
0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

COVERT: Compositional Analysis of Android
Inter-App Permission Leakage

Hamid Bagheri, Alireza Sadeghi, Joshua Garcia and Sam Malek, Member, IEEE

Abstract—Android is the most popular platform for mobile devices. It facilitates sharing of data and services among applications
using a rich inter-app communication system. While access to resources can be controlled by the Android permission system,
enforcing permissions is not sufficient to prevent security violations, as permissions may be mismanaged, intentionally or
unintentionally. Android’s enforcement of the permissions is at the level of individual apps, allowing multiple malicious apps
to collude and combine their permissions or to trick vulnerable apps to perform actions on their behalf that are beyond their
individual privileges. In this paper, we present COVERT, a tool for compositional analysis of Android inter-app vulnerabilities.
COVERT’s analysis is modular to enable incremental analysis of applications as they are installed, updated, and removed.
It statically analyzes the reverse engineered source code of each individual app, and extracts relevant security specifications
in a format suitable for formal verification. Given a collection of specifications extracted in this way, a formal analysis engine
(e.g., model checker) is then used to verify whether it is safe for a combination of applications—holding certain permissions
and potentially interacting with each other—to be installed together. Our experience with using COVERT to examine over 500
real-world apps corroborates its ability to find inter-app vulnerabilities in bundles of some of the most popular apps on the market.

Index Terms—Formal Verification, Static Analysis, Android, Inter-App Vulnerabilities

F

1 INTRODUCTION

Mobile app markets are creating a fundamental
paradigm shift in the way software is delivered to
the end users. The benefits of this software supply
model are plenty, including the ability to rapidly and
effectively acquire, introduce, maintain, and enhance
software used by the consumers. By providing a
medium for reaching a large consumer market at a
nominal cost, app markets have leveled the software
development industry, allowing small entrepreneurs
to compete with prominent software development
companies. Application frameworks are the key en-
ablers of these markets. An application framework,
such as the one provided by Android, ensures apps
developed by a wide variety of suppliers can inter-
operate and coexist together in a single system (e.g.,
a phone) as long as they conform to the rules and
constraints imposed by the framework.

This paradigm shift, however, has given rise to
a new set of security challenges. In parallel with
the emergence of app markets, we are witnessing
an increase in the security threats targeted at mobile
platforms. This is nowhere more evident than in the
Android market (i.e., Google Play), where many cases
of apps infected with malwares and spywares have

• H. Bagheri is with both the department of Computer Science at George
Mason University and the Computer Science and Artificial Intelligence
Laboratory at MIT. E-mail: hbagheri@mit.edu

• A. Sadeghi, J. Garcia and S. Malek are with the Department of
Computer Science, George Mason University, Fairfax, VA, 22030.
E-mail: {asadeghi,jgarci40,smalek}@gmu.edu

been reported [1]. Numerous culprits are at play here,
and some are not even technical, such as the general
lack of an overseeing authority in the case of open
markets and inconsequential implication for those
caught provisioning applications with vulnerabilities
or malicious capabilities.

In this context, Android’s security has been a
thriving subject of research in the past few years.
Leveraging program analysis techniques, these re-
search efforts have investigated weaknesses from var-
ious perspectives, including detection of information
leaks [2]–[4], analysis of the least-privilege princi-
ple [5], [6], and enhancements to Android protection
mechanisms [7]–[9]. The majority of these approaches,
however, are subject to a common limitation: they are
intended to detect and mitigate vulnerabilities in a
single app, but fail to identify vulnerabilities that arise
due to the interaction of multiple apps. Vulnerabili-
ties due to the interaction of multiple apps, such as
collusion attacks and privilege escalation chaining [5],
cannot be detected by techniques that analyze a single
app in isolation. Thus, security analysis techniques
in such domains need to become compositional in
nature.

This paper contributes a novel approach, called
COVERT, for compositional analysis of Android inter-
app permission leakage vulnerabilities. Unlike all
prior techniques that focus on assessing the security
of an individual app in isolation, our approach has the
potential to greatly increase the scope of application
analysis by inferring the security properties from indi-
vidual apps and checking them as a whole by means
of formal analysis. This, in turn, enables reasoning

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

about the overall security posture of a system (e.g.,
a phone device) in terms of the security properties
inferred from the individual apps.

COVERT combines static analysis with formal meth-
ods. At the heart of our approach is a modular
static analysis technique for Android apps, designed
to enable incremental and automated checking of
apps as they are installed, removed, or updated on
an Android device. Through static analysis of each
app, our approach extracts essential information and
captures them in an analyzable formal specification
language. These formal specifications are intention-
ally at the architectural level to ensure the technique
remains scalable, yet represent the true behavior of
the implemented software, as they are automatically
extracted from the installation artifacts. The set of
models extracted in this way are then checked as a
whole for vulnerabilities that occur due to the interac-
tion of apps comprising a system. COVERT uses Alloy
as a specification language [10], and the Alloy Analyzer
as the analysis engine. Alloy is a formal specification
language based on first order logic, optimized for
automated analysis.

Since COVERT’s analysis is compositional, it pro-
vides the analysts with information that is signifi-
cantly more useful than what is provided by prior
techniques. Our experiences with a prototype imple-
mentation of the approach and its evaluation against
one of the most prominent inter-app vulnerabilities,
i.e. privilege escalation, in the context of hundreds
of real-world Android apps collected from variety
of repositories have been very positive. The results,
among other things, corroborate its ability to find
vulnerabilities in bundles of some of the most popular
apps on the market.

Contributions. This paper makes the following con-
tributions:
• Formal model of Android framework: We develop a

formal specification representing the behavior of
Android apps that is relevant for the detection of
inter-app permission leakage vulnerabilities. We
construct this formal specification as a reusable
Alloy module to which all extracted app models
conform.

• Modular analysis: We show how to exploit the
power of our formal abstractions by building a
modular model extractor that uses static analysis
techniques to automatically extract formal speci-
fications (models) of apps form their installation
artifacts.

• Implementation: We develop a prototype imple-
mentation on top of our formal framework for
compositional security analysis of Android apps.

• Experiments: We present results from experiments
run on over 500 real-world apps, corroborat-
ing COVERT’s ability in effective compositional
analysis of Android inter-app permission leakage
vulnerabilities in the order of minutes.

Outline. The remainder of this paper is organized
as follows. Section 2 provides the background knowl-
edge required to understand the contributions of our
work. Section 3 motivates our research through an
illustrative example. Section 4 provides an overview
of COVERT. Sections 5 and 6 describe the details of
model extraction and formal analysis, respectively.
Section 7 presents the evaluation of the research.
Finally, the paper concludes with a discussion of
limitations, and an outline of the related research and
future work.

2 ANDROID OVERVIEW
This section provides an overview of the Android
application framework to help the reader follow the
discussions that ensue.

Application Components. Components are basic
logical building blocks of Android applications. Each
component can be run individually, either by its em-
bodying application or by system upon permitted re-
quests from other applications. Android applications
can comprise four types of components: (1) Activity
components provide the basis of the Android user
interface. Each Application may have multiple Activ-
ities representing different screens of the application
to the user. (2) Service components provide back-
ground processing capabilities, and do not provide
any user interface. Playing a music and downloading
a file while a user interacts with another applica-
tion are examples of operations that may run as a
Service. (3) Broadcast Receiver components respond
asynchronously to system-wide message broadcasts.
A receiver component typically acts as a gateway
to other components, and passes on messages to
Activities or Services to handle them. (4) Content
Provider components provide database capabilities to
other components. Such databases can be used for
both intra-app data persistence as well as sharing data
across applications.

Inter-Process Communication. As part of its pro-
tection mechanism, Android insulates applications
from each other and system resources from appli-
cations via a sandboxing mechanism. Such applica-
tion insulation that Android depends on to protect
applications requires interactions to occur through
a message passing mechanism, called inter-process
communication (IPC). IPC is conducted by means of
Intent messages. An Intent message is an event for
an action to be performed along with the data that
supports that action. Component invocations come
in different flavors, e.g., explicit or implicit, intra- or
inter-apps, etc. Android’s IPC allows for late run-time
binding between components in the same or different
applications, where the calls are not explicit in the
code, rather made possible through event messaging,
a key property of event-driven systems.

Application Configuration. Each Android applica-
tion must declare upfront its configuration. Among

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

other things, it describes the principal components
that constitute the application, along with their types
and capabilities. Component capabilities are specified
as a set of Intent Filters that represent the kinds of
requests a given component can respond to. Such
high-level application descriptions are documented in
a separate XML file, called manifest, that accompanies
the application.

Permissions. Enforcing permissions is the other
mechanism, besides sandboxing, provided by the An-
droid framework to protect applications, by which
restrictions are placed on the specific operations that
an application can perform, such as interacting with
the system APIs and databases, as well as cross-
application interactions. Each application must de-
clare upfront as part of its manifest the permissions
it requires, and the Android system prompts the
user for consent during the application installation.
Should the user refuse granting the requested per-
missions to an application, the application installation
is canceled. No dynamic mechanism is provided by
Android for granting permissions after application
installation. The manifest file also declares permis-
sions enforced by the application or by any of its
components; the other applications thus must have
those permissions in order to interact with such pro-
tected components. Android platform provides over
130 pre-defined permissions, and applications can
also define their own permissions. Each permission is
specified by a unique label, typically indicating the
protected action. For instance, the permission label
of android.permission.SET_WALLPAPER is re-
quired for an application to change the wallpaper. The
Android permission mechanism has proved insuffi-
cient to prevent security violations, since permissions
may be misused, intentionally or unintentionally, as
illustrated in the next section.

3 MOTIVATING EXAMPLE

To motivate the research and illustrate our approach,
we provide an example of a vulnerability pattern
having to do with Inter-Process Communication (IPC)
among Android apps. Android provides a flexible
model of IPC using a type of application-level mes-
sage known as Intent (cf. Section 2). A typical app
is comprised of multiple processes (e.g., Activity,
Service) that communicate using Intent messages. In
addition, under certain circumstances, an app’s pro-
cesses could send Intent messages to another app’s
processes to perform actions (e.g., take picture, send
text message, etc.). As an example, Listing 1 shows
CallerActivity belonging to a malicious app sending an
Intent message to PhoneActivity (Listing 2) belonging
to a vulnerable app for placing a call to a premium-
rate telephone number.

The vulnerability occurs on line 30 of Listing 2,
where PhoneActivity initiates a system Intent of type

1 public c l a s s C a l l e r A c t i v i t y extends A c t i v i t y {
2 public void onCreate (Bundle s a ve d I n s t an c e S t a te) {
3 . . .
4 S t r i n g a c t i o n ;
5 i f (selectedMenu == 1)
6 a c t i o n = ”PHONE CALL” ;
7 e lse
8 a c t i o n = ”PHONE TEXT MSG” ;
9 btnOK = (Button) findViewById (R . id . btnOK) ;

10 btnOK . se tOnCl ickLis tener (new OnClickListener () {
11 public void onClick (View v) {
12 I n t e n t i n t e n t = new I n t e n t (a c t i o n) ;
13 i n t e n t . setClassName (”com . phoneservice ” , ”com .

phoneservice . PhoneActivity ”) ;
14 i n t e n t . putExtra (”PHONE NUM” , ”900−512−1677”) ;
15 s t a r t A c t i v i t y (i n t e n t) ;
16 }
17 }
18 }

Listing 1: Malicious app: sends an Intent to call a
premium-rate phone number.

1 public c l a s s MainActivity extends A c t i v i t y {
2 public void onCreate (Bundle s a ve d I n s t an c e S t a te) {
3 . . .
4 I n t e n t i n t e n t = new I n t e n t (this , PhoneActivity .

c l a s s) ;
5 s t a r t A c t i v i t y (i n t e n t) ;
6 }
7 }
8
9 public c l a s s PhoneActivity extends A c t i v i t y {

10
11 public void onCreate (Bundle s a ve d I n s t an c e S t a te) {
12 . . .
13 I n t e n t i n t e n t = g e t I n t e n t () ;
14 S t r i n g number = i n t e n t . g e t S t r i n g E x t r a (”PHONE NUM”) ;
15 // i f (hasPermission ())
16 makePhoneCall (number) ;
17 e lse
18 . . .
19 }
20
21 boolean hasPermission () {
22 i f (checkCal l ingPermiss ion (” android . permission .

CALL PHONE”) ==PackageManager .
PERMISSION GRANTED)

23 return true ;
24 return f a l s e ;
25 }
26
27 void makePhoneCall (S t r i n g number) {
28 I n t e n t c a l l I n t e n t = new I n t e n t (I n t e n t .ACTION CALL) ;
29 c a l l I n t e n t . setData (Uri . parse (number)) ;
30 startActivity (callIntent); // privilege escalation vulnerability
31 }
32 }

Listing 2: Vulnerable app: receives an Intent and
makes a phone call.

