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ABSTRACT

Android applications (apps for short) can send out users’
sensitive information against users’ intention. Based on the
stats from Genome and Mobile-Sandboxing, 55.8% and 59.7%
Android malware families feature privacy leakage. Prior ap-
proaches to detecting privacy leakage on smartphones pri-
marily focused on the discovery of sensitive information flows.
However, Android apps also send out users’ sensitive infor-
mation for legitimate functions. Due to the fuzzy nature of
the privacy leakage detection problem, we formulate it as a
justification problem, which aims to justify if a sensitive in-
formation transmission in an app serves any purpose, either
for intended functions of the app itself or for other related
functions. This formulation makes the problem more dis-
tinct and objective, and therefore more feasible to solve than
before. We propose DROIDJUST, an automated approach
to justifying an app’s sensitive information transmission by
bridging the gap between the sensitive information transmis-
sion and application functions. We also implement a proto-
type of DROIDJUST and evaluate it with over 6000 Google
Play apps and over 300 known malware collected from Virus-
Total. Our experiments show that our tool can effectively
and efficiently analyze Android apps w.r.t their sensitive in-
formation flows and functionalities, and can greatly assist in
detecting privacy leakage.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.4.6 [Operating Systems]: Security and Protec-
tion
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Security
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1. INTRODUCTION

Mobile devices, particularly smartphones and tablets, are
becoming more and more prevalent in the world. While users
enjoy the convenience and functions brought by smartphones
and tablets, their privacy is severely threatened by mali-
cious mobile apps that leak sensitive information to remote
servers against users’ intention. Based on the statistics from
Genome [36] and Mobile-Sandbox [2], 55.8% and 59.7% An-
droid malware families feature privacy leakage. Therefore,
it is vital to have an effective approach for detecting such
malicious apps.

Prior approaches to detecting privacy leakage on smart-
phones primarily focused on the discovery of sensitive infor-
mation flows [5,8-10, 12,13, 16,21, 26]. However, as more
and more benign apps send out users’ sensitive informa-
tion for legitimate application functions, these approaches
cannot easily justify the purposes of sensitive information
transmissions in an app, and hence may not detect privacy
leakage effectively. For example, Google Maps sends out
users’ location information to a remote server for driving
navigation and location-based recommendation services. To
continue to be effective and adapt to the growing applica-
tion markets, the development of more advanced analysis
approaches to detecting privacy leakage on smartphones is
strongly desired.

In this work, we formulate the problem of sensitive infor-
mation leakage as a justification problem, which aims to jus-
tify if a sensitive information transmission in an app serves
any purpose, either for intended functions of the app itself
or for other related functions such as advertisements and
analytics. To solve the justification problem, we propose an
automated approach, called DROIDJUST. DROIDJUST not
only identifies sensitive information flows, but also tries to
link each flow with certain application function to provide
the evidence for justification. DROIDJUST uses various static
taint analyses to automate the whole analysis process. We
evaluate DROIDJUST on more than 6000 Google Play apps
and more than 300 known malware collected from VirusTo-
tal. Our experiments show that our tool can effectively and
efficiently analyze Android apps for the purposes of their
sensitive information flows, and hence can greatly assist in
detecting privacy leakage.

The contribution of this paper is as follows:

e We propose a novel approach to automatically justify
an app’s sensitive information transmission by bridg-
ing the gap between the sensitive information trans-
mission and application functions. Different to the
previous work that utilize the evidence arising before



or at the release point [28,33], we are (probably) the
first to consider the evidence arising after the release
point for privacy leakage detection.

e Our approach overcomes several challenges to integrate
all three types of PScout [6] resources (API, URI and
Intent Actions) into DROIDJUST for labeling almost all
(if not all) sensitive information sources in Android (in
Section 4.2).

e We implement a prototype of DROIDJUST and eval-
uate it with more than 6000 Google Play apps and
more than 300 known malware featuring privacy leak-
age. Our evaluation results demonstrate that DROID-
JUST can effectively distinguish benign apps delivering
sensitive information for application functions from the
malware harvesting users’ sensitive information.

e DROIDJUST identified 15 Google play apps that send
out users’ sensitive information but not for any appli-
cation functions. Most of them cannot be detected by
any anti-virus engine in VirusTotal and are still avail-
able for download in Google Play.

The rest of this paper is organized as follows. Section 2
introduces the motivation of our work, problem statement
and design goals. We give an overview of our approach and
a motivating example in Section 3, followed by detailed sys-
tem design in Section 4. Section 5 presents the evaluation
of DROIDJUST and presents our results. We discuss the lim-
itations and related work in Section 6 and 7. Finally, we
conclude our work in Section 8.

