on different stages. We observe
that the increase of the program size is roughly proportional to the
slice size, which is expected. After instrumentation, the increased
size is, on average, 10.45% compared to the original program. Fig-
ure 6 further visualizes the impact of the four optimizations to
demonstrate their performance. The six curves on the figure rep-
resent the relative size of the program, compared to the original
application, on different processing stages, respectively. The base-
line stands for the size of the original program, while the top curve
is that of instrumentation stage. We can see that 1) for most of
these apps, the increase of program size due to instrumentation is
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fairly small; and 2) these optimizations are effective, because they
significantly reduce the program sizes. In the end, the average size
of inserted code drops to 4.48%.

5.3 Detailed Analysis
Here we present the detailed analysis results of ten applications,

and demonstrate the effectiveness of context-aware privacy policy
enforcement. To this end, we rewrite these apps with Capper,
and run them in a physical device along with our policy service
app. We further manually trigger the privacy leakage components
in the app, so that inserted code would block the program and query
policy service for decision. The service will then search its own
database to see if there exists a rule for the specific dataflow context
of the requesting app. If a corresponding rule exists, service replies
to requester immediately. Otherwise, a dialog is displayed to the
user asking for decision. The user can also check the “always”
option so that current decision will be saved for further reference
(Figure 8). Notice that, in order to test the context-awareness of
our approach, we always check this option during the experiment.
Therefore, from the logcat information on the service side, we may
observe and compare the number of queries an app makes with the
amount of warning dialogs prompted to the user. We also compute
the number of information flow contexts with trace-based model
for comparison.

Table 2 lists the summarized results including number of queries,
prompts and trace-based contexts. For these apps, the prompt num-
ber is often equal to or sometimes slightly smaller than the amount
of trace-based dataflow contexts, while the number of queries is
usually much larger than that of prompts. This means leakage con-
texts are modeled correctly: disparate contexts are usually treated
differently in our callsite-based approach; and equivalent contexts

are enforced with the same rule. The fundamental reason is that
Android apps are often componentized while a separate component
exercises a dedicated function.

Firstly, different types of private information are accessed through
separate execution paths. Some apps (ID 2, 3) retrieve both de-
vice identifier and location information, and send them at separate
sinks. Similarly, mabilo.ringtones.app leaks both geolocation data
and user’s phone number.

Secondly, the same type of privacy-related data can be retrieved
from isolated packages but serves as different purposes. These apps
(ID 4, 7, 10) consist of a main program and advertisement compo-
nents, both of which produce outgoing traffic taking IMEI or lo-
cation data. Take net.flixster.android as an example. In this movie
app, location data is both sent to flixster server for querying theaters
and to Ads server for analytical purpose.

Further, the same private data can be accessed in one package
but contributes to different use cases. For instance, com.rs.autorun
obtains device identifier via getDeviceId() API call in the first
place. Then the app sends IMEI at multiple sinks to load advertise-
ment View, retrieve configuration or upload analytical information
including demographics, ratings, etc. Each semantic context is cap-
tured from the perspective of taint propagation trace. However, due
to the use of same sink call-site, all the analytical traffics are con-
sidered to be with the same semantic context in the call-site model.
Though call-site-based model is not as sensitive to context as the
trace-based approach, it is still able to differentiate the contexts of
Ads View, configuration file loading and analytical dataflow, ac-
cording to disparate sink call-sites.

We also observe inconsistency between traced-based contexts
and real program semantics. That lies in apps (ID 1, 6, 7, 8, 9,



Figure 8: Warning Dialog

ID App-Version Queries Prompts Trace-based Contexts
1 artfulbits.aiMinesweeper-3.2.3 5 2 2
2 com.avantar.wny-4.1.5.1 3 2 2
3 com.avantar.yp-4.1.5 4 2 2
4 com.bfs.papertoss-1.09 3 2 2
5 com.rs.autorun-1.3.1 10 4 6
6 com.skyfire.browser-2.0.1 4 2 2
7 com.startapp.wallpaper.browser-1.4.15 5 3 3
8 mabilo.ringtones.app-3.6 5 3 3
9 mabilo.wallpapers-1.8.4 4 2 2

10 net.flixster.android-2.9.5 6 3 3

Table 2: Effectiveness of Context-aware Policy Enforcement

10) which acquire location information, where the number of trace-
based contexts exceeds that of actual contexts. Geographic location
is obtained either approximately from getLastKnownLocation(),
or from a real-time update by registering a listener through
requestLocationUpdates() and receiving updates via callback
onLocationChanged(Location). Some apps adopt both ways
so as to achieve higher accuracy. For instance, artfulbits.aiMinesweeper
reads location data by calling getLastKnownLocation() at the
very beginning of the program, stores it into an instance field, and
then periodically updates it with the aforementioned callback. Con-
sequently, two separate paths achieve one sole purpose and thus
should be considered as of equivalent context. However, from ei-
ther trace or call-site point of view, there exist two separate con-
texts. Despite the disparity, we believe that this would at most in-
troduce one extra prompt. Further, it is also reasonable to split this
context into two, because one conducts a one-time access while the
other obtains data repeatedly.