ACTION_CALL, resulting in a phone call. This is a re-
served Android action that requires special access per-
missions to the system’s telephony service. Although
PhoneActivity has that permission, it also needs to en-
sure that the sender of the original Intent message has
the required permission to use the telephony service.
An example of such a check is shown in hasPermission
method of Listing 2, but in this particular example it
does not get called (line 15 is commented) to illustrate
the vulnerability. If CallerActivity does not have the
permission to make phone calls (i.e., it is not specified
in the corresponding app’s manifest file), it is able to

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 1: Overview of COVERT.

make PhoneActivity perform that action on its behalf.
This is a privilege escalation vulnerability and has
been shown to be quite common in the apps on
the market [2]. It could be exploited by a malware
running on the same phone to call premium-rate
numbers.

The above example points to one of the most promi-
nent inter-app vulnerabilities, i.e. privilege escalation,
that we take as a running example from a class of
vulnerabilities that require compositional analysis to
be able to detect effectively.

4 APPROACH OVERVIEW

This section overviews our approach to automatically
identify such vulnerabilities that occur due to the in-
teraction of apps comprising a system, and determine
whether it is safe for a bundle of apps, requiring
certain permissions and potentially interacting with
each other, to be installed together. As depicted in
Figure 1, COVERT consists of two parts: (1) Model Ex-
tractor that uses static code analysis techniques to elicit
formal specifications (models) of the apps comprising
a system as well as the phone configuration; and (2)
Formal Analyzer that is intended to use lightweight
formal analysis techniques to verify certain properties
(e.g., known security vulnerability patterns) in the
extracted specifications.

COVERT relies on two types of models: 1) app
model that Model Extractor generates automatically
for each Android app; 2) Android framework spec. that
defines a set of rules to lay the foundation of Android
apps, how they behave (e.g., application, component,
messages, etc.), and how they interact with each other.
The framework specification is constructed once for a
given platform (e.g., version of Android) as a reusable
model to which all extracted app models must con-
form. It can be considered as an abstract specification
of how a given platform behaves.

Model Extractor takes as input a set of Android
application package archives (APK files1). To generate
the app models, it first examines the application man-
ifest file to determine its architectural information.

1. APKs are Java bytecode packages used to distribute and install
Android applications.

Besides such high-level, architectural information col-
lected from the manifest file, Model Extractor utilizes
static analysis techniques to extract other essential
information from the application bytecode. We have
built a prototype implementation of the model extrac-
tor component on top of Soot [11] for static analysis
and Dexpler [12] for reverse engineering Android APK
files. As a result, our prototype implementation of
the approach only requires the availability of Android
executable files, and not the original source code.
COVERT, thus, can be used not only by developers,
but also by end-users as well as third-party reviewers
to assess the trustworthiness of their mobile devices.

The set of app models extracted in this way are
then combined together with a formal specification of
the application framework, and checked as a whole
for vulnerabilities that occur due to the interaction
of apps comprising a system. Finally, a report is
returned to the user describing the list of detected
vulnerabilities. Upon reviewing the report, end-users
and third-party reviewers may choose to protect their
devices in a variety of ways, e.g., by disallowing the
installation of certain combination of apps, or dynam-
ically restricting certain inter-app communications.

In this research work, we rely on lightweight formal
analysis techniques [13] for modeling and verifica-
tion purposes. Such lightweight, yet formally-precise
methods, bring fully automated analysis techniques
to partial models that represent the key aspects of
a system [14]. The analysis is accordingly conducted
by exhaustive enumeration over a bounded scope
of model instances. These methods thus facilitate
application of formal analyzers in development of
software-intensive systems. In our prototype tool im-
plementation, we use Alloy [10], as the specification
language, and the Alloy Analyzer as the analysis
engine. Alloy is a formal specification language based
on first order logic, optimized for automated analysis.

Our approach can be applied in an offline setting
to determine if a particular configuration for a system
comprised of several apps harbors security vulner-
abilities. Although not the focus of this paper, we
believe the approach could also be applied at runtime
to continuously verify the security properties of an
evolving system as new apps are installed, and old
ones are updated and removed.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

In the following two sections, we describe the
details of static analysis used to capture essential
application information and formal analysis for veri-
fication.

5 MODEL EXTRACTOR
In order to automatically analyze vulnerabilities, we
first need a model of each application that would
allow us to determine the potential inter-process com-
munications and to also reason about the security
properties. In our approach, an app model is com-
posed of the information extracted from two sources:
manifest file and bytecode. This section first formally
defines the model we extract for each app, and then
describes the extraction process.

Definition 1. A model for an Android application is a
tuple A =< C, I, F, P, S >, where

• C is a set of components, where each component
c ∈ C has a set of Intent messages intents(c) ⊆ I ,
a set of Intent filters ifilters(c) ⊆ F , a set of
permissions perms(c) ⊆ P required to access the
component c, and a set of sensitive (i.e., security
relevant) paths paths(c) ⊆ S. Each component is
defined as one of the four Android pre-defined
component types: Activity, Service, Broadcast Re-
ceiver, and Content Provider.

• I is a set of event messages that can be used for
both inter- and intra-app communications. Each
Intent i ∈ I has a sender component sender(i) ∈
C, may have a recipient component, and three
sets of action(i), data(i) and categories(i), spec-
ifying the general action to be performed in
the recipient component, additional information
about the data to be processed by the action,
and the kind of component that should handle
i, respectively. If the set component(i) is non-
empty, the Intent i is called an explicit Intent, as
the recipient component is given explicitly.

• F is a set of Intent Filters, where each filter
ifilter ∈ F is attached to a component c ∈ C, and
describes an interface (capability) of c in terms
of Intents that it can handle. Each ifilter has a
non-empty set of actions(ifilter) and two sets of
data(ifilter) and categories(ifilter).

• P is a union of required and enforced permis-
sions, P = PReq ∪ PEnf , where PReq specifies the
permissions to which the application needs to
have access to run properly and PEnf specifies the
permissions required to access components of the
application under consideration. We let the set of
permissions actually used within a component c
as permUsed(c) ⊆ PReq .

• S is a finite set of vulnerable paths; each path be-
longs to a component c ∈ C, and is represented as
a tuple < Entry,Destination >, where Entry and
Destination represent either permission-required
APIs or IPC calls.

As shown in Algorithm 1, the Model Extractor
performs three major steps to obtain a model of An-
droid app: Entity Extraction and Resolution (lines 4–13),
Control Flow Augmentation (lines 14–16), and Vulnerable
Paths Identification(line 17). In the first step, the entities
are extracted from either the manifest file or the
bytecode. Second, COVERT builds an inter-procedural
control-flow graph augmented to account for implicit
invocations. The generated inter-procedural control-
flow graph is further annotated with permissions re-
quired to enact Android API calls and Intents. Finally,
in the last step, a reachability analysis is performed
over the generated graph to determine the exposed
components that contain unguarded execution paths
reaching permission-required functionalities.

Details of each step, elaborated by Algorithms 2 and
3, are discussed in the rest of this section. To help
explain the approach, Figure 2 illustrates the steps
of applying our model extraction to the motivating
example (cf. Section 3).

Algorithm 1: Model Extractor
Input: app: Android App
Output: A: App’s Extracted Model

1 A←< {}, {}, {}, {}, {} >
2 ICFG← {}
3 summaries← {}
// I Entity Extraction - cf. Sec. 5.1

4 A.C ← extractManifestComponents(app)
5 A.P ← extractManifestPermissions(app)
6 A.F ← extractManifestFilters(app)
7 IFEntities ← {}
8 foreach method ∈ app do
9 IFEntities ← identifyIFEntity(method, summaries)

10 end
11 resolveIFEntityAttr(IFEntities)
12 A.I ← getIntents(IFEntities)
13 A.F ← getIntentF ilters(IFEntities) ∪A.F

// I ICFG Augmentation - cf. Sec. 5.2
14 G← constructICFG(app)
15 E ← extractImplicitCallBacks(app)
16 ICFG← augmentICFG(G,E)

// I Vul. Paths Identification - cf. Sec. 5.3
17 A.S ← findVulPaths(A.C, ICFG)

5.1 Entity Extraction and Resolution
As part of the entity extraction process, the Model
Extractor first identifies the entities comprising the
app by parsing and examining the app’s manifest
files. As shown in Algorithm1 (lines 4–6), it can read-
ily obtain information such as the app’s components
(C) and their types, permissions that the app requires
(PReq), and the enforced permissions (PermsEnf) that
the other apps must have in order to interact with
the app components. It also identifies some of the
public interfaces exposed by each application, which
are essentially entry points defined in the manifest
file through Intent Filters (F) of components. How-
ever, not all entry points can be extracted from the
manifest file, as discussed further below. Figure 2a
shows the entities extracted at this stage of analysis

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

corresponding to our running example from Section 3.
Although the figure depicts the entities extracted for
both apps, the reader should note that in practice
COVERT’s program analysis runs separately on each
app, the results of which are then transformed into
separate formal specification modules, as detailed in
Section 6.

After collecting these entities through examining
the application manifest file, the Model Extractor
identifies complementary information latent in the
application bytecode. In particular, we also need to
extract Intents and Intent Filters, which may be de-
fined programmatically in the bytecode, rather than
in the manifest file. Intent Filters for components of
type Service and Activity must be declared in their
manifest, but for Broadcast Receivers, though, either
in the manifest or at runtime.

For each method in an app’s component, the al-
gorithm detects and extracts Intents and Intent Fil-
ters, as shown in lines 8–10. Android API reference
documentation [15] is used in this step to associate
specific entities to framework-provided APIs defining
or manipulating these entities. In the motivating ex-
ample (Section 3), samples of entities are identifiable:
an Intent entity is created in line 12 of Listing 1;
the framework API getIntent is called in line 13 of
Listing 2.

Intents and Intent Filters extracted this way need
to be further analyzed to obtain additional infor-
mation about their attributes. To that end, Model
Extractor iterates over each method of the app and
calls identifyIFEntity, which applies a summary-
based iterative data-flow analysis [16] to detect en-
tities and their attributes. For each Intent message,
for example, it tracks the message’s sender, the target
component, the type of action it has (if any), data to be
processed by the action, and categories of components
that should handle the Intent. Note, however, that the
values of attributes are resolved through an additional
analysis described later in this section.
identifyIFEntity computes a method summary

for each analyzed method. The method summary
describes information about entities that can be in-
ferred from a method. Method summaries make entity
resolution inter-procedural, allowing an entire app to
be analyzed. Methods are analyzed in reverse topo-
logical order with respect to the app’s call graph so
that a given method’s summary is computed before
any methods that call it are analyzed. Cycles in the
call graph (e.g., from recursion) are handled in the
standard manner, by treating the involved methods
as one “super method.”

The details of identifyIFEntity are shown in
Algorithm 2. identifyIFEntity outputs the set
IFEntities , which contains identified Intents and In-
tent Filters that are defined and utilized in the An-
droid app’s source code. There are four types of
statements that need to be considered to retrieve

Fig. 2: Extracted models for the apps described in
Listings 1 and 2 at different steps of analysis.

entity properties: (1) statements that create an entity,
(2) statements that set the attributes of an entity, (3)
statements that consume an entity, and (4) statements
that invoke non-Android API methods.

The first type of statement, handled in lines 10–15
of Algorithm 2, correspond to the APIs creating an
entity (e.g., through the constructors). In this case, the
newly-created entity is added to the gen set in order
to be used in the other cases; any entities that are
reassigned are added to the kill set to prevent further

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

propagation of such entities; and IFEntities is updated
with the new entity.

The second type of statement, handled by the case
of lines 16–19, are the ones that set the attributes
of the entity under consideration (i.e., the action,
category, data, and target attributes). For example,
Intent.setClassName() sets the target compo-
nent for the given Intent.

The third type of statement, handled in lines 20–23
of Algorithm 2, correspond to the APIs that consume
entities. Entities are consumed in different ways. An
Intent, for example, is consumed when it is sent to
a component: startActivity(Intent) launches a
new Activity by sending an Intent that carries the
Activity’s description. An Intent Filter, however, is
consumed when it is used in registering a Broadcast
Receiver. Since the attributes of an entity cannot be
set after consumption, the consumed entity is added
to the kill set.

Finally, for method calls that are not part of the
Android API, identifyIFEntity utilizes the sum-
mary of an invoked method to determine the en-
tities and their attributes that are computed in the
method (lines 24–26 of Algorithm 2). In particular,
identifyIFEntity utilizes the summary of the
method invoked in the program statement stmt under
analysis to update the gen, kill, and IFEntities sets.
For example, in line 16 of Listing 2, the non-Android
API method makePhoneCall is invoked, where a
new Intent is created with action and data attributes.
identifyIFEntity utilizes the method summary
for makePhoneCall to determine that the invocation
of that method results in the creation of a new Intent
with action ACTION CALL and a data attribute. In
this case, updateFromSummary adds this new Intent
to the gen and IFEntities sets so that the new Intent
is recorded and will be propagated by the data-flow
analysis. The kill set is not modified in this case since
the new Intent is not assigned to an already-defined
Intent reference.