2. PROBLEM STATEMENT AND DESIGN
GOALS

Recently, detecting privacy leaks in mobile apps has been
one of the main research focuses on smartphone security,
and it has led to development of many useful tools such
as TaintDroid [9] for Android and PiOS [8] for iOS. Based
on either static or dynamic taint analysis, such tools [5, 8~
10,12,13,16,21,26] can help discover potential sensitive in-
formation transmission. In a nutshell, these taint analy-
sis approaches reduce the privacy leakage detection prob-
lem to the reachability problem. However, in reality, the
existence of sensitive information transmission is not equal
to privacy leakage, as real-world apps may send out users’
sensitive information for their advertised functions. For ex-
ample, a weather forecast app may send out users’ location
information to fetch the weather reports tailored to the lo-
cations; Google Maps also sends out GPS information for
driving navigation. While these examples demonstrate ob-
vious reasons for usage of users’ sensitive information, there
are also less obvious, sometimes even unpredictable, usage
cases. For example, com.pixeltech.imonline, a trial Face-
book messager app identified in our experiment, sends out
users’ Gmail addresses to a remote server for calculating the
remaining trial days and then shows the number of days in
the app. Judging this sort of sensitive information transmis-
sion is beyond the power of the conventional taint analysis
approaches.

Realizing the fuzzy nature of the privacy leakage detec-
tion problem, prior research work has tackled the privacy
leakage detection problem from different angles. For exam-
ple, Yang et al. [33] proposed to use users’ expectations as

the indicator of privacy leakage. If the sensitive information
transmission is expected by users, it will be considered as
necessary, so not a leakage case; otherwise, if unexpected,
it will be a privacy leakage case. However, users’ expec-
tations are diverse. For example, an advertisement library
may send out a phone’s geographic location for location-
based advertisements. Depending on whether they like to
receive targeted advertisements or not, different users may
agree or disagree that disclosure of location information is
expected in this context. Further, we cannot assume all
users are capable of comprehending system-level contextual
information to provide their expectations. The experiment
in [33] has demonstrated that even security specialists had
discrepancy about the usage of device IDs in certain apps
after they reviewed the generated event chains that lead to
data transmission. This is because app developers could po-
tentially use a device ID, a phone number or even a Google
account as a unique identifier of a device or a user, and such
code-level information is often not available to the human
specialists when they make decisions. Indeed, device IDs
and phone numbers are the most common sensitive infor-
mation that are delivered to the network [9, 36]. Different
from the users’ expectation angle, Tripp et al. [28] formu-
lated the privacy-leakage detection problem as a machine
learning problem based on certain features. Their approach
however is probabilistic, and the effectiveness highly depends
on the selected features and the training data sets.

In this work, we take a slightly different angle to tackle
this privacy leakage detection problem. We formulate it as
a justification problem, which aims to justify if a sensitive
information transmission in an app serves any purpose, ei-
ther for intended functions of the app itself or for other re-
lated functions such as advertisements and analytics. For
example, if an app sends out the user’s location to a remote
server, later receives information from the server, and finally
displays the information to the user in the phone screen, we
consider this sensitive information transmission justifiable.
On the contrary, if the app does not receive any information
from the server after sending out users’ location information,
this sensitive information transmission is unjustifiable. Note
that conceptually there are differences between justifiability
and privacy leakage. According to our definition, a sensitive
information transmission caused by an advertisement library
is also justifiable because it does serve some known purpose,
although privacy advocators may dislike it and consider it
a privacy leakage. The merit of our formulation is that it
separates technical issues from users’ opinions. Rather than
directly telling a user whether a sensitive information flow
is a privacy leakage, we only report the purpose it serves, if
any. The research problem now becomes more distinct and
objective, and therefore more feasible to solve than before.

Following the formulation above, we aim to design an ap-
proach to justifying an app’s sensitive information transmis-
sion. Specifically, we want to achieve the following design
goals.

e Fully automated analysis. The proposed approach
must be able to automatically justify an app’s sensitive
information transmission. The purpose is to minimize the
involvement of human analysts in the middle. This task
is challenging because it requires automatically extract-
ing and understanding the contextual information in order
to bridge the gap between an app’s sensitive information
transmissions and its functions.



e Complete and precise coverage. Our approach needs
to precisely cover almost all (if not all) users’ sensitive in-
formation, restricted by the sensitive permissions of our
interest. This is non-trivial due to the incomplete An-
droid documentation and diverse permission enforcement
mechanisms in Android.

e High accuracy and scalability. Our approach should
minimize the inaccuracy incurred by possible under- and
over-approximation during our implementation. Besides,
our technique must be efficient for analyzing real-world
apps at a large scale.

3. APPROACH OVERVIEW

In the section, we describe the rationale behind our jus-
tification approach and its workflow, and then present an
example to illustrate how our approach justifies the sensi-
tive information transmission through a real-world app.