5.4 Performance Evaluation
We evaluate both offline rewriting time cost and runtime perfor-

mance.

Rewriting Performance.
Figure 7 illustrates the time consumption of analysis and rewrit-

ing for 4723 Android apps in our experiment. To be specific, it
depicts the execution time of analysis, instrumentation, and four
optimization phases. We do not show the bytecode conversion time
here, because code conversion by dex2jar is usually within several
seconds and thus not significant as compared to the other steps.
We find that more than 83.6% of the apps are processed within
10 seconds and the majority (92.8%) can be rewritten within 1
minute. However, still a few of them cost excessive time to fin-
ish. Global data-flow analysis dominates the overall processing
time, especially for those privacy-breaching apps. In comparison,
the time consumption of instrumentation and optimizations is fairly
small.

Runtime Performance.
We compare the runtime overhead of bytecode rewriting with

that of dynamic taint analysis in TaintDroid (on Android ginger-
bread version 2.3.4). In principle, if an app leaks private infor-
mation only occasionally, the rewritten version would have much
better performance than the original version on TaintDroid. This
is because in the rewritten app nearly no instrumentation code is
added on non-leaking execution paths whereas TaintDroid has to
monitor taint propagation all the time.

Rather, we would like to compare the performance when the
taint is actively propagated during the execution. This would be the
worst-case scenario for Capper. Specifically, we build two cus-
tomized applications for the measurement. Both leak IEMI string

via getDeviceId() API, decode the string to a byte array, en-
crypt the array by doing XOR on every byte with a constant key,
reassemble a string from the encrypted byte array, and in the end,
send the string out to a specific URL through a raw socket inter-
face. The only difference is that one merely sends the IMEI string,
while the other also appends extra information of totally 10KB to
the IMEI string before encryption. In other words, the former con-
ducts a short-period data transfer while the latter manipulates the
outgoing message within a much longer period. We expect that the
execution of the first one to be mainly under mterp interpretation
mode and the execution of the second to be boosted by JIT.

Orig. Orig. on TaintDroid Rewritten
Short 30ms 130ms 34ms
Long 10583ms 15571ms 10742ms

Table 3: Runtime Performance Evaluation

We measured the execution time from getDeviceId() to the
network interface. We observed that the rewritten application runs
significantly faster than the original on TaintDroid, and only yields
fairly small overhead compared to the original one running on An-
droid, for both short-period and long-period data propagation. Ta-
ble 3 illustrates the result of runtime measurement. While our ap-
proach causes 13% and 1.5% overhead for short and long data prop-
agation respectively, TaintDroid incurs 330% and 47% overhead.
The results also show that the presence of JIT significantly reduces
runtime overhead, in both approaches. However, though newer
version of TaintDroid (2.3.4 and later) benefits from JIT support,
the overhead caused by dynamic instrumentation is still apparently
high.

To further confirm the runtime overhead of the rewritten pro-
grams, we conduct an experiment on Google Nexus S, with An-
droid OS version 4.0.4. It is worth mentioning that such verifica-
tion on real device requires considerable repetitive manual efforts
and thus is fairly time consuming. We therefore randomly pick 10
apps from the privacy-breaching ones, rewrite them, run both the
original app and secured one on physical device, and compare the
runtime performance before and after rewriting. We rely on the
timestamps of Android framework debugging information (logcat
logs) to compute the app load time as benchmark. The app load
time is measured from when Android ActivityManager starts
an Activity component to the time the Activity thread is dis-
played. This includes application resolution by ActivityManager,
IPC and graphical display. Our observation complies with prior
experiment result: rewritten apps usually have insignificant slow-
down, with an average of 2.1%, while the maximum runtime over-
head is less than 9.4%.



6. DISCUSSION
In this section, we discuss the limitations of our system and pos-

sible solutions. We also shed light on future directions.

Soundness of Our Bytecode Rewriting.
Our static analysis, code instrumentation, and optimizations fol-

low the standard program analysis and compiler techniques, which
have been proven to be correct in the single threading context. In
the multi-threading context, our shadow variables for local vari-
ables and function parameters are still safe because they are local
to each individual thread, while the soundness of shadow fields de-
pends on whether race condition vulnerability is present in orig-
inal bytecode programs. In other words, if the accesses to static
or instance fields are properly guarded to avoid race condition in
the original app, the corresponding operations on shadow fields are
also guarded because they are placed in the same code block. How-
ever, if the original app does have race condition on certain static
or instance fields, the information flow tracking on these fields may
be out of sync.