For aliasing in the case of entities and their at-
tributes, we utilize class hierarchy analysis [16], which
produces accurate results for our purposes (as shown
in Section 7). However, our algorithm can subsitute
the class hierarchy analysis for a more precise anal-
ysis (e.g., a points-to analysis), possibly trading off
efficiency for precision.

The overall algorithm (line 11 of Algorithm 1) then
calls resolveEntityAttr to resolve the values as-
sociated with the retrieved entity attributes (e.g., the
action, categories, and data types of Intents). To do
this, it uses string values obtained from string con-
stant propagation [16], which provides a precise solu-
tion since, by convention, Android apps use constant
strings to define these values. In cases where a string
variable’s value cannot be determined statically, we
take a conservative approach and assume the value to
be any string. Despite this conservative approach, our

Algorithm 2: identifyIFEntity
Input: method, summaries
Output: IFEntities

1 IFEntities ← {}
2 gen[entry]← {entities passed as parameters to method}
3 workList← {all statements of method}
4 repeat
5 stmt← workList.head
6 foreach stmt′ ∈ pred(stmt) do
7 in[stmt]← in[stmt] ∪ out[stmt′]
8 end
9 switch stmt.type do

10 case Intent or Intent Filter Constructors
11 entity ← corresponding entity of statement
12 gen[s]← {entity}
13 kill[s]← set of reassigned entities
14 IFEntities ← {entity} ∪ IFEntities
15 end
16 case Entity Attribute Assignment
17 entity ← corresponding entity of statement;
18 updateAttr(entity)
19 end
20 case Intent Sender or Intent Filter Registration
21 entity ← corresponding entity of statement
22 kill[s]← {entity}
23 end
24 case Non-Android API Method Call
25 updateFromSummary(gen, kill, IFEntities ,

summaries)
26 end
27 endsw
28 prevOut← out[stmt]
29 out[stmt]← (in[stmt] \ kill[stmt) ∪ gen[stmt]
30 if prevOut 6= out[stmt] then
31 workList← workList ∪ succ(stmt)
32 until workList = ∅;
33 summarize(gen, kill, IFEntities , summaries)

evaluation results (see Section 7) show our technique
to be significantly precise, while remaining scalable.

It is also possible that a property is disambiguated
to more than one value. For instance, consider our
running example, the Intent action could be as-
signed to two different values at runtime, namely
“PHONE_CALL” and “PHONE_TEXT_MSG” defined on
lines 6 and 8 of Listing 1, respectively. We take a
conservative approach to handle such an issue and
generate a separate entity for each of these values, as
they contribute different exposure surfaces or event
messages in the case of Intent Filters and Intents,
respectively.

Figure 2b shows the extracted model corresponding
to our running example (recall Section 3) at this stage
of analysis. In this particular example, Intents, as
well as their properties (not depicted), are the only
additional entities extracted from the bytecode. For
clarity of presentation, Figure 2b only depicts the
Intents relevant to the vulnerability in our example.

5.2 Control Flow Augmentation
Subsequent to extracting entities, Model Extractor
needs to determine control flow between methods in
order to detect vulnerabilities for privilege escalation.
To that end, Model Extractor constructs an inter-
procedural control-flow graph (ICFG) of the entire

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

application. An ICFG is a collection of control-flow
graphs (CFGs) connected to each other at call sites.

However, due to the event-driven structure of the
Android platform, the traditional ICFG generation
methods do not connect CFGs at call sites corre-
sponding to implicit invocations. To generate an ICFG
that takes implicit invocation into account, we need
to include call-backs of an app. These are Android-
API methods that no other part of the application
explicitly invokes.

To connect the CFGs over implicit calls, we tra-
verse the nodes of each CFG in a depth-first man-
ner, and connect all implicit invocation nodes with
the corresponding call-back nodes. For example, in
lines 11–15 of Listing 1, an anonymous inner-class
is defined within the onCreate method to han-
dle the Click events triggered by the btnOk button.
Thus, an edge is added to the app’s ICFG from the
setOnClickListener invocation to the entry point
of onClick.

Figure 2c shows some parts of ICFGs extracted for
each of the apps from Section 3. Here, the dashed
line between nodes M© and N© indicates an implicit
invocation.

5.3 Vulnerable Paths Identification

The last step is to determine if there is a path from
each component’s IPC entry point to an invocation
of a permission-required functionality that is either
inappropriately-guarded or unguarded, which may
lead to IPC vulnerabilities. For this purpose, COVERT
leverages the reachability analysis described in Algo-
rithm 3.

Here, the entry nodes are IPC calls, which rep-
resent methods in a component that handle Intents
generated by other components or the Android frame-
work itself. Specifically, all app components, including
Activities and Services, are required to follow pre-
specified lifecycles [17] managed by the framework in
an event-driven manner. Each component, thus, regis-
ters event handlers that serve as the IPC entry points
through which the framework starts or activates the
component once handled events occur. An Activity,
for example, generates a StartActivity event that
results in another Activity’s onCreate() method to
be called. Moreover, for each entry node, the corre-
sponding component definition in the manifest file is
also examined to ensure the component is public (line
5 of Algorithm 3). Recall from Section 2, a component
is public, if its specification sets the EXPORTED flag or
declares Intent filter(s).

The destination nodes are defined as permission-
required API calls or Intent messages that are not
properly checked. As shown in lines 7–11, to de-
termine destination nodes, for each node in ICFG,
tagCheckedPerm marks it with two tags: (1) Reqprm
tag denotes that a statement is called at the node

Algorithm 3: findVulPaths
Input: C: set of Components, ICFG
Output: Vulnerable Paths

1 Entry ← {}
2 Dest← {}
3 foreach c ∈ C do
4 if isPublic(c) then
5 Entry ← Entry ∪ getEntryPoints(c)
6 end
7 foreach n ∈ ICFG do
8 tagCheckedPerm(n)
9 if n.hasTag(Reqprm) ∧ !n.hasTag(Checkprm) then

10 Dest← Dest ∪ n
11 end
12 return pathFinder(Entry,Dest, ICFG)

under consideration that requires a particular permis-
sion of “prm”; and (2) Checkprm tag shows the node
is guarded by permission “prm” checking. Thus, a
vulnerable destination node is a node tagged with
Reqprm but not with the corresponding Checkprm tag.

To identify Reqprm tags, tagCheckedPerm uses
API permission maps available in the literature, and in
particular the PScout permission map [18], one of the
most recently updated and comprehensive permission
maps available for the Android framework. PScout
specifies mappings between Android API calls/In-
tents and the permissions required to perform those
calls. The nodes tagged as permission-required are
distinguishable in Figure 2d by ! sign. For example,
node F© is a tagged node as it uses Telephony API that
requires CALL_PHONE permission.

Identifying and applying Checkprm is trickier, since
permission enforcement for a component could be
defined at two levels. While the coarse-grained per-
missions specified in the manifest file are enforced
over a whole component, a developer can also add
permission checks throughout the code controlling
access to particular aspects of a component. The for-
mer can be readily checked using the information
extracted from the manifest file (recall Section 5.1),
but the latter requires further program analysis.

To determine permission-check API invocations
that act as guards in code, tagCheckedPerm lever-
ages a context-sensitive analysis (i.e., it considers the
calling context of a method call) that handles the two
most common cases. The first case occurs when a
permission-check API is called directly. For the second
case, tagCheckedPerm determines if a statement
invokes a method that results in a call to a permission-
check API (e.g., the commented permission check on
line 15 of Listing 2). To handle aliasing in this case,
tagCheckedPerm utilizes class hierarchy analysis,
which has proven sufficiently precise for our pur-
poses.

Once entry and destination nodes are identified,
findVulPaths determines the paths between them (line
12 of Algorithm 3). To achieve high precision in de-
termining paths between entry and destination nodes,
our approach is context-sensitive. In the interest of

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

scalability, COVERT’s analysis, however, is not path-
sensitive (i.e., the analysis does not distinguish in-
formation obtained from different paths). The results
(see Section 7) indicate no significant imprecision
caused by path-insensitivity in the context of Android
vulnerability analysis.

Components that contain an entry → destination
path, returned by findVulPaths, are vulnerable to var-
ious inter-app attacks. For instance, in Figure 2d the
red-colored path of < A©, B©, D©, F© > is vulnerable, as
there is a path from an entry node A© to an invocation
of a permission-required API (i.e., Telephony API).
As shown in Listing 1, a malicious app can exploit
this vulnerability and call the Telephony API without
having the proper privilege.

To achieve scalable, yet precise alias analysis for
identifying vulnerable paths, we perform an on-
demand alias analysis [19]. More specifically, instead
of applying the analysis to all variables, only the
variables utilized at statements invoking source or
sink methods are considered for analysis during
vulnerable-path identification.

The Model Extractor produces an extended-
manifest file for each Android application. This
extended-manifest, documented in an XML format,
encompasses all information extracted from both the
app bytecode as well as the app manifest file. Once
an app model is extracted, it can then be reused for
analysis within several bundles of apps. Given a set of
extended-manifest files corresponding to a bundle of
apps, COVERT generates a package of Alloy modules,
which in turn enables their compositional analysis.
The next section details the structure of generated
Alloy models.

6 FORMAL ANALYZER

In this section we show that our ideas for compo-
sitional, formal, and automated analysis of Android
apps can be reduced to practice. Our approach au-
tomatically transforms the models derived through
static analysis into an analyzable specification lan-
guage, and verifies them against certain properties
using the automated analyzers associated with such
languages. As an enabling technology, we use the
Alloy language [10], to represent a model of Android
framework, application models, and to-be-analyzed
properties.

There are four main reasons that motivate our
choice of Alloy for this work. First, its comprehen-
sible, object-oriented-like syntax, backed with logical
and relational operators, makes Alloy an appropriate
language for declarative specification of both appli-
cations and properties to be checked (i.e., assertions).
Second, its ability to automatically analyze specifica-
tions with no custom programming is useful as an
automation mechanism.

Third, and more importantly, its effective module
system allows us to split the overall, complicated sys-
tem model among several tractable modules. A simple
module system is not only convenient, but is an
important part of our approach, as it enables effective
compositional analysis of, among other things, im-
penetrable scenarios, where for example a malicious
app can leverage a chain of vulnerable components
to leak sensitive data or to perform actions that are
beyond its individual privileges. Android apps and
properties to be checked are strictly separated and
modularized in different specifications, which further
facilitates reusability of such specifications, and this
is clearly where much of the power of our work
comes from. Specifically, Android framework speci-
fication, application specifications, and specifications
of vulnerabilities to be analyzed are all reusable, and
this paper shows the promise of paying a one-time
cost to formally specify them to enable compositional
analysis of Android vulnerabilities.

Lastly, the extraction approach we take in COVERT
to generate bundle specifications is incremental. More
specifically, the Model Extractor produces a separate
extraction-output file for each Android application,
independent of other apps in the bundle. The set of
extracted app models are then combined together to
check for inter-app vulnerabilities. Hence, once an app
model is extracted, it can then be reused for analysis
within several bundles of apps. That means to add,
update or remove an app from the bundle, we only
need to add, update, or remove information for that
particular app.

To appreciate COVERT’s approach, consider that
an alternative approach is to detect the inter-app
vulnerabilities by performing the program analysis
on a whole set of apps simultaneously. But such
an approach suffers from two shortcomings. First,
it would face serious scalability issues, as a typical
mobile device may have tens or hundreds of apps
installed on it, and the analysis space grows expo-
nentially with the number of apps to-be-analyzed.
Second, it would require such a complex analysis to
be performed every time any of the apps are updated,
added, and removed. COVERT does not suffer from
the same shortcomings because it analyzes the apps in
isolation, and relies on the declarative power of formal
specification languages (namely Alloy) to separate
the various models needed for the analysis, thereby
facilitating reuse of the models as well as the results.

In the rest of this section, we first provide a brief
overview of Alloy, and then describe how we use it
in modeling and thereby analysis of Android applica-
tions.

6.1 Alloy Overview

Alloy is a formal modeling language with a compre-
hensible syntax that stems from notations ubiquitous

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

in object orientation, and semantics based on the first-
order relational logic [10]. The Alloy Analyzer is a
constraint solver that supports automatic analysis of
models written in Alloy. The analysis process is based
on a translation of Alloy specifications into a Boolean
formula in conjunctive normal form (CNF), which is
then analyzed using off-the-shelf SAT solvers.

The analyzer provides two types of analysis: Sim-
ulation, in which the analyzer demonstrates consis-
tency of model specifications by generating a sat-
isfying model instance; and Model Checking, which
involves finding a counterexample—a model instance
that violates a particular assertion. We use the former
to compute model instances, represented as satisfy-
ing solutions to the combination of models captured
from app implementations. This shows the validity of
such extracted models, confirming that the captured
models are self-consistent, mutually compatible and
consistent with the Android specifications modeled in
a separate module. The latter is used to verify security
properties of interest within the models.