3.1 Design Rationale

The key to solve the justification problem is to identify
if an app’s sensitive information transmission could be used
to fulfill some app function. To start, we study how an
app provides functions to mobile phone users. We realize
that the functions of a mobile app in smartphones are ex-
perienced by users during their interactions with the app.
During the interactions, users are prompted by the changes
of sensible phone states (SPS) (e.g., display, sound, vibra-
tion and light). Here sensible phones states are defined as
phone output events that can be directly sensed by phone
users. In other words, app functions are provided to users
via SPS. Without leading to any SPS directly or indirectly,
the function of an app is not meaningful to phone users as it
cannot be experienced by users. Hence, if a sensitive infor-
mation transmission cannot cause the change of any SPS,
we consider it unnecessary and hence unjustifiable. Other-
wise, we consider it justifiable. Note that in the PC world,
similar rationale has been adopted by Privacy Oracle [17]
and TightLip [34] to detect sensitive information leakage by
third-party apps. Their ideas are to apply black-box based
differential testing to identify the existence of sensitive user
inputs in outbound network traffic by mapping the discrep-
ancy in output network traffic to different inputs.

Figure 1 shows our overall workflow, which answers how
an app’s sensitive information transmission is used to pro-
vide functions to users by linking users’ sensitive informa-
tion (SI) with app functions in terms of SPS. In the figure,
ST is first read (often further transformed) and delivered to
a remote server for computing or other purposes. This is
an outbound information flow. Then, if a response from the
server is received by the app and ultimately used to change
some SPS directly or indirectly, we call this inbound in-
formation flow sensible information reception (SIR). If an
inbound information flow is not a SIR, it will not be sensed
by the phone user, so we will not use it to justify any SI
transmission. Note that without this rule, an attacker may
easily introduces random inbound information flows to jus-
tify illegal ST transmissions. We will discuss this problem
again in our Security Analysis section. Finally, once we have
all the information flows of interest, we want to link inbound
and outbound information flows. If a SI transmission can-
not be linked to any SITR, it is unjustifiable; otherwise, it is
justifiable.

Sensitive Info Transmission

Network

Sensible Phone

States (SPS)

Figure 1: Design workflow: linking sensitive infor-
mation with app functions

From Figure 1, we can see that the app’s sensitive infor-
mation may also be consumed locally to change some SPS.
Such local flow information could be useful for other anal-
ysis purpose, but for this work, we do not study it. Last,
from our formalization, we can see a limitation of our ap-
proach: it cannot justify sensitive information flows in some
service apps, which run in the background and have no user
interface at all.

3.2 An Motivating Example

We present a motivating example to elaborate our pro-
posed analysis approach, as shown in Figure 2.

com.inspireadart.niceweather is a popular weather fore-
cast app in Google Play app store. We start from ana-
lyzing the app’s SI transmission. In a discovered SI flow,
the phone location information is first read, transformed to
the locality information and returned from the getLoca-
tion method. Then, the locality information is passed to
the getForecastWeatherData method in a background task
(doInBackground). Further, the locality information is put
into a URL string, and the URL is finally used to open a
HTTP connection after a few manipulations in the getFore-
castWeatherData method.

Next, we analyze the app’s sensible information reception
SIR. In the discovered SIR flow, the received informa-
tion is first read from a HTTP connection and returned af-
ter a few manipulations from the getForecastWeatherData
method. Then, the returned information is passed to the
getForecastWeather method for parsing and the method
returns a WeatherForecast object in a background task
(doInBackground). Further, the background task returns
the WeatherForecast object, which is in turn passed to the
onPostExecute method as its parameter. In the onPostEx-
ecute method, the WeatherForecast object is passed to the
updateScreen method. Finally, the extracted information
from the WeatherForecast object flows into the framework
API setText to change the text of a TextView in the up-
dateScreen method. We note that here we show only one
of the discovered information flows from the WeatherFore-
cast object to SPS due to space limit. In reality, the ex-
tracted information from the WeatherForecast object also
flows into several other framework APIs such as setImage-
Drawable and setBackgroundResource to change SPS. We



Sensitive Information Transmission (com.inspiredart.niceweather)

<getLocation(String[])>:

$r8 = virtualinvoke $r12.<LocationManager: Location
getLastKnownLocation(String)>($r9)

$d0 = virtualinvoke $r8.<Location: double getLatitude()>();
$d1 = virtualinvoke $r8.<Location: double getLongitude()>();
$r5 = virtualinvoke r17.<Geocoder: List getFromLocation(double,double,int)>($d0,$d1,1);
$r3 = interfaceinvoke $r5.<List: Object get(int)>(0);

$r14 = (Address) $r3;

$r9 = virtualinvoke $r14.<Address: String getLocality()>();
$r4 = $r9;

return $r4;
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|| $r2 = virtualinvoke $r11.<WeatherHttpClient: String
|| getForecastWeatherData(String,String, String)>($r2, "en", "14");
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$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();

$r3 = staticinvoke <String: String valueOf(java.lang.Object)>($r3);

specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);

$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("&units=metric");
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();

$r3 = staticinvoke <String: String valueOf(Object)>($r3);

specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);

$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("&cnt=");
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(int)>($i0);

$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();