We modeled Android APIs for both analysis and instrumenta-
tion. We manually generate dedicated taint propagation rules for
frequently used APIs and those of significant importance (e.g., se-
curity sensitive APIs). Besides, we have general default rules for
the rest. It is well-recognized that it is a non-trivial task to build
a fairly complete API model, and it is also true that higher cov-
erage of API model may improve the soundness of our rewriting.
However, previous study [7] shows that a model of approximately
1000 APIs can already cover 90% of calls in over 90,000 Android
applications. In addition, it is also possible to automatically cre-
ate a better API model by analyzing and understanding Android
framework, and we leave it as our future work.

Tracking Implicit Flow.
It is well known that sensitive information can propagate in other

channels than direct data flow, such as control flow and timing
channels. It is extremely challenging to detect and keep track of
all these channels. In this work, we do not consider keeping track
of implicit flow. This means that a dedicated malicious Android
developer is able to evade Capper. This limitation is also shared
by other solutions based on taint analysis, such as TaintDroid [12]
and AppFence [19]. Serious research in this problem is needed and
is complementary to our work.

Java Reflection.
A study [15] shows that many Android applications make use

of Java reflection to call undocumented methods. While in 88.3%
cases, the class names and method names of these reflective calls
can be statically resolved, the rest can still cause problems. In
our experiment, we seldom encounter this situation, because even
though some apps indeed use reflective calls, they are rarely lo-
cated within the taint propagation slices. That is, these reflective
calls in general are not involved in privacy leakage. We could use a
conservative function summary, such that all output parameters and
the return value are tainted if any of input parameter is tainted, but
it might be too conservative. A more elegant solution might be to
capture the class name and the method name at runtime and redi-
rect to the corresponding function summary, which enforces more
precise propagation logic. We leave this as our future work.

Native Components.
Android applications sometimes need auxiliary native compo-

nents to function, while, unfortunately, static bytecode-level analy-
sis is not capable of keeping track of information flow within JNI
calls. However, many apps in fact use common native components,
which originate from reliable resources and are of widely recog-

nized dataflow behavior. Thus, it is possible to model these known
components with offline knowledge. In other words, we could
build a database for well-known native libraries and create proper
function summaries for JNI calls, and therefore exercise static data
propagation through native calls with the help of such summaries.

7. RELATED WORK
In this section, we discuss previous work that is related to code

rewriting and optimization and privacy leakage detection and miti-
gation on mobile platforms.

Bytecode Rewriting.
Many efforts are made to rewrite apps for security purposes. The

Privacy Blocker application [2] performs static analysis of applica-
tion binaries to identify and selectively replace requests for sensi-
tive data with hard-coded shadow data. I-ARM-Droid [10] rewrites
Dalvik bytecode, where it interposes on all the invocations of these
API methods to implement the desired security policies. Aura-
sium [32] repackages Android apps to sandbox important native
APIs and watch the applications’ behaviors for security and privacy
violations. Livshits and Jung [23] implemented a graph-theoretic
algorithm to place mediation prompts into bytecode program and
thus protect resource access. In comparison, we proposed a new
bytecode rewriting technique to track information flow and enforce
information-flow based policies.

Instrumentation Code Optimization.
We reduce code instrumentation overhead by performing vari-

ous static analysis and optimizations. Several other works share
the same insight. To find error patterns in Java source code, Mar-
tin et al. optimized dynamic instrumentation by performing static
pointer alias analysis [26]. To detect numerous software attacks,
Xu et al. inserted runtime checks to enforce various security poli-
cies in C source code, and remove redundant checks via compiler
optimizations [33]. While we share the same insight, our work
deals with Dalvik bytecode programs and specific instrumentation
methods are completely different.

Privacy Leakage Detection.
Egele et al. [11] studied the privacy threats in iOS applications.

They proposed PiOS, a static analysis tool to detect privacy leaks
in Mach-O binaries. TaintDroid is a dynamic analysis tool for de-
tecting and analyzing privacy leaks in Android applications [12].
It modifies Dalvik virtual machine and dynamically instruments
Dalvik bytecode instructions to perform dynamic taint analysis.
Enck et al. [13] proposed a static analysis approach to study privacy
leakage as well. They convert a Dalvik executable to Java source
code and leverage a commercial Java source code analysis tool
Fortify360 [20] to detect surreptitious data flows. CHEX [24] is
designed to vet Android apps for component hijacking vulnerabili-
ties and is essentially capable of detecting privacy leakage. It con-
verted Dalvik bytecode to WALA [4] SSA IR, and conducted static
dataflow analysis with WALA framework. AndroidLeaks [17] is a
static analysis framework, which also leverages WALA, and identi-
fies potential leaks of personal information in Android applications
on a large scale. Mann et al. [25] analyzed the Android API for
possible sources and sinks of private data and thus identified exem-
plary privacy policies.