The Alloy Analyzer is a bounded checker, so a
certain scope of instances needs to be specified. The
scope, for example, states the number of app com-
ponents. The analysis is thus performed through ex-
haustive search for satisfying instances within the
specified scopes. As a result, the analyzer is sound
and complete within such scopes. To take advantage
of partial models, the latest version of the analyzer
uses KodKod [20] as its constraint solver so that it
can support incremental analysis of models as they
are constructed. The generated instances are then
visualized in different formats such as graph, tree
representation or XML.

The essential constructs of the Alloy modeling lan-
guage include: Signatures, Facts, Predicates, Functions
and Assertions. Signatures provide the vocabulary of
a model by defining the basic types of elements and
the relationships between them. Facts are formulas
that take no arguments, and define constraints that
any instance of a model must satisfy. Predicates are
parameterized and reusable constraints that are al-
ways evaluated to be either true or false. Functions
are parameterized expressions. A function similar to
a predicate can be invoked by instantiating its pa-
rameter, but what it returns is either a true/false or
a relational value instead. An assertion is a formula
required to be proved. It can be used to check a certain
property of a model.

6.2 Formal Model of Android Framework

To carry out the verification analysis, we begin by
defining a common Alloy module, androidDeclaration,
that models the Android application fundamentals
(e.g., application, component, intent, etc.) and the
constraints that every application must obey. Techni-
cally speaking, this module can be considered as a

1 module androidDeclarat ion
2
3 a b s t r a c t s i g Appl icat ion{
4 usesPermissions : s e t Permission ,
5 appPermissions : s e t Permission
6 }
7 a b s t r a c t s i g Component{
8 app : one Applicat ion ,
9 i n t e n t F i l t e r s : s e t I n t e n t F i l t e r ,

10 permissions : s e t Permission ,
11 paths : s e t Path
12 }
13 a b s t r a c t s i g I n t e n t F i l t e r {
14 a c t i o n s : some Action ,
15 data : s e t Data ,
16 c a t e g o r i e s : s e t Category ,
17 }
18 f a c t I n t e n t F i l t e r C o n s t r a i n t s{
19 a l l i : I n t e n t F i l t e r | one i . ˜ i n t e n t F i l t e r s
20 no i : I n t e n t F i l t e r | i . ˜ i n t e n t F i l t e r s in Provider
21 }
22 a b s t r a c t s i g I n t e n t{
23 sender : one Component ,
24 component : lone Component ,
25 a c t i o n : lone Action ,
26 c a t e g o r i e s : s e t Category ,
27 data : s e t Data ,
28 }
29 a b s t r a c t s i g Path{
30 entry : one Resource ,
31 d e s t i n a t i o n : one Resource
32 }
33 a b s t r a c t s i g Permission{}

Listing 3: Alloy specifications of essential Android
application elements.

meta-model for Android applications. It is manually
constructed once and does not change, unless there
are substantial changes in the way Android operates.

Listing 3 partially outlines androidDeclaration mod-
ule, representing Android application fundamentals
in Alloy. The essential element types (cf. Def. 1) are
defined as top-level Alloy signatures. As mentioned
earlier, a signature introduces a basic element type
and a set of its relations, called fields, accompanied by
the type of each field.

There are six top-level signatures to model the
basic element types: Application, Component,
IntentFilter, Intent, Path, and Permission.
Note that these signatures are defined as abstract,
meaning that they cannot have an instance ob-
ject without explicitly extending them. Contain-
ment relations (e.g., between Applications and
Permissions) are defined as Alloy relations.

According to lines 4–5, the Application signa-
ture contains two fields of usesPermissions and
appPermissions that identify two sets of permis-
sions, representing PReq and PEnf , respectively (cf.
Def. 1).

The app field within the Component signature (line
8) identifies the parent application that a component
belongs to. The keyword one states that every Com-
ponent object is mapped to exactly one Application
object. Signature declarations of four core component
types, namely Activity, Service, Receiver and Provider,
extend the Component signature. In the interest of
space, their specifications are omitted from Listing 3.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

A component may have any number of filters, each
one describing a different interface of the component.
Such filters are captured by the intentFilters
field (line 9). The permissions field represents a set
of permissions required to access a component. The
paths field then indicates vulnerable paths within a
component.

The IntentFilter signature contains three fields
of actions, data and categories. The multi-
plicity keyword some in Alloy denotes that the de-
clared actions relation contains at least one ele-
ment, and the keyword set tells Alloy that data and
categories map each IntentFilter object to zero
or more Data and Category objects, respectively.

Properties of the IntentFilter signature are declared
as a fact paragraph (lines 18–21). The ∼ operator
denotes the relational inverse operation, forming a
new relation by reversing the order of atoms in each
tuple of the relation. The statement of line 18, thus,
states that each IntentFilter belongs to exactly
one Component. Out of four core component types,
three of them can define IntentFilters. To exclude
Content Providers from having IntentFilters, we
add a separate fact constraint specification, repre-
sented in line 20.

The Intent signature contains five fields
of sender, component, action, data and
categories. The first one denotes the component
sending the intent. The component field identifies
the recipient component. The keyword lone indicates
that this element is optional, and an Intent may have
one or no declared recipient component. Recall from
Section 5, if it maps to a non-empty set, the Intent
object is called an explicit Intent. The Android intent-
resolver delivers explicit Intents to the designated
component, without considering other information
of the Intent object.

To determine to which component an implicit
Intent—one that does not specify any recipient
component—should be delivered, three elements of
action, data, and categories are consulted. The
action filed names the general action to be per-
formed in the recipient component. The data field
indicates additional information about the data to
be processed by the action, and each Data instance
consists of both the URI of the data to be acted on and
its MIME media type. Finally, the categories field
indicates the kind of component that should handle
the Intent object. Each of these elements corresponds
to a test, in which the Intent’s element is matched
against that of the IntentFilter. An IntentFilter may
have more actions, data, and categories than the In-
tent, but it cannot contain less.

We define the entry and destination fields of
the Path signature based on canonical permission-
required resources identified by Holavanalli et al.
for Android applications [21]. Examples of entry
and destination resources are NETWORK, IMEI, and

Fig. 3: A vulnerability identified by COVERT for the
apps described in listings 1 and 2. The red lines and
nodes indicate the vulnerable path.

SDCARD. Among others, the permission NETWORK,
for example, allows the app to access the Internet,
through either WIFI or cellular network. In addition
to permission domains, the IPC mechanism augments
both entry and destination sets, which allows apps to
provide services to one another. Figure 3 shows a path
identified in VicApp with an IPC as publicly accessible
entry point.

Finally, the last top-level signature is Permission.
COVERT captures both the system-defined
permissions—declared within the system’s Android
Manifest—and application-defined permissions—
declared within the application manifest file, and
documents them as a separate Alloy model shared
between Alloy modules of all apps.

6.3 Formal Model of Apps

Three pieces of Alloy specifications are conjoined in
the process of modeling various parts of Android
apps extracted from their APK files. First, a specifi-
cation module, called appDeclaration, that documents
basic element types, such as Action, Category and
Permission, shared between Alloy models of all apps.
Second, an app model, comprising Components that
constitute the app, IntentFilters of each Component, as
well as required and enforced Permissions of the app.
This model is represented in a separate Alloy module
for each app. Third, an inter-process communication
(IPC) module that models all Intent messages created
within the apps under consideration. All these models
rely on the Android framework specification module,
presented in the previous Section.

We use snippets of the running example (cf. Sec-
tion 3) to explain each piece of our formal model. Let
us begin with the appDeclaration module.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

module appDeclarat ion

open androidDeclarat ion

one s i g MAIN extends Action{}
one s i g CALL PHONE extends Permission{}
. . .

Listing 4: Part of the declaration of basic element
types automatically extracted from Android apps.

Consider the portion of the appDeclaration module,
shown in Listing 4. At the top, the specification im-
ports the Alloy module for the Android framework.
It then declares MAIN to be a singleton subset of
Action. Typically, one activity in an app is speci-
fied as the “main” activity, declaring it as the main
entry point to the app, and presented to the user
when launching the app. In a signature declaration,
the keyword one specifies the declared signature to
contain exactly one atom, thereby restricting the sig-
nature to be unique. This naming scheme allows us
to reuse the term MAIN when we want to declare the
main activity of each application. The next statement
represents a permission example declared in a similar
way. For the sake of clarity, we use the permissions’
shorthand in our Alloy model. For example, here we
use CALL_PHONE to model the particular permission
of android.permission.CALL_PHONE.

Listing 5 partially delineates the generated spec-
ification for the malicious app shown in List-
ing 1. It starts by importing the appDeclaration mod-
ule (line 3), and then the MalApp is declared
as an extension of the Application signature.
This app does not declare any permission neither
as required (usesPermissions) nor as enforced
(appPermissions). The MalApp has a Component
of type Activity, named CallerActivity, which
declares an IntentFilter with MAIN and LAUNCHER

1 module MalApp
2
3 open appDeclarat ion
4
5 one s i g MalApp extends Appl icat ion{}{
6 no usesPermissions
7 no appPermissions
8 }
9

10 one s i g C a l l e r A c t i v i t y extends A c t i v i t y{}{
11 app in MalApp
12 i n t e n t F i l t e r = I n t e n t F i l t e r 1
13 no permissions
14 no paths
15 }
16
17 one s i g I n t e n t F i l t e r 1 extends I n t e n t F i l t e r {}{
18 a c t i o n s = MAIN
19 c a t e g o r i e s = LAUNCHER
20 no data
21 }

Listing 5: Part of the generated specification for
Malicious app shown in Listing 1.

1 module VicApp
2
3 open appDeclarat ion
4
5 one s i g VicApp extends Appl icat ion{}{
6 usesPermissions = CALL PHONE
7 no appPermissions
8 }
9

10 one s i g PhoneActivity extends A c t i v i t y{}{
11 app in VicApp
12 i n t e n t F i l t e r = I n t e n t F i l t e r 2
13 no permissions
14 paths = path1
15 }
16
17 one s i g path1 extends Path{}{
18 entry = IPC
19 d e s t i n a t i o n = PHONECALL
20 }

Listing 6: Part of the generated specification for
Victim app shown in Listing 2.

settings, marking it as the main activity of the app.
The code snippet of Listing 6 represents the gener-

ated specification for the Victim app shown in List-
ing 2. The VicApp has access to the CALL_PHONE
permission (line 6), but declares no permission re-
quirement for other apps to access its own Compo-
nents (line 7). This app specification then declares the
PhoneActivity component, exposing a vulnerable
path (path1) from its entry point to a permission
required resource (PHONECALL), as represented in
Figure 3.

Application interactions in Android occur through
Intent messages. We record the interactions among
app Components in a separate Alloy module, called
IPC. The code snippet shown in Listing 7 represents
part of the generated specification for the IPC module.
After importing modules of the involved apps (lines
3–4), the specification in lines 6–12 models the Intent
of Listing 1, where the CallerActivity Component
sends an explicit Intent (i.e., intent1 as shown in
Figure 3) to the PhoneActivity Component, with
specified action to be performed and with extra data.

1 module IPC
2
3 open VicApp
4 open MalApp
5
6 one s i g i n t e n t 1 extends I n t e n t{}{
7 sender = C a l l e r A c t i v i t y
8 component = PhoneActivity
9 a c t i o n = PHONE CALL

10 no c a t e g o r i e s
11 extraData = Yes
12 }
13 . . .

Listing 7: Part of the generated inter-component
communication module.

6.4 Checking Android Application Models
The previous sections present a formal model of
Android framework (Section 6.2), developed as a

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

reusable Alloy module to which extracted app models
conform (Section 6.3). Here, we describe the essence
of this work: how one can use the power of pro-
posed formal abstractions to perform the composi-
tional analysis of Android apps.

To that end, we develop assertions that model a set
of security properties required to be checked. These
assertions express properties that are expected to hold
in the extracted specifications. Similar to Android
specification, vulnerability assertions are manually
constructed once and do not change, unless there are
substantial changes in Android that resolve or modify
the known types of inter-app vulnerabilities.

Considering the privilege escalation, Davi et al. [22]
state it as follows: “An application with less permis-
sions (a non-privileged caller) is not restricted to access
components of a more privileged application (a privileged
callee).” Listing 8 formally expresses the privilege
escalation assertion in Alloy. In short, the assertion
states that the dst component (victim) has access to
a permission (usesPermission) that is missing in
the src component (malicious), and that permission
is not being enforced in the source code of the victim
component, nor by the application embodying the
victim component. Recall from Section 5 that there
are two ways of checking permissions in Android.

1 a s s e r t p r i v i l e g e E s c a l a t i o n{
2 no d i s j src , dst : Component , i : I n t e n t |
3 (s r c in i . sender) &&
4 (dst in s r c . ˆ t r a n s i t i v e I P C) &&
5 (some p : dst . app . usesPermissions |
6 not (p in s r c . app . usesPermissions) &&
7 not ((p in dst . permissions) | | (p in dst . app .

appPermissions)))
8 }

Listing 8: privilegeEscalation specification in Alloy.