$r3 = staticinvoke <String: String valueOf(Object)>($r3);

specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);

$r3 = <WeatherHttpClient: String API>;

$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>($r3);

$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();

specialinvoke $r11.<URL: void <init>(String)>($r3);

$r4 = virtualinvoke $r11.<URL: URLConnection openConnection()>();

$r7 = (HttpURLConnection) $r4;

virtualinvoke $r7.<HttpURLConnection: void setRequestMethod(String)>("GET");
virtualinvoke $r7.<HttpURLConnection: void setDolnput(boolean)>(1);
virtualinvoke $r7.<HttpURLConnection: void setDoOutput(boolean)>(1);
virtualinvoke $r7.<HttpURLConnection: void connect()>();

Sensible Information Reception (com.inspiredart.niceweather)

<getForecastWeatherData(String, String, String)>:

virtualinvoke $r7.<HttpURLConnection: void connect()>();

$r8 = virtualinvoke $r7.<HttpURLConnection: InputStream getinputStream()>()
specialinvoke $r14.<InputStreamReader: void <init>(InputStream)>($r8);
specialinvoke $r5.<BufferedReader: void <init>(Reader)>($r14);

$r3 = virtualinvoke $r5.<BufferedReader: String readLine()>();

$r3 = staticinvoke <String: String valueOf(Object)>($r3);

specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);

$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("\n\n");
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();

virtualinvoke $r6.<StringBuffer: StringBuffer append(String)>($r3);

$r3 = virtualinvoke $r6.<StringBuffer: String toString()>();

$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>($r3);
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("1");
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();

virtualinvoke $r15.<PrintStream: void printin(String)>($r3);

$r3 = virtualinvoke $r6.<StringBuffer: String toString()>();

return $r3;
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<onPostExecute(WeatherForecast)>:
virtualinvoke $r2.<MainActivity: void updateScreen(WeatherForecast)>($r1)

v

<updateScreen(WeatherForecast)>:

$r1 := @parameter0: WeatherForecast;

$r120 = virtualinvoke $r1.<WeatherForecast: DayForecast getForecast(int)>($i2);
interfaceinvoke $r121.<List: boolean add(Object)>($r120);

$r122 = interfaceinvoke $r121.<List: Object get(int)>($i4);

$r120 = (DayForecast) $r122;

$r113 = $r120.<DayForecast: Weather weather>;

$r116 = $r113.<Weather: Clouds clouds>;

$i2 = virtualinvoke $r116.<Clouds: int getPerc()>();

$r112 = staticinvoke <String: String valueOf(int)>($i2);

$r3[$i4] = $r112;

$r111 = $r3[0];

$r111 = staticinvoke <String: String valueOf(Object)>($r111);

specialinvoke $r127.<StringBuilder: void <init>(String)>($r111);

$r33 = virtualinvoke $r127.<StringBuilder: StringBuilder append(String)>("%");
$r111 = virtualinvoke $r33.<StringBuilder: String toString()>();

virtualinvoke $r110.<TextView: void setText(CharSequence)>($r111);

Figure 2: A motivating example with an Android
app

also note that the intermediate representation in each mes-
sage box in the figure shows an information flow in a method;
hence, adjacent lines in a message box may not be adjacent
in actual bytecode.

Last but not least, we can see that the discovered SIR
is correlated to the discovered ST transmission because they
use the exact same network connection (<HttpURLConnection:
void connect()>). Therefore, through our two-stage infor-
mation flow analysis, we conclude that this ST transmission
is used to fulfill app’s functions, and hence justifiable.

4. DROIDJUST: OVERVIEW AND SYSTEM
DESIGN

This section starts with an overview of the DROIDJUST’s
system design, and then describes its details.

4.1 Overview

Figure 3 depicts the overall architecture of DROIDJUST
to justify an app’s SI transmission. It takes the following
major steps.

1. Preprocessing. An Android apk file consists of a Dalvik
executable file, manifest files, native libraries, and re-
sources. In this step, DROIDJUST decomposes the apk
file and transforms the Dalvik bytecode executable file
into the Jimple representation, which is a typed-3 address
intermediate representation suitable for analysis and op-
timization on the Soot framework.

2. Sensitive information transmission analysis. In
this step, DROIDJUST searches the app for SI flows by
parsing the permission specifications from PScout [6] and
the outgoing channels where the ST flows can reach, and
using static taint analysis to identify the ST transmission
from the SI (as sources) to the outgoing channels (as
sinks).

3. Sensible information reception analysis. In the step,
DRrOIDJUST searches the app for inbound network flows
and the framework APIs that can change SPS. This is
done by parsing the Android documentation, and using
static taint analysis to identify the SITR, with inbound
network flows as sources and the framework APIs that
can change SPS as sinks.

4. Correlation and justification. After the ST transmis-
sion and STR analysis, DROIDJUST correlates the identi-
fied transmissions and reception flows in an attempt to
justify all the ST transmissions, and finally determines if
a S1 transmission is justifiable.