Privacy Leak Mitigation.
Based on TaintDroid, Hornyack et al. [19] proposed AppFence to

further mitigate privacy leaks. When TaintDroid discovers the data
dependency between source and sink, AppFence enforces privacy
policies, either at source or sink, to protect sensitive information.
At source, it may provide the app with fake information instead of
the real one; at sink, it can block sending APIs. AppFence requires



modifications in the Dalvik virtual machine to track information
flow and incurs considerable performance overhead (14% on av-
erage according to TaintDroid [12]). In contrast, Capper takes a
bytecode rewriting approach. There is no hurdle for deployment,
and due to static dataflow analysis and a series of optimizations,
the new application rewritten by Capper can achieve higher effi-
ciency.

8. CONCLUSION
We developed a bytecode rewriting approach to defeat privacy

leakage in Android applications. Given an unknown Android app,
we firstly selectively rewrite the program by inserting bytecode
instructions along taint propagation slices for potential informa-
tion leakage. Then to differentiate true leakage with benign sen-
sitive dataflow, we leverage user’s semantic knowledge and devise
a context-aware policy enforcement mechanism. Our evaluation on
4723 real-world Android applications demonstrates that Capper
can effectively track and mitigate privacy leaks. Moreover, after
going through a series of optimizations, the instrumentation code
only represents a small portion (4.48% on average) of the entire
program. In addition, the runtime overhead introduced by Capper
is also minimal, merely 1.5% for intensive data propagation.
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APPENDIX
<getIMEI()>: r6 = virtualinvoke r4.<TelephonyManager: getDeviceId()>()

<getIMEI()>: return r6

<onStart()>: $r1 = virtualinvoke r0.<getIMEI()>()

<onStart()>: <deviceId> = $r1

<deviceId>

<onDestroy()>: $r1 = <deviceId> <onResume()>: $r1 = <deviceId>

<onResume()>: virtualinvoke 
r0.<toastIMEI(String)>($r1)

<toastIMEI(String)>: r1 := 
@parameter0: String

<toastIMEI(String)>: $r6 = 
virtualinvoke 

$r5.<append(String)>(r1)

<toastIMEI(String)>: $r7 = 
virtualinvoke $r6.<toString()>()

<toastIMEI(String)>: $r8 = 
staticinvoke <makeText(Context,
CharSequence,int)>($r4, $r7, 0)

<toastIMEI(String)>: virtualinvoke 
$r8.<show()>()

<onDestroy()>: r2 = virtualinvoke 
$r1.<getBytes()>()

<onDestroy()>: $i1 = lengthof r2

<onDestroy()>: $b2 = r2[i0]

<onDestroy()>: $b3 = virtualinvoke 
r0.<crypt(byte)>($b2)

<crypt(byte)>: 
b0 := @parameter0: byte

<crypt(byte)>: $b2 = b0 ^ $b1

<crypt(byte)>: return $b2

<onDestroy()>: $b3 = virtualinvoke 
r0.<crypt(byte)>($b2)

<onDestroy()>: r2[i0] = $b3

<onDestroy()>: virtualinvoke 
r0.<post(String,byte[])>($r3, r2)

<post(String,byte[])>: 
r2 := @parameter1: byte[]

<post(String,byte[])>: 
$i0 = lengthof r2

<post(String,byte[])>:virtualinvoke 
r6.<OutputStream: 

write(byte[],int,int)>(r2, 0, $i0)

Static Field

Figure 9: Taint Propagation Tree for the Running Example.

A. TAINT PROPAGATION TREE FOR RUN-
NING EXAMPLE

Figure 9 illustrates the result for applying the dataflow analysis
on the running example. While the entire graph shows the taint
propagation tree, the subgraph surrounded by dotted lines is the
taint slice for the critical information flow (i.e. IMEI leakage).
Each node represents a Jimple statement and its function call con-
text. This tree starts at the invocation of getDeviceId() in
getIMEI(). The source data is thus obtained and further propa-
gated back to onStart() via return value. Then, in onStart(),
IMEI is stored into a static field. Taking the static field as the source
of the next iteration, the graph further expands into two branches.
In the right branch, the static field is read from onResume() and
then passed to toastIMEI() for display; In the left branch, the
static field is accessed from onDestroy() which further prop-
agates the data to crypt() and post() sequentially, and thus
sends it out to the network. From this graph, we can see that the
left branch is actually leading to privacy leakage and thus is our
target to instrument. The right branch is irrelevant to leakage and
thus removed from the taint slice.
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