To address a situation, in which more than two
components are involved in the privilege escala-
tion, the assertion relies on the specification of the

1 fun t r a n s i t i v e I P C : Component −> Component {
2 { src , dst : Component | some i : In tent , d : Path |
3 (s r c in i . sender) &&
4 (dst in i n t e n t R e s o l v e r [i]) && some dst . paths
5 }
6 }
7
8 fun i n t e n t R e s o l v e r (i : I n t e n t) : s e t Component{
9 {c : Component | some i . component

10 impl ies {c = i . component}
11 e l s e { some f : I n t e n t F i l t e r |
12 f . ˜ i n t e n t F i l t e r in c
13 && i . a c t i o n in f . a c t i o n s
14 && i . c a t e g o r i e s in f . c a t e g o r i e s
15 && (i . data . u r i = f . data . u r i
16 && i . data . type = f . data . type) }
17 }
18 }

Listing 9: IntentResolver and transitiveIPC
specifications in Alloy.

transitiveIPC function, shown in Listing 9. The
operator “ˆ” represents transitive closure. The expres-
sion src.ˆtransitiveIPC thus represents the set
of all components reachable from src following one
or more IPCs. The transitiveIPC itself relies on the
specification of an intentResolver function. The
Component, Intent and IntentFilter signatures are spec-
ified such that they have all the necessary attributes
required for Intent resolution. We thus describe intent-
resolver as a function augmenting the aforementioned
androidDeclaration module. This function takes as in-
put an Intent and returns a set of Components that
may handle the Intent under consideration. Given
the Intent is explicit, it should be delivered to the
recipient identified by the component field of the
Intent (line 10). Otherwise, the resolver checks Com-
ponents’ IntentFilters to find those whose elements
are matched against the given Intent. Specifically, an
implicit Intent must pass a matching test with respect
to each of the action, data, and categories elements
on the IntentFilters bound to a component (as stated
in lines 13–16). Seeing that a component can define
multiple IntentFilters, an Intent that does not match
one of a component’s IntentFilters may match another
(lines 11–12).

If an assertion does not hold, the analyzer reports
it as a counterexample, along with the information
useful in finding the root cause of the violation.
Counterexample is a particular model instance that
makes the assertion false. Given our running example,
the analyzer automatically generates the following
counterexample:

. . . // omitted d e t a i l s of model i n s t a n c e s
p r i v i l e g e E s c a l a t i o n s r c ={MalApp/ C a l l e r A c t i v i t y}
p r i v i l e g e E s c a l a t i o n d s t ={VicApp/PhoneActivity}
p r i v i l e g e E s c a l a t i o n i ={ i n t e n t 1}
p r i v i l e g e E s c a l a t i o n p ={appDeclarat ion/CALL PHONE}

It states that the VicApp/PhoneActivity compo-
nent has access to the CALL_PHONE permission, and
is resolved by the formal analyzer as the receiver of
intent1 (as shown by a dashed line in Figure 3), which
is being sent by the MalApp/CallerActivity com-
ponent lacking access to the CALL_PHONE permission.
The generated counterexample confirms that the com-
position of Victim and Malicious apps could result in
privilege escalation.

7 EMPIRICAL EVALUATION
To assess the effectiveness of our approach in re-
vealing Android inter-app vulnerabilities, we have
conducted an evaluation that addresses the following
research questions:

RQ1. What is the importance of this research?
To what extent are Android apps overprivi-
leged and unsafe due to usage of permission-
required APIs?

RQ2. How well does COVERT perform? Does it
enable compositional analysis of real-world

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

Fig. 4: Distribution of apps selected from the Google
Play repository.

Android apps? How much manual effort is
involved in the analysis process?

RQ3. What is the overall accuracy of COVERT in
detecting inter-app vulnerabilities?

RQ4. How does compositional analysis compare
to single app analysis?

RQ5. What is the performance of our prototype
tool implemented atop SAT solving tech-
nologies and static analyzers?

Our experimental subjects are a set of Android
apps drawn from four different app repositories. The
first sample set consists of a snapshot of the top 100
popular free apps, available on the Google Play [23]
in late November 2013. Our second set of test subjects
is representative of open source apps, and includes
300 apps collected from the F-Droid open source
repository [24]. To cover the apps available in third-
party repositories, we also included 50 apps from
Bazaar [25], a local app store, as the third set. The
fourth one is a collection of 50 malicious apps identi-
fied by the MalGenome project [26].

Figure 4 illustrates the distribution of apps from
Google Play repository that were used in our experi-
ments, showing that they are sufficiently diverse, from
different categories, and representative of what one
can find installed on a typical device. For brevity,
we do not show the distribution of apps from other
repositories that have different set of categories, but
the apps selected from these other repositories were
similarly diverse.

To answer RQ1, we examine all of the aforemen-
tioned subject apps, to obtain some evidence as to
the likelihood of encountering privilege escalation
vulnerability in the apps that are available in such
markets (§ 7.1).

To address RQ2, we partition the set of apps under
study into 10 bundles, each containing 50 apps from
three repositories, except the last bundle whose apps
are only from the open source repository to enable
manual analysis. These bundles simulate collections

of apps installed on end-user devices, and we use
them to conduct 10 independent experiments. We then
report and analyze the experimental results (§ 7.2).

To evaluate the accuracy of warnings reported by
COVERT (RQ3), we randomly select 50 apps from the
F-Droid open source apps and run our prototype tool
on them. We then manually analyze each warning to
detect the rate of tool error, i.e., false positive (§ 7.3).

To address RQ4 (single vs. compositional app anal-
ysis), we adopt a set of practical security rules, called
Kirin rules, for Android apps from Enck et al. [6], and
formally model each of these rules in such a way that
enables their applications for both “compositional”
analysis as well as analysis of each “single” app in iso-
lation. We then analyze all the apps in the Malgenome
repository against these rules, and compare the results
of single and compositional app analysis (§ 7.4).

To address RQ5 (performance benchmarks), we
measure the computation time required for both
model extraction and formal analysis activities (§ 7.5).

We use the COVERT apparatus we developed based
on the approach for carrying out the experiments.
COVERT is implemented as a publicly available tool2.
We have built a prototype implementation of the
model extractor component on top of the Soot [11]
static analysis tools. Soot is developed for analyz-
ing Java bytecode [11]. We thus first use the Dex-
pler transformer [12] to translate Android’s dalvik
bytecode into the Soot’s intermediate representation
language, called Jimple. As a result, our prototype
implementation of the approach only requires the
availability of Android executable files, and not the
original source code. COVERT, thus, can be used not
only by developers, but also by end-users as well as
third-party reviewers. The translation of captured app
models into the Alloy language is implemented using
the FreeMarker template engine [27].

7.1 Significance of Compositional Analysis
Table 1 outlines the amount of permissions requested
by apps in each repository, along with the fraction
of which is actually used through API calls, as well
as enforced—depicted as checked in Table 1—by the
apps. Based on the permission map provided by Au
et al. [18], we analyzed the fraction of permissions
actually needed for API calls performed by the apps
under consideration (cf. Section 5). The result shows
that overall 32% of acquired permissions are necessary
for API calls. This confirms previous studies that
showed many Android apps on the market are over-
privileged [5], [18]. Applications having extraneous
permissions violate the least privilege principle. We
also analyzed what fraction of the obtained permis-
sions are checked either within the app manifest file
or throughout the code. The difference between the

2. Research artifacts and experimental data are available at
http://www.sdalab.com/projects/covert

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 1: Summary of statistical information about
Permissions in subject systems.

Permissions
Repository used checked

1472
GPlay 364 156

(%24.7.1) (%10.6)
1031

F-Droid 505 77
(%49.0) (%7.5)

499
MalGenome 100 5

(%20.0) (%1.0)
305

Bazaar 105 16
(%34.4) (%5.2)

set of used and checked permissions are important
for privilege escalation. The extraneous permissions
that result in overprivilege are not susceptible to
privilege escalation, unless they are actually used by
the permission holders. On average, each app has
about 2 unchecked but used permissions that could
lead to exploitable vulnerabilities. Indeed, such an un-
safe use of permission-required APIs may lead to an
exploitable vulnerability provided that there is a path
from the exported interface of the app component to
the API use. This analysis is the subject of next section.

7.2 Automated Analysis of Applications
The aim of RQ2 is to evaluate the automation level
when using COVERT for compositional analysis of
real-world Android apps, and how much manual ef-
fort is involved in the analysis process. To that end, we
evaluate COVERT on bundles of real-world Android
apps to determine its ability to detect inter-app vul-
nerabilities for privilege escalation. Table 2 summa-
rizes the statistical results obtained through running
COVERT on Android app bundles. The total number
of components defined by the apps in each bundle is
shown in the second column. Overall, Activities,
Services, Broadcast receivers, and Content
providers account for 73%, 11%, 12% and 2% of
components, respectively.

The Intents column delineates the fraction of implic-
it/explicit Intents out of total Intents in each bundle;
on average, about 40% of Intents are implicit, showing
that developers, by and large, make inter-component
communications explicit. This is promising as there is
no guarantee that the implicit Intent will be received
by the intended recipient. The next column represents
the number of components’ interfaces described in
terms of Intent filters.

The Exposed column shows the number of compo-
nent surfaces and permissions unsafely exposed to
other applications. On average, COVERT detects 5 ex-
posed components in each Bundle. Such components
have defined Intent filters that make the components

accept incoming Intents, but do not properly enforce
access permission, neither in the manifest file nor in
the source code. The last column then presents the
total number of warnings generated by COVERT for
applications of each bundle, and each one represents
a unique combination of source and destination com-
ponents that can lead to a privilege escalation.

Note that reported warnings are about potential
security issues. As with other techniques relying on
static analysis, our approach is subject to false posi-
tives, which could be due to two types of failures in
model extraction:

• Strings are used extensively as identifiers in An-
droid apps. Intent properties such as actions, data
types, and permissions are all constructed from
strings, as shown in our examples. Such strings
could also be altered by stateful operations, such
as the append method, which makes their accu-
rate value elicitation quite challenging. In case an
ambiguous value is encountered, during the en-
tity resolution step (Section 5.1), COVERT takes a
conservative approach, and considers all possible
assignable values.

• COVERT performs reachability analysis (Sec-
tion 5.3) to determine the permissions actually
used by each component, thus ignoring permis-
sions that are obtained, but not used. Yet, there
is a possibility that at run-time the permission-
required API call or System Intent is not actually
reached due to some conditional statements, for
example.

The conservative approach we take to deal with
non-determinism thus may introduce unnecessary
false positives. Encouragingly, this automated analysis
still results in a substantial reduction in subsequent
manual analysis. Specifically, less than 1% of applica-
tion components (cf. Table 2, exposed components vs.
total components) require further analysis by users.
Also, the limitations of the static analysis with respect
to, among other things, dynamically loaded code
could lead to false negatives as well. To facilitate
the process of manual analysis, COVERT provides the
location of the potential vulnerability (i.e., filename
and method) within the source code.

The results also confirm that an approach combin-
ing static analysis and model checking is effective in
compositional analysis of Android apps. In this partic-
ular case, the reported vulnerabilities provide crucial
clues to the security analyst tasked with assessing the
security properties of a complex system. Such analysis
is not possible with state-of-the-practice tools (e.g.,
Fortify) that analyze the source code of an application
in isolation.

In the next section, we interpret the results through
manual analysis of a bundle of open-source applica-
tions.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 2: Summary of experimental results obtained from running COVERT over App bundles.

Components Intents Intent Exposed Total
Activities Services Receivers Providers explicit implicit Filters Comps Perms Warnings

691 456
Bundle 1 511 70 91 19 300 156 169 5 10 34

(%73.95) (%10.13) (%13.17) (%2.75) (%65.79) (%34.21)
603 432

Bundle 2 434 76 78 15 302 130 148 7 2 16
(%71.97) (%12.6) (%12.94) (%2.49) (%69.91) (%30.09)

592 312
Bundle 3 425 65 85 17 218 94 185 4 3 25

(%71.79) (%10.98) (%14.36) (%2.87) (%69.87) (%30.13)
582 366

Bundle 4 423 75 71 13 232 134 191 4 9 32
(%72.68) (%12.89) (%12.2) (%2.23) (%63.39) (%36.61)

695 803
Bundle 5 569 61 53 12 408 394 359 2 15 16

(81.88)% (8.78)% (7.63)% (1.73) % (50.81) % (49.07) %
553 528

Bundle 6 445 52 47 9 278 249 225 2 10 15
(80.48)% (9.41)% (8.5)% (1.63) % (52.66) % (47.16) %

352 577
Bundle 7 242 43 62 5 349 227 137 4 16 35

(68.75)% (12.22)% (17.62)% (1.43) % (60.49) % (39.35) %
682 1209

Bundle 8 556 57 62 7 728 480 175 3 5 22
(81.53)% (8.36)% (9.1)% (1.03) % (60.22) % (39.71) %

511 622
Bundle 9 358 71 75 7 251 370 231 5 7 22

(70.06)% (13.9)% (14.68)% (1.37) % (40.36) % (59.49) %
660 527

Bundle 10 496 67 68 29 347 180 132 5 9 30
(%75.15) (%10.15) (%10.3) (%4.39) (%65.84) (%34.16)

7.3 Manual Analysis
We selected 50 applications from the F-Droid open
source repository, and then manually inspected
COVERT’s warnings for these applications to evaluate
how many warnings correspond to real exploitable
vulnerabilities. Statistics of the selected app set are
provided as Bundle 10 in the Table 2. More details
about the apps, including their name and model
can be found on the project site3. In this section,
we present the findings of our manual analysis and
discuss three representative examples in detail.