4.2 Sensitive Information Transmission Anal-
ysis

In the subsection, we define the users’ SI and show how

DROIDJUST identifies them as taint sources. In addition, we

show how to identify the outgoing channels as taint sinks.

The actual static taint analysis process will be explained in
Section 4.4.

4.2.1 Sources

Sensitive information. There are many kinds of SI in
Android apps, and currently DROIDJUST covers ten types of
SI: phone information (such as device ID and phone num-
ber), contacts, messages, user profile, location information,
social stream data, calendar information, user accounts, call
logs, and browsing history and bookmarks. Android uses
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Figure 3: Overall Architecture of DroidJust

security permissions to restrict apps to access SI. Particu-
larly, there are 12 Android permissions corresponding to the
ten types of SI. Except for messages and location informa-
tion, each type of the aforementioned ST is protected by one
permission for read access. For example, READ_PHONE_STATE
corresponds to phone information and READ_CONTACTS cor-
responds to contacts. For messages and location informa-
tion, there are two permissions for each. READ_SMS and
RECEIVE_SMS grant read access to SMS messages while AC-

CESS_COARSE_LOCATION and ACCESS_FINE_LOCATION grant read

access to phone’s location information.

Label actual sensitive data. Researchers have pro-
posed many tools to identify sensitive data based on An-
droid permissions [11,12,15, 18,20, 21, 32]. However, it is
still a big challenge to discover all possible sensitive data
sources due to either the incomplete Android documenta-
tion or the diverse permission enforcement mechanisms in
Android. For better coverage, DROIDJUST utilizes the per-
mission specification of PScout [6] to identify most (if not
all) ST sources related to the above permissions. PScout
is known as a tool that extracts a relatively complete per-
mission specification from Android. In particular, there are
three types of permission-related resources in PScout. The
first type (T1) is documented and undocumented framework
APIs that retrieve ST through returns or callbacks. The sec-
ond type (T2) is privileged intent actions, which are associ-
ated with IntentFilter and BroadcastReceiver classes to
request SI. The third type (T3) is URI fields and strings
that are identifiers of content providers that manage SI in
Android.

For T1 (i.e., framework APIs), a major challenge is to map
it to actual sensitive data, given that not all return types
are used to store actual sensitive data and the callbacks to
retrieve sensitive data are very diverse. To overcome the
challenge, we handle those framework APIs in the following
manner. First, we filter out the non-return APIs and then,
based on the Android source code, we manually check the
remaining APIs to identify the return types that can be used
to store actual sensitive data. As a result, we get a list of
39 return types (of which 21 return types are unique) for
the 12 permissions, and we find that 575 framework APIs
directly return actual sensitive data for the 12 permissions
in Android 4.1.1.

Further, to identify all the possible callbacks in those APIs
for retrieving actual sensitive data, we need to get an ex-
haustive list of the APIs that can retrieve the actual sensi-

tive data through callbacks, as well as the mapping from the
APTs to the callback classes, methods (i.e., handlers) and pa-
rameters. In practice, we use an automatic filtering method
to identify the APIs’ parameters that belong to or inherit
from the following types: Receiver, Listener, Callback,
PendingIntent and Binder, and then manually check their
definitions to find the right callback methods and parame-
ters based on the Android source code. Finally, we obtain a
list of 254 framework APIs. By utilizing the refined frame-
work APIs (5754+254) and additional mapping information,
DRroOIDJUST can label the actual sensitive data invoked by
the framework APIs in PScout resources more accurately
and completely.

Registering a BroadcastReceiver with an IntentFilter
is another way to retrieve ST in Android. Hence, the second
type of PScout resources (T2) is privileged intent actions
that can be added by an IntentFilter to gain access to
the corresponding SI. For example, "android.provider.
Telephony.SMS_RECEIVED" is a privileged intent action to
receive all incoming SMS messages, and a BroadcastReceiver
class can acquire the incoming messages by registration with
an IntentFilter including the intent action. Particularly,
an intent containing the incoming message is passed to the
onReceive method of the registered BroadcastReceiver.

In Android, there are two ways to register a Broadcast
Receiver with an IntentFilter. One way is to register
in manifest files statically. In this case, DROIDJUST parses
manifest files to identify the BroadcastReceiver classes that
are registered with an IntentFilter, and then label the In-
tent parameters of their onReceive methods as the actual
sensitive data. The second way is to register a BroadcastRe-
ceiver dynamically. Particularly, the app code can call the
method registerReceiver at runtime to register a Broad-
castReceiver with an IntentFilter. In this case, DROID-
JusT searches the app for the strings that are equal to the
privileged intent actions, then performs static taint analysis
from the strings (as sources) to registerReceiver methods
(as sinks) to identify the BroadcastReceiver classes that
can receive the SI, and finally label the Intent parameters
of their and their subclasses’ onReceive methods as actual
sensitive data.

The third type of resources (T3) in PScout is related
to content providers. In Android, content providers also
manage access to certain SI. To retrieve the referenced
SI, app developers can use a ContentResolver object to
resolve a content Uri object by calling its query method.



Specifically, there are two ways to obtain a content Uri
object in Android. One way is to directly construct it by
encoding a string and the other way is to directly fetch
a content Uri object from the field of a framework class.
For example, constructing a Uri object by encoding the
string "content://com.android.contacts" gives the exact
same Uri object as android.provider.ContactsContract.
AUTHORITY_URI gives. Hence, T3 is those strings and fields
that can be used to construct or directly fetch Uri objects
to retrieve SI. DROIDJUST searches an app for the Uri ob-
jects that are constructed by the strings or directly fetched
from the fields, then performs static taint analysis from the
found Uri objects (as sources) to the query method of the
ContentResolver object (as sinks). It finally labels the re-
sult of the query (a Cursor type) as actual sensitive data.

4.2.2 Sinks

The retrieved ST can directly flow to the outer world
through several channels. Below we describe two most com-
mon channels, which are currently covered in DROIDJUST.

Internet. Android apps can access the Internet and de-
liver ST in several ways. A common way is to employ a
socket-like API or a high-level HTTP client to send out
SI. We collect all such APIs from java.net, javax.net and
org.apache.http packages. Besides, Android apps may em-
bed ST into a URL and use the Android webkit APIs such
as <WebView: void loadUrl(String URL)> to deliver ST
to the network. Hence, we also collect the related frame-
work APIs from the android.webkit package as potential
sinks.

SMS. SMS is another popular channel to deliver users’
S1, especially for malware. App developers can use the
framework APIs in SmsManager package to send a message.
Hence, we collect a list of the framework APIs from the
SmsManager package as sinks.

4.3 Sensible Information Reception Analysis

Next, we identify both inbound information flows and sen-
sible phone states (SPS) by parsing the Android documen-
tation. We will delay the description on static taint analysis
from the inbound information (as sources) to the SPS (as
sinks) in Section 4.4.

4.3.1 Sources

Corresponding to the two types of sinks for outbound SI
transmissions, we also consider inbound information flows
from these two channels: the Internet and SMS.

Internet. Android apps can receive information from
the network by employing a socket-like API or a high-level
HTTP client. We collect a list of the related framework APIs
from the java.net, javax.net and org.apache.http pack-
ages to identify the sources. Besides, Android apps can re-
ceive network data by calling the Android webkit APIs. We
collect the related framework APIs from the android.webkit
package to identify the sources.

SMS. We consider the incoming text messages as another
source of STR in our work. Android apps receive incoming
text messages by registering a BroardcastReceiver with the
intent action android.provider.Telephony.SMS_RECEIVED.
To cover the source, we label the corresponding onReceive
methods and identify the incoming Intent parameters as
sources (as shown in 4.2.1).

4.3.2 Sinks

Android apps use framework APIs to change the SPS.
For example, <TextView: void setText(CharSequence)>
is a framework API to change the display of a text edi-
tor widget; <Vibrator: void vibrate(long)> is used to
cause the phone to vibrate. We collect the framework APIs
that can change the SPS in four different ways, including
display, sound, vibration, and light, by parsing the Android
4.1.1 documentation. In general, many framework APIs
can change the SPS via display. Our selection strategy
for this type of APIs is to first label all the subclasses of
android.view.View, because this class represents the most
basic building block for UI components in Android. We
then manually identify the methods that can change SPS
by checking their functions in the Android documentation.
Based on our observation, most APIs that can change SPS
have a prefix of “set” in their method names. For sound, vi-
bration and light, they have much less framework APIs than
the display-related APIs. Hence, we manually find the re-
lated classes to collect their methods that can change SPS.
Finally, we collect totally 249 Android framework APIs that
can change SPS. Table 1 gives a summary of our collected
Android framework APIs that are able to change SPS.

[ Type | Method Name | Quantity |
display | setText, setTitle, setlcon, etc. 232
sound setDataSource, setSound, etc. 11

vibration setVibrate, vibrate 4
light setLights 2

Table 1: Android framework APIs that are able to
change sensible phone states

4.4 Static Taint Analysis

To identify the data flows from different kinds of sources to
different kinds of sinks, DROIDJUST uses static taint analysis
intensively. Specifically, we have the following static taint
analysis tasks: 1) from an intent action string to a regis-
terReceiver method (in Section 4.2.1), 2) from a Uri object
to a query method (in Section 4.2.1), 3) from the actual sen-
sitive data to the outgoing channels (in Section 4.2), 4) from
the inbound information to the SPS (in Section 4.3), and 5)
from a URL string to network socket or a high-level HTTP
client (in Section 4.5).