COVERT generated 30 warnings for the 50 applica-
tions. We manually reviewed all and categorized them
according to the classification provided by Chin et
al. [2], where each warning is classified as a vulnera-
bility, not a vulnerability, or undetermined. We define
a vulnerability to be a component lacking a particular
permission getting access to a functionality requiring
that permission through an interface exposed by a
vulnerable component. In order to detect vulnerabili-
ties, we reviewed the application source code of both
sides (sender and destination) for each warning.

Among the 30 reported warnings, we discovered
18 definite vulnerabilities. This represents a 60% true
positive rate, which is superior to the prior tech-
nique [2], that aimed to identify inter-app vulnera-
bilities by analyzing the source code of each app in
isolation, with a true positive rate of 27.6%. More

3. http://www.sdalab.com/projects/covert

interestingly, of the 5 application components iden-
tified as exposing permissions, all contain at least 1
exploitable vulnerability.

In the rest of this section, we describe a few rep-
resentative applications and the vulnerabilities we
discovered in them.

Case 1: Aard Dictionary → Podax.
The first app is Aard Dictionary, a simple dic-

tionary and an offline Wikipedia reader. It defines a
WebViewClient interface for handling incoming urls,
and creates and sends an implicit Intent with the VIEW
action, should the scheme of the given url matches
with one of the specified schemes, such as http, https
and ftp.

On the other hand, the app bundle contains the
Podax app, a podcast downloader and player appli-
cation. This app accepts Intents with the VIEW action,
and http scheme, which in turn can lead to message
passing between the two apps. While the first app that
sends the Intent does not have the INTERNET permis-
sion, the recipient app (Podax) has. In addition, the
Podax app does not check whether the caller has the
appropriate permission. This combination, thus, gives
rise to a privilege escalation vulnerability.

The sender app here is benign, but if it was mali-
cious it could use the other app’s unprotected capa-
bility, which may lead to some security risks, such as
phishing, by bringing up a web page and enticing the
user to enter payment or other private information.

Case 2: Binaural beats therapy → Ermete SMS.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Ermete SMS is a free web-based text messag-
ing application that has WRITE_SMS permission.
An Activity component of this application ex-
poses an unprotected interface that receives Intents
with SEND action. Upon receiving an Intent, the
ComposeActivity component extracts the payload
of the given Intent, and sends that data via text mes-
sage to a number specified in the payload, without
checking the permission of Intent sender.

The other app, Binaural beats therapy, is de-
signed for relaxation, creativity and many other de-
sirable mental states. This app does not have the
WRITE_SMS permission, but it sends an Intent with
SEND action and text/plain payload data, which could
be received by the first app. This case represents a
false positive as the Intent sent by the Binaural
beats therapy app does not actually contain the
fields required by Ermete SMS to send a text mes-
sage, but points to an important security risk, where
a malicious app could use the exposed messaging
service.

Case 3: PurpleDock → RMaps.
RMaps is an on- and off-line navigation

tool. In addition to GPS permissions like
ACCESS_FINE_LOCATION, it has INTERNET
permissions to work with online maps such as
Google and Microsoft maps. This application exposes
an activity, which receives VIEW Intents with geo
scheme, a URI scheme for geographic locations. On
the other hand, PurpleDock is a simple app that
automatically turns on when the handset is placed
into the car mount, and provides navigation as one
of its features.
RMaps’s geo Intents are intended for internal use,

and other applications, including PurpleDock that
sends a geo message via Intent, should not be able to
control locations shown by the app interface. How-
ever, with the current implementation, as it does
not check the permission of Intent senders, the ex-
posed component can be manipulated by a malicious
application for GPS spoofing (i.e., display a wrong
location).

7.4 Compositional vs. Single App Analysis

Enck et al. [6] provide a set of practical security
rules, called Kirin rules, to prevent malwares from
exploiting Android applications. Each rule represents
undesirable security properties in terms of the config-
uration available in manifest files. Kirin rules, thus,
decide whether the security configuration bundled
with a single app is safe or not, but they do not
consider the case in which malicious apps collude to
combine their permissions, allowing them to perform
actions beyond their individual privileges.

To analyze these rules using our approach, we
formalized them in Alloy. Each rule is modeled as
an assertion to be analyzed independently. We also

developed a compositional version of each rule, lever-
aging the privilege escalation predicate. This in turn
enabled us to apply the two sets of rules and compare
the results of isolated analysis versus compositional
analysis.

To make the idea concrete, we illustrate one of these
rules along with its formal representations for both
compositional and single app analysis. Consider the
following Kirin security rule (KSR 6): “An application
must not have RECEIVE_SMS and WRITE_SMS permis-
sion labels [6].”

Listing 10 partially outlines the two Alloy assertions
specified to check the rule against either (a) a single
app or (b) a combination of apps that may collude to
combine their permissions. Assertion (a) states a direct
representation of the aforementioned rule in Alloy,
while assertion (b) restates the same rule against
multiple apps. It uses the isPrivilegeEscalation
predicate (line 16) to check the occurrence of privilege
escalation between the two apps with respect to the
p2 permission. The p1 and p2 permissions could
be either RECEIVE_SMS or WRITE_SMS (lines 11–
12), but they should be distinct as enforced by disj
keyword (line 11). The predicate takes as input two
components c1 and c2, an Intent, and a permission.
The c1 component belongs to the app1 and c2 to
the app2, omitted in Listing 10 (b) in the interest
of space. The assertion then at the very end of line
16 checks the case in which one app contains both
permission labels. Note that in practice developing
two different assertions is not necessary as the latter,
in effect, covers the former. Here, we developed the
former for experimental purposes, and to compare the
results of single versus compositional analysis.

We analyzed all the apps in the Malgenome repos-
itory against each of these rules. Table 3 summarizes
the results. Rows represent Kirin security rules that

1 // (a) s i n g l e app a n a l y s i s
2 a s s e r t Kir inRule6{
3 no p1 , p2 : Permission | {some app : Appl icat ion |
4 (p1 = RECEIVE SMS) and (p2 = WRITE SMS) and
5 (p1 in app . usesPermissions) and (p2 in app .

usesPermissions)
6 }
7 }
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 // (b) composi t ional app a n a l y s i s

10 a s s e r t KirinRule6 Compos{
11 no d i s j p1 , p2 : Permission | {some app1 , app2 :

Applicat ion ,
12 c1 , c2 : Component , i n t e n t 1 : I n t e n t |
13 (p1 in RECEIVE SMS+WRITE SMS) and
14 (p2 in RECEIVE SMS+WRITE SMS) and
15 (p1 in app1 . usesPermissions) and (p2 in app2 .

usesPermissions)
16 and (i s P r i v i l e g e E s c a l a t i o n [c1 , c2 , in tent1 , p2] or (

app1 = app2))
17 }
18 }

Listing 10: Specification of a Kirin rule for (a) single
and (b) compositional app analysis.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TABLE 3: Compositional vs. Single App Analysis of
Kirin Rules over the Malgenome app repository.

Sec. Sing. App. Compositional
Rule Analysis Analysis
KSR 1 - -
KSR 2 - -
KSR 3 2 2
KSR 4 2 8
KSR 5 2 11
KSR 6 10 14
KSR 7 11 14
KSR 8 3 3
Overall 30 52

we formally modeled in Alloy to be analyzed using
our approach. Columns represent the analysis type,
either single app analysis (as performed by the Kirin
tool [6]) or compositional analysis. Each cell indicates
the number of vulnerabilities detected. As we can see,
the compositional rule analysis detects more vulner-
abilities, without missing any vulnerability identified
by single app analysis. The experimental results indi-
cate the overall improvement of 73% in detecting vul-
nerabilities using a compositional analysis approach.

7.5 Performance and Timing
The final evaluation criteria are the performance
benchmarks of model extraction and formal analysis
activities. We used a PC with an Intel Core i7 2.4
GHz CPU processor and 8 GB of main memory,
and leveraged Sat4J as the SAT solver during the
experiments.

Compositional Analysis of Android apps using our
approach consists of three steps: (1) The app models
are collected and documented as Alloy specifications.
(2) The extracted Alloy models are transformed into 3-
SAT clauses using the Alloy Analyzer. (3) An off-the-
shelf SAT solver explores the space to find counterex-
amples. We measured the computation time required
for each step separately.

The scatter diagram shown in Figure 5 plots the
time taken to analyze the collected apps for model ex-
traction in seconds. The results show that the analysis

Fig. 5: Scatter plot representing analysis time for
model extraction of Android apps.

TABLE 4: Experiments performance statistics.

Construction Analysis
Time (Sec) Time (Sec)

Bundle 1 412 252
Bundle 2 226 123
Bundle 3 441 65
Bundle 4 158 57
Bundle 5 191 239
Bundle 6 88 85
Bundle 7 120 123
Bundle 8 350 374
Bundle 9 295 299

Bundle 10 204 45

time scales almost linearly with the size of apps in all
three repositories. However, as the set of most popular
apps collected from the Google Play repository—
represented by dark blue in the diagram—are typi-
cally larger than apps from the other two repositories,
their model extraction takes more time. According
to the diagram, our approach is able to statically
analyze and infer specifications for the largest apps
in less than three minutes. As our implementation
separates model extraction analysis from Alloy model
generation, and each app bytecode is analyzed inde-
pendently (cf. Section 5), the total static analysis time
scales linearly with the total size of apps.

Table 4 shows the time involved in compositional
verification of Android apps (steps 2 and 3). The first
column represents the time spent on transforming
Alloy models into 3-SAT clauses, and the second the
time spent in SAT solving to find all counterexamples
for each app bundle. The timing results show that
COVERT is able to analyze bundles of apps containing
hundreds of components in the order of a few minutes
(on an ordinary laptop), confirming that the proposed
technology based on a lightweight formal analyzer is
feasible.

8 DISCUSSION AND LIMITATIONS

There is a growing need for technologies that can
support the security analysis of complex systems in
a compositional manner, whereby the security of a
system is reasoned about in terms of the security
properties inferred from its constituents. We argue this
is the holy grail of software security analysis research.
For the security analysis techniques to scale to ever-
increasing complex systems, they need to become
compositional in nature. COVERT takes an important
step towards this overarching objective in the context
of Android apps, but we envision the ideas set forth
in this research to find a broader application in other
computing domains as well.

Note that single app analysis and compositional
analysis have their own technical merits. From an
application developer’s perspective, analyzing each
app in isolation may provide sufficient feedback to fix
the issues in the code (i.e., remove the vulnerabilities).

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

1 a s s e r t appCollusion{
2 no d i s j cmp1 , cmp2 : Component |
3 some cmp1 . paths && some cmp2 . paths &&
4 cmp1 . app != cmp2 . app &&
5 match [cmp1 . paths . d e s t i n a t i o n , cmp2 . paths . entry]
6 }
7
8 pred match (pathSink : s e t Resource+Intent ,
9 pathSource : s e t Resource+ I n t e n t F i l t e r){

10 SDCARD in pathSource & pathSink | |
11 LOG in pathSource & pathSink | |
12 (some i : In tent , f : I n t e n t F i l t e r |
13 i in pathSink && f in pathSource && matchIPC [i , f])
14 }

Listing 11: Specification of the application collusion
vulnerability in Alloy.

On the other hand, when the purpose of analysis is to
assess the trustworthiness of a system, comprised of
multiple proprietary apps that may interact with one
another, compositional analysis is needed to detect
vulnerabilities that may exist in the system. One can
imagine an organization may need to use a tool such
as COVERT to analyze the security properties of apps
deployed on phones assigned to its employees. Such
an organization may not be in a position to fix the
issues in the apps, as the apps may be proprietary,
but it can control the apps that are installed on the
devices.

Our analysis indicates that IPC vulnerabilities are
ubiquitous, and demonstrates why prior techniques
relying only on single app analysis are insufficient for
detecting such vulnerabilities. Our experiences with a
novel approach for compositional app analysis and its
evaluation in the context of hundreds of real-world
Android apps collected from variety of repositories
have been very positive. The experimental data shows
that COVERT can effectively detect such inter-app
vulnerabilities in the order of few minutes.

8.1 Development Effort

The framework specification is not expected to be
written by individual users of COVERT, rather by the
provider of the framework or COVERT. The specifica-
tion for a framework, such as Android, is developed
once and can be reused by others. Thus, it poses a
one-time cost, and the required effort depends on
the level of familiarity with the framework and the
specification language. Using executable specification
languages, one can also immediately check the cor-
rectness of even partial specifications. In our own
experience, Alloy helped us to find errors early in
specifying formal semantics. More specifically, during
the modeling process, its analyzer performed syn-
tactic checks to expose, for instance, inaccurate use
of signatures (such as accessing a nonexistent field
of a signature). We also used the analyzer to check
the conformance of automatically generated models
of apps derived through static analyzer to the frame-
work meta-model.