DroIDJUST models the static taint analysis problem within
the IFDS [27] framework for inter-procedural distributive
subset problems. In practice, DROIDJUST extends Soot [29],
Heros [7] and FlowDroid [5] to provide inter-procedural data-
flow analysis. Particularly, FlowDroid generates a dummy
main method based on a precise modeling of Android lifecy-
cle and flow functions, which define an IFDS analysis prob-
lem; Soot generates a call graph and an inter-procedural
control-flow graph (ICFG) from the dummy main method,;
Heros provides template-driven inter-procedural data-flow
analysis by taking as the input flow functions and the ICFG;
and DROIDJUST identifies different kinds of sources and sinks
for the inter-procedural data-flow analysis and supports ad-
ditional indirect static taint analysis (as described below).

Additional Indirect Static Taint Analysis. In prac-
tice, we find that the state-of-the-art static taint analysis
is ineffective to discover a significant amount of data flows,
particularly in the aforementioned tasks 3) and 4), due to



the heavy use of data medium in Android apps. That is,
tainted data could be first stored into a data medium and
later delivered to a sink through data medium. This is very
common in Android development since app developers pre-
fer to use data media (e.g., SQLite) as the backend of dis-
played content. To handle this challenge, DROIDJUST per-
forms additional indirect data flow analysis at two stages:
first from sources to the data media, and then from the
tainted data media to sinks. In general, there are four
types of data media in Android: SharedPreference, Con-
tentProvider, SQLite database and File. Each type of data
medium has its own unique identifier, and DROIDJUST taints
data media at two stages according to the unique identi-
fier. Specifically, SharedPreference uses both Context and
a filename (a string) to uniquely identify a preference file;
ContentProvider uses Uri to uniquely identify a data repos-
itory; SQLite uses a table name (a string) to identify a table
on a default database; and File uses a filename (a string)
to identify a stored file. By launching the two-stage static
taint analysis, DROIDJUST is able to discover almost all data
flows.

4.5 Correlation and Justification

After identifying the app’s SI transmissions and SIR,
DROIDJUST tries to justify each of the SI transmission flows
by linking it to an STR flow. This correlation task is not easy
since DROIDJUST cannot acquire and analyze the server-side
logic. To try the best, DROIDJUST solves it in the following
manner. ST transmission flows deliver the sensitive infor-
mation either via the Internet or SMS. Considering a ST
transmission flow delivering the sensitive information via
the Internet, if the transmission flows into the Android we-
bkit APIs, it is justifiable since the transmission displays
a WebView to users in phone screen. Otherwise, it means
the transmission flows into a socket-like API or a high-level
HTTP client.

In the latter case, DROIDJUST first finds if the transmis-
sion is synchronous to any SPS flow. Specifically, DROID-
JusT checks if the ST transmission flow and the SIR flow
share the same network socket or HT'TP client. If true, they
are correlated. Otherwise, DROIDJUST continues to check
if a ST transmission flow is asynchronous to any SIR flow.
More specifically, DROIDJUST checks if the destination of the
ST transmission and the source of the STR are the same. In
other words, DROIDJUST checks if the network server that
delivers information to the SPS is the same server where
the SI flow goes to.

There are two tasks to map the server names. The first
task is to extract the network addresses from each of the
inbound and outbound information flow. DROIDJUST first
identifies all the URL- or IP-like strings and then uses static
taint analysis to find the strings that flow into the network
connection of the SI transmission or SIR. The identified
strings are the network addresses of the SI transmission or
reception. The second task is to check if these network
addresses refer to the same network server. The simplest
way is to compare the hostnames of the network addresses.
However, in reality, an app may use different hostnames for
the same server. To cope with this situation, we further
check whether the IP addresses of the hostnames are equal.
Finally, DROIDJUST justifies the ST transmission if either
the hostnames or the IP addresses of the hostnames are the
same. In its implementation, DROIDJUST uses the standard

Java API (<URI: String getHost()>) to extract hostnames
from URL- or IP-like strings and nslookup to resolve host-
names to IP addresses.

On the other hand, considering a ST transmission is through
SMS, DroipJusT simply checks if the app receives any in-
coming messages to change SPS. If yes, the transmission is
justifiable; otherwise, the transmission is unjustifiable.

S. EXPERIMENTAL EVALUATION

To evaluate the effectiveness, accuracy and efficiency of
DroipJusT, we perform experiments on 6111 Google Play
apps and 340 known Sl-stealing Android malware collected
from VirusTotal [3]. Next we report the detailed results and
our findings.

5.1 Evaluation on Google Play Apps

In the experiment, we evaluate DROIDJUST over 6111 apps,
randomly downloaded from the Google play store during
March, 2014. Based on a report from Andrubis [30], only
1.6% Google Play apps are identified as malware by anti-
virus vendors. Hence, we expect most of these downloaded
apps to be benign and not leak user privacy. By scanning
these apps with DROIDJUST, we evaluate whether DROID-
JUST can precisely identify benign apps, particularly those
delivering SI to the network.