8.2 Other Types of Vulnerabilities
While privilege escalation vulnerability has been the
focus of our research, we believe COVERT can be
extended, and significant components of it reused,
for detecting other types of inter-app vulnerabilities.
For instance, an important class of inter-app vulner-
abilities are due to information leakage. For these
types of vulnerabilities, COVERT’s program analysis
needs to be extended to take information flow into
account for Android apps. While not the focus of this
paper, in an alternative configuration, we augmented
COVERT’s reachability analysis described in Section
5.3 with a taint flow analysis approach (see [28]) to
detect possible information leaks between apps.

We illustrate the reuse and extension potential of
COVERT through an example of the application col-
lusion vulnerability. Consider two applications A and
B; B reads data from a particular folder in SD card
and sends the data out through Internet, and A writes
data to the folder that B reads from. Since B does not
expose the sending action through its interface (Intent-
Filter), it cannot be detected by the privilegeEscalation
check, specified in Listing 8.

To extend COVERT for supporting the analysis of
this scenario, the only thing required is to model it
as an assertion, expressing properties to be checked
in the extracted specifications. Listing 11 expresses
such an assertion for the application collusion. The
assertion states that there are two components in
different applications; each contains a sensitive data
flow path, where the sink of one matches the source
of the other. Recall from Section 6 that the paths
field denotes information paths between permission
domains for each component.

Continuing with our example, the apps A and B
contain the flow permissions: IMEI → SDCARD and
SDCARD → NETWORK, respectively. These two paths
will set the match predicate to be true (line 8), and thus
COVERT identifies it as an instance of the application
collusion. Note that since applications specifications
and properties to be checked are strictly separated,
arbitrary vulnerabilities can be detected with minimal
effort.

8.3 Limitations
There are of course limitations in our approach. Sim-
ilar to any approach based on static analysis, our
approach is subject to false positives. We believe a
fruitful avenue of future research is to complement
COVERT with dynamic analysis techniques. In princi-
ple, it should be possible to leverage dynamic analysis
techniques to automatically confirm some of the vul-
nerabilities (e.g., by executing the vulnerable code),
further reducing and targeting the manual analysis
effort.

Another advantage of dynamic analysis is that it
can be used to address vulnerabilities in native code.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

Android Apps may include native code in addition to
Java code, in the form of a Java Native Interface (JNI)
library. Although native code is also obligated to the
permission system [5], it may dynamically load code,
which cannot be sufficiently addressed through static
analysis techniques.

Through dynamic analysis it would also be pos-
sible to address upcoming features, such as Google
App Ops, which provides a Permission Manager that
allows users to revoke granted permissions after in-
stallation time. This feature was introduced in An-
droid 4.3, but subsequently removed in Android 4.4.2
[29]. Given that granular revocation or allowance of
permissions after installation time is a dynamic mech-
anism, a dynamic analysis would be needed to handle
possible vulnerabilities arising from this feature. For
example, COVERT’s incremental, compositional anal-
ysis for permission leakages can be performed on a
permission-modified app and related apps at runtime,
with appropriate instrumentation or monitoring capa-
bilities added.

In addition to Intent-based event messaging as one
type of IPC mechanism, Android applications can
communicate through remote procedure calls (RPC)
by method-invocation interaction using stubs, which
are automatically generated from the specification of a
component’s interfaces in Android’s Interface Defini-
tion Language (AIDL). While the focus of this paper
is on the inter-app vulnerabilities that arise due to
Intent-based event messaging—shown to be the pri-
mary IPC mechanism in Android—supporting other
IPC mechanisms constitutes an interesting avenue for
our future work.

This paper provides substantial supporting evi-
dence for analyzing one of the most significant inter-
app vulnerabilities, i.e. privilege escalation. It would
be interesting to see how our approach fares when
applied to other types of inter-app vulnerabilities [2],
[8], [30], which forms a thrust of our future work.

9 RELATED WORK

Android security has received a lot of attention in
recently published literature, due mainly to the pop-
ularity of Android as a platform of choice for mobile
devices, as well as increasing reports of its vulnera-
bilities [1], [30]. Here, we provide a discussion of the
related efforts in light of our research.

9.1 Android Program Analysis for Security

A large body of work [2], [3], [31]–[35] focuses on per-
forming program analysis over Android applications
for security, which can be categorized based on their
underlying static or dynamic analysis technique.

Chin et al. [2] studied security challenges of An-
droid communication, and developed ComDroid to
detect those vulnerabilities through static analysis of

each app. Octeau et al. [33] developed Epicc for analy-
sis of Intent properties—except data scheme—through
inter-procedural data flow analysis. FlowDroid [28]
introduces a precise approach for static taint flow
analysis in the context of each application component.
CHEX [36] also takes a static method to detect com-
ponent hijacking vulnerabilities within an app. We
share with this approach the emphasis on separating
model extraction from vulnerability analysis, enabling
extension/revision of each, independent of the other.
However, these research efforts, like many others we
studied, are mainly focused on Intent and component
analysis of one application. COVERT’s analysis, how-
ever, goes far beyond single application analysis, and
enables compositional analysis of the overall security
posture of a system, greatly increasing the scope of
vulnerability analysis. Doing this requires application
of verification techniques in a way scalable to han-
dle analysis of complex systems comprising multiple
apps interacting with each other. COVERT, to our
knowledge, is the first tool with this capability.

DidFail [37] introduces an approach for tracking
data flows between Android components to detect
potential data leaks. However, it does not target the
problem we are addressing, namely detecting the
permission leakage. Moreover, similar to many other
techniques we studied, DidFail is a purely program
analysis tool, and does not incorporate a formal veri-
fication technique.

Along the same line, AndroidLeak [31] statically
analyzes information leak in Android. Its analysis
does not cover Intents, nor cross-application flows.
SCanDroid [38] statically analyzes data flows to detect
permission inconsistencies between applications that
could possibly allow malicious access to sensitive
information. It requires the source code of applica-
tions, and has never been evaluated over real-world
applications. Mann and Starostin [34] also developed
a framework to detect privacy leaks from the An-
droid APIs. Similar to ScanDroid, this framework was
never tested against real-world applications. Zhou
and Jiang [35] analyzed vulnerabilities that are due to
the existence of unprotected content provider compo-
nents. While this work is concerned with the potential
risks of passively leaking content, it does not consider
the problem that we address, the automation of inter-
app vulnerability analysis.

Apart from techniques based on static analysis, sev-
eral tools use dynamic analysis to detect vulnerabili-
ties in smartphone applications. TaintDroid [3] detects
information leak vulnerabilities using dynamic taint
flow analysis at the system level. IPC Inspection [39]
prevents privilege escalation at OS level. Recipients
of IPC requests are re-instantiated according to the
privileges of their callers, guaranteeing that the callee
does not have privileges more than that of the caller.
However, maintaining multiple instances of applica-
tions with modified privileges imposes a notable per-

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

formance overhead. Saint [40] analyzes configuration
and runtime behavior of Android apps to enforce se-
curity policy and to allow only legitimate permissions.

These research efforts share our emphasis on lever-
aging program analysis to capture some informa-
tion from application implementations. However, our
work differs in several ways. First, our approach is
geared towards the application of formal techniques
to verify certain properties in Android applications. A
novel contribution of our work is the ability to bridge
from application implementations to formal specifi-
cations using static code analysis techniques. Second,
previous studies of Android applications analyze a
single app in isolation. Our modular approach can
be used to greatly increase the scope of application
analysis by inferring the security properties from
individual apps and checking them as a whole for
vulnerabilities that are due to the interaction of apps
comprising a system. Third, many of the previously
proposed solutions [3], [6], [9], [39] require changes to
one or more components of the Android middleware,
such as Application Installer, Reference Monitor, and
Dalvik Virtual Machine. Our approach, in contrast,
requires no platform modifications.

9.2 Android Permissions
The other relevant line of research focuses on An-
droid’s permissions and their use across applica-
tions [6], [21], [41]–[45]. Barrera et al. [41] exam-
ined permission requirements over a set of 1,100
Android applications to analyze how permissions are
used in such applications. Their result shows that a
small fraction of permissions are extensively used.
Kirin [6] extends the application installer component
of Android’s middleware to check the permissions
requested by applications against a set of security
rules. These predefined rules are aimed to prevent
unsafe combination of permissions that may lead
to insecure data flows. Whyper [45] is a tool that
checks the app’s requested permissions against its
description, thereby enabling the user to determine if
certain requested permissions are suspicious. Vidas et
al. [44] have developed a tool that scans the Android
documentation to extract permission specifications.
These techniques typically rely only either on the An-
droid documentation or permission requests specified
within the application manifest, rather than analyzing
the code to check whether or how such permissions
are used by applications.

Along the same line, another thrust of research
statically analyzes the apps source code to study
their permission use. Among others, Felt et al. [5]
have developed Stowaway, a tool for performing an
over-privilege analysis on application source code.
Applying automated testing techniques on the An-
droid API, they developed a set of permission maps—
documenting which APIs require what permissions—
used in detecting overprivilege. Similarly, Au et

al. [18] have developed PScout to extract the permis-
sion specification from the Android OS source code
using static analysis, which led to a comprehensive
set of permission maps for Android. We used PSCout’s
permission map in our tool implementation to analyze
whether applications under consideration properly
check permissions before calling APIs, thereby reduc-
ing false positives in COVERT.

9.3 Formal Approaches
The other relevant thrust of research has focused
on formal modeling and automated verification of
software applications. Fragkaki et al. [7] proposed a
formal framework as an extension to the Android
permission mechanism. Chaudhuri [46] also proposed
a formal language to describe applications and a
type system to reason about information flows. This
work, however, does not provide any implementation
for the proposed approach. Martin et al. [47] devel-
oped PQL, which provides a specification language
for querying Java applications to detect errors and
security flaws. PQL does not include mechanisms
for handling Intents, which require a flow-sensitive
analysis; the Android lifecycle; and bundles of ap-
plications. Thus, PQL focuses on single applications,
while COVERT focuses on compositional analysis.
Alloy also has been widely used for modeling and
analysis in a variety of contexts, including checking
code against partial specifications [48]–[50], analysis
of software architecture [51], [52], specification based
testing [53], and security [54]–[56]. In our prior work,
we developed DroidGuard [55], which uses the Alloy
analysis engine to generate specifications of Android
security policies. These policies are then proactively
applied as preventive measures to guard against yet
unknown malicious behavior. While DroidGuard tar-
gets synthesis and runtime enforcement of security
policies, this work addresses precise detection of inter-
app vulnerabilities. Chen et al. [56] provided a logical
formulation of general security concepts, and mod-
eled it in Alloy. Their model is very abstract, and
has not been applied in any particular domain or
application. Targeting a real-world banking system,
Ramananandro [54] used Alloy to model and check
specifications of an electronic smart card system.
However, unlike our work, the translation to Alloy
is not automated in this research effort. To the best of
our knowledge, COVERT is the first formally-precise
analysis technique leveraging Alloy for automated
compositional verification of Android apps.

10 CONCLUSION

This paper presents a novel approach for composi-
tional analysis of Android inter-app vulnerabilities.
Our approach employs static analysis to automati-
cally recover models that reflect Android apps and
interactions among them. It is able to leverage these

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

models to identify vulnerabilities due to interaction of
multiple apps that cannot be detected with prior tech-
niques relying on a single app analysis. We formalized
the basic elements of our analysis in an analyzable
specification language based on relational logic, and
developed a prototype implementation, COVERT, on
top of our formal analysis framework. The experi-
mental results of evaluating COVERT against privi-
lege escalation—one of the most prominent inter-app
vulnerabilities—in the context of hundreds of real-
world Android apps corroborates its ability to find
vulnerabilities in bundles of some of the most popular
apps on the market.

11 ACKNOWLEDGMENT

This work was supported in part by awards
D11AP00282 from the US Defense Advanced Research
Projects Agency, H98230-14-C-0140 from the US Na-
tional Security Agency, HSHQDC-14-C-B0040 from
the US Department of Homeland Security, and CCF-
1252644 from the US National Science Foundation.

REFERENCES
[1] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev,

C. Glezer, Google android: A comprehensive security assess-
ment, Security & Privacy, IEEE 8 (2) (2010) 35–44.

[2] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Analyzing inter-
application communication in android, in: Proceedings of the
9th international conference on Mobile systems, applications,
and services, MobiSys ’11, ACM, New York, NY, USA, 2011,
pp. 239–252. doi:10.1145/1999995.2000018.

[3] W. Enck, P. Gilbert, B. g. Chun, L. P. Cox, J. Jung, P. McDaniel,
A. N. Sheth, Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones, in: Proc. of
USENIX OSDI, 2011.

[4] P. Hornyack, S. Han, J. Jung, S. Schechter, D. Wetherall,
These aren’t the droids you’re looking for: Retrofitting android
to protect data from imperious applications, in: Proceedings
of the ACM Conference on Computer and Communications
Security (CCS), 2011, pp. 639–652.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android
permissions demystified, in: Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS), 2011,
pp. 627–638.

[6] W. Enck, M. Ongtang, P. McDaniel, On lightweight mo-
bile phone application certification, in: Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), 2009.

[7] E. Fragkaki, L. Bauer, L. Jia, D. Swasey, Modeling and
enhancing android’s permission system, in: Proc. of ESORICS,
2012.
URL http://link.springer.com/chapter/10.1007/
978-3-642-33167-1 1

[8] S. Bugiel, L. David, Dmitrienko, T. A. Fischer, A. Sadeghi,
B. Shastry, Towards taming privilege-escalation attacks on
android, in: Proc. of NDSS, 2012.

[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D. S. Wallach, Quire:
Lightweight provenance for smart phone operating systems,
in: Proc. of USENIX, 2011.

[10] D. Jackson, Alloy: a lightweight object modelling notation,
TOSEM 11 (2) (2002) 256–290.
URL http://portal.acm.org/citation.cfm?doid=505145.505149

[11] R. Valle é-Rai, P. Co, E. Gagnon, L. Hendren, V. Lam,
P.and Sundaresan, Soot - a java bytecode optimization frame-
work, in: Proc. of CASCON’99, 1999.

[12] A. Bartel, J. Klein, Y. LeTraon, M. Monperrus, Dex-
pler:converting android dalvik bytecode to jimple for static
analysis with soot, in: Proc. of SOAP, 2012.

[13] J. Woodcock, P. G. Larsen, J. Bicarregui, J. Fitzgerald, Formal
methods: Practice and experience, ACM Comput. Surv. 41 (4)
(2009) 19:1–19:36. doi:10.1145/1592434.1592436.
URL http://doi.acm.org/10.1145/1592434.1592436

[14] P. Zave, A practical comparison of alloy and spin, Tech. rep.
(2012).

[15] Android api reference document,
http://developer.android.com/reference.

[16] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2Nd Edition), Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[17] Android developers guide.
URL http://developer.android.com/guide/topics/
fundamentals.html

[18] K. W. Y. Au, Y. F. Zhou, Z. Huang, D. Lie, Pscout: Analyzing
the android permission specification, in: Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), 2012.

[19] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, S. Guarnieri, An-
dromeda: Accurate and scalable security analysis of web appli-
cations, in: Fundamental Approaches to Software Engineering,
Springer, 2013, pp. 210–225.

[20] E. Torlak, A constraint solver for software engineering: Find-
ing models and cores of large relational specifications, PhD
thesis, MIT (Feb. 2009).
URL http://alloy.mit.edu/kodkod/

[21] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg,
F. Shen, S. Y. Ko, L. Ziarek, Flow permissions for android, in:
Proceeding of the 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2013.

[22] L. Davi, A. Dmitrienko, A.-R. Sadeghi, M. Winandy, Privilege
escalation attacks on android, in: Proceedings of the 13th
international conference on Information security (ISC), 2010.

[23] Google play market.
URL http://play.google.com/store/apps/.

[24] F-droid.
URL https://f-droid.org/.

[25] Bazaar.
URL https://cafebazaar.ir//.

[26] Malgenome project, http://www.malgenomeproject.org.
[27] Freemarker java template engine, http://freemarker.org/.
[28] S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein, Y. Le

Traon, D. Octeau, P. McDaniel, Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps, in: Proceedings of the 35th annual ACM
SIGPLAN conference on Programming Language Design and
Implementation (PLDI 2014), 2014.

[29] Protecting your privacy: App ops, privacy guard, and
xprivacy.
URL http://www.xda-developers.com/
protecting-your-privacy-app-ops-privacy-guard-and-xprivacy/

[30] W. Enck, D. Octeau, P. McDaniel, S. Chaudhuri, A study of
android application security, in: Proc. of USENIX, 2011.

[31] C. Gibler, J. Crussell, J. Erickson, H. Chen, Androidleaks:
Automatically detecting potential privacy leaks in android
applications on a large scale, in: Trust and Trustworthy Com-
puting, Springer, 2012, pp. 291–307.

[32] M. Grace, Y. Zhou, Z. Wang, X. Jiang, Systematic detection of
capability leaks in stock android smartphones, in: Proceedings
of the 19th Annual Symposium on Network and Distributed
System Security, 2012.

[33] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
Y. L. Traon, Effective Inter-Component Communication Map-
ping in Android with Epicc: An Essential Step Towards Holis-
tic Security Analysis, in: Proceedings of the 22nd USENIX
Security Symposium, Washington, DC, 2013.
URL http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf

[34] C. Mann, A. Starostin, A framework for static detection of pri-
vacy leaks in android applications, in: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC’12,
ACM, New York, NY, USA, 2012, pp. 1457–1462.

[35] Y. Zhou, X. Jiang, Detecting passive content leaks and pol-
lution in android applications, in: Proceedings of the 20th
Network and Distributed System Security Symposium (NDSS
2013), 2013.

http://dx.doi.org/10.1145/1999995.2000018
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://portal.acm.org/citation.cfm?doid=505145.505149
http://portal.acm.org/citation.cfm?doid=505145.505149
http://doi.acm.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://play.google.com/store/apps/.
http://play.google.com/store/apps/.
https://f-droid.org/.
https://f-droid.org/.
https://cafebazaar.ir//.
https://cafebazaar.ir//.
http://www.xda-developers.com/protecting-your-privacy-app-ops-privacy-guard-and-xprivacy/
http://www.xda-developers.com/protecting-your-privacy-app-ops-privacy-guard-and-xprivacy/
http://www.xda-developers.com/protecting-your-privacy-app-ops-privacy-guard-and-xprivacy/
http://www.xda-developers.com/protecting-your-privacy-app-ops-privacy-guard-and-xprivacy/
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

[36] L. LU, Z. LI, Z. WU, W. LEE, G. JIANG, Chex: statically
vetting android apps for component hijacking vulnerabilities,
in: Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2012.

[37] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, Android taint
flow analysis for app sets, in: Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in
Java Program Analysis, SOAP ’14, ACM, New York, NY, USA,
2014, pp. 1–6. doi:10.1145/2614628.2614633.
URL http://doi.acm.org/10.1145/2614628.2614633

[38] A. P. Fuchs, A. Chaudhuri, J. S. Foster, Scandroid: Automated
security certification of android applications (2009).

[39] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, E. Chin, Permis-
sion re-delegation: Attacks and defenses, in: Proc. of the 20th
USENIX Security Symposium, 2011.

[40] M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel, Semanti-
cally rich application-centric security in android, in: Proc. of
the 25th Annual Computer Security Applications Conference
(ACSAC), 2009.

[41] D. Barrera, H. Kayacik, P. Oorschot, A. Somayaji, A methodol-
ogy for empirical analysis of permission-based security mod-
els and its application to android, in: Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), 2010.

[42] Y. Zhou, Z. Y. Wang, W. Zhou, X. Jiang, Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets, in: Proceedings of the 19th Network and
Distributed System Security Symposium (NDSS 2012), 2012.

[43] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, Riskranker:
scalable and accurate zero-day android malware detection,
in: Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys 2012), 2012.

[44] T. Vidas, N. Christin, L. Cranor, Curbing android permission
creep, in: Proceedings of the Web 2.0 Security and Privacy 2011
workshop (W2SP 2011), 2011.

[45] R. Pandita, X. Xiao, W. Yang, W. Enck, T. Xie, Whyper:
Towards automating risk assessment of mobile applications,
in: Proceedings of the 22Nd USENIX Conference on Security,
SEC’13, USENIX Association, Berkeley, CA, USA, 2013, pp.
527–542.
URL http://dl.acm.org/citation.cfm?id=2534766.2534812

[46] A. Chaudhuri, Language-based security on android, in: Pro-
ceedings of Programming Languages and Analysis for Secu-
rity (PLAS’09), 2009, pp. 1–7.

[47] M. Martin, B. Livshits, M. S. Lam, Finding application errors
and security flaws using pql: a program query language, in:
ACM SIGPLAN Notices, Vol. 40, ACM, 2005, pp. 365–383.

[48] S. Khurshid, Darko Marinov, D. Jackson, An analyzable anno-
tation language, in: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’02, ACM, New York, NY,
USA, 2002, pp. 231–245. doi:10.1145/582419.582441.
URL http://doi.acm.org/10.1145/582419.582441

[49] D. Jackson, M. Vaziri, Finding bugs with a constraint solver,
in: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), 2000.

[50] J. P. Near, A. Milicevic, E. Kang, D. Jackson, A lightweight code
analysis and its role in evaluation of a dependability case, in:
Proceedings of the 33rd International Conference on Software
Engineering, ICSE’11, ACM, New York, NY, USA, 2011, pp.
31–40. doi:10.1145/1985793.1985799.
URL http://doi.acm.org/10.1145/1985793.1985799

[51] J. S. Kim, D. Garlan, Analyzing architectural styles, Journal of
Systems and Software 83 (7) (2010) 1216–1235.

[52] H. Bagheri, K. Sullivan, Monarch: Model-based develop-
ment of software architectures, in: Proceedings of the 13th
ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), 2010, pp. 376–
390.

[53] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, S. Khurshid, Query-
aware test generation using a relational constraint solver, in:
Proceedings of the 23rd IEEE/ACM International Conference
on AutomatedSoftwareEngineering, pp. 238–247.

[54] T. Ramananandro, Mondex, an electronic purse: Specification
and refinement checks with the alloy model-finding method,
Formal Asp. Comput. 20 (1) (2008) 21–39.

[55] H. Bagheri, A. Sadeghi, R. Jabbarvand, S. Malek, Auto-
mated dynamic enforcement of synthesized security policies
in android, Tech. Rep. GMU-CS-TR-2015-5, Department of
Computer Science, George Mason University, 4400 University
Drive MSN 4A5, Fairfax, VA 22030-4444 USA (2015).

[56] C. Chen, P. Grisham, S. Khurshid, D. Perry, Design and
validation of a general security model with the alloy analyzer,
in: Proceedings of the ACM SIGSOFT First Alloy Workshop,
pp. 38–47.

Hamid Bagheri is a Postdoctoral
researcher at the department of
Computer Science at George Ma-
son University and the Computer
Science and Artificial Intelligence
Laboratory at MIT. He received his
Ph.D. in Computer Science from
University of Virginia, a M.Sc. in
Software Engineering from Sharif
University of Technology, and his
B.Sc. in Computer Engineering
from University of Tehran. Hamid

is broadly interested in software engineering, and
particularly in practical software synthesis and analy-
sis using concepts from fields like formal methods,
program analysis, model-driven development, and
software architecture. He is a member of the ACM
and IEEE.

Alireza Sadeghi is a Ph.D.
student in the Computer Science
Department at George Mason
University. His research interests
focus on software engineering,
specifically, application of
program analysis in security and
energy consumption assessment
of mobile applications. Sadeghi
received the B.S. degree in
computer (software) engineering
and M.S. degree in information

technology from Sharif University of Technology in
2008 and 2010, respectively. He is a member of ACM,
and ACM SIGSOFT.

Joshua Garcia is a Postdoctoral
Research Fellow in the Computer
Science Department at George
Mason Universiy (GMU). He
received his Ph.D. and M.S.
degrees in Computer Science
from the University of Southern
California (USC), and his B.S.
degree in Computer Engineering
and Computer Science from USC.
Garcia’s research interests are in
software engineering. His work
focuses on software architecture,

software maintenance and re-engineering, and
software security.

http://doi.acm.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://doi.acm.org/10.1145/582419.582441
http://doi.acm.org/10.1145/582419.582441
http://dx.doi.org/10.1145/582419.582441
http://doi.acm.org/10.1145/582419.582441
http://doi.acm.org/10.1145/1985793.1985799
http://doi.acm.org/10.1145/1985793.1985799
http://dx.doi.org/10.1145/1985793.1985799
http://doi.acm.org/10.1145/1985793.1985799

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2015.2419611, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

Sam Malek is an Associate Profes-
sor in the Computer Science De-
partment at George Mason Uni-
versity (GMU). He is also the di-
rector of GMU’s Software Design
and Analysis Laboratory. His gen-
eral research interests are in the
field of software engineering, and
to date his focus has spanned the
areas of software architecture, au-
tonomic computing, software se-

curity, and software analysis and testing. Malek re-
ceived his Ph.D. and M.S. degrees in Computer Sci-
ence from the University of Southern California and
his B.S. degree in Information and Computer Science
from the University of California Irvine. He has re-
ceived numerous awards for his research contribu-
tions, including the National Science Foundation CA-
REER award, the GMU Emerging Researcher/Schol-
ar/Creator award, and the GMU Computer Science
Department Outstanding Faculty Research Award. He
is a member of the ACM, ACM SIGSOFT, and IEEE.