We setup our evaluation on a cluster with hundreds of
Intel Xeon E5-2665 2.40 GHz processors (16 cores per pro-
cessor). Each analysis task (for analyzing an app) is assigned
to a cluster node with 4 cores and 16 GB physical memory,
which runs JDK 1.7.0_21. DroOIDJUST takes about 85 hours
of CPU time to analyze 6111 Google play apps and 12 hours
of CPU time to analyze 340 known malware. On average,
each Google play app takes about 50 seconds of CPU time
and each known malware about 128 seconds of CPU time.
Hence, DROIDJUST is definitely an affordable tool for an-
tivirus vendors or Android market operators.

During the evaluation, we notice that DROIDJUST can-
not analyze some apps due to either insufficient memory or
failure of type resolving. Basically, DROIDJUST shares the
same problem with other FlowDroid-dependent tools [19].
We start by analyzing 6111 apps, among which 1092 apps
failed to go through. Thus, below we show our experimental
results over the remaining 5019 apps.

Justifiable
(3.61%)

Contain no Contain sensitive
sensitive info —info transmission
transmission (4.18%)

(95.82%)

Unjustifiable
(0.58%)

Figure 4: Analysis results for Google Play apps

Results. Figure 4 illustrates the analysis results. Among
5019 Google play apps, 95.82% apps do not send out users’



Package Name Leaked Sensitive Info | Dynamic Tainting * | Still on Google Play? # | VirusTotal Score °
com.controlaltkill.autoball Phone number No Yes 0/57
com.jb.gosms.pctheme.loving_bears IMEI Yes Yes 0/57
com.kingdom_card_wem777_1 Location No Yes 0/57
com.kokovoin.homedesign IMEI No Yes 1/56
com.mapnavigation IMEI Yes Yes 12/57
com.necta.aircall_accept.free IMEI Yes Yes 7/57
com.pixoplay.candyshooter IMEI Yes Yes 0/57
com.topdisk.launcher IMEI N/A 3 Yes 0/57
cz.prilozany.android.compass IMEI, Location Partial * Yes 0/57
fr.pb.tvmobile IMEI No No 0/56
lk.bhasha.sett.hindi IMEI Yes Yes 3/57
lk.bhasha.vishwa IMEI No No 0/57
me.chatcast.kaomoji Gmail account name No Yes 0/57
me.zed_Oxff.android.alchemy IMEI Yes Yes 2/57
mx.websec.mac2wepkey.hhghxx Location No Yes 0/57

Table 2: (C3) Identified Google play apps that send out users’ sensitive information not for functions.
Notes: 1. we use Andrubis for dynamic taint analysis, whose dynamic taint analysis is based on TaintDroid;
2. we update till Feb. 13, 2015; 3. the file exceeds the maximum size limit (8MB) restricted by Andrubis;

4. only the IMEI leak is identified.

SI, while 4.18% (210) apps transmits users’ SI via Internet
or SMS. Among those transmitting SI, 3.61% (181) apps’
SI transmissions are justifiable while 0.58% (29) apps’ SI
transmissions are unjustifiable.

Validation. We manually check these 29 apps by ana-
lyzing their intermediate representation (Jimple) and read
their descriptions in Google Play to understand their func-
tions and validate our detection results. After validation,
we classify these 29 apps into the following categories.

(C1) Stealthily send out SI for app functions. There are
ten apps that stealthily send out users’ SI for application
functions including anti-theft, location-tracking and spying.
Those apps have clear descriptions about their stealthy be-
havior in Google Play. For anti-theft apps (e.g., avsolu-
tion.versionl), once a thief changes the SIM card of a
stolen phone, they immediately notify the original users of
phone information (e.g., phone number, IMEI, and location)
of the new SIM card via SMS in a background task. This
communication is designed to be one-way. Location-tracking
apps (e.g., gaugler.backitude) send out locations via In-
ternet or SMS to track a mobile device in real-time. Besides,
there are spyware whose main function is to spy on users,
as stated in their descriptions. For example, com.dona.
messagespoofing is an intentionally designed spyware to
stealthily forward all incoming SMS messages to a desig-
nated phone number after the first-time setup. In summary,
those apps are supposed to stealthily send out SI without
users’ awareness. In terms of behavior, they are very similar
to spyware that steal users’ sensitive information. Hence, it
is indeed appropriate for DROIDJUST to label them as un-
justifiable from the perspective of code behavior. We note
that privacy analysts can easily distinguish all these apps
from malicious spyware by reading their descriptions.

(C2) Analytics libraries. Four apps containing analytics
libraries are found sending out users’ phone information to
remote servers. We recognize these analytics libraries by
checking the hostnames of their network servers. They have
affiliations with the mobile application solution providers in-
cluding accelerator, crittercism and kontagent. DROIDJUST
does not justify the SI transmissions by these analytics li-

braries because they do not provide any function back to
users. We note that, in practice, an analytics library is of-
ten bundled with the same provider’s advertisement library
and therefore our tool will justify the sensitive information
transmission in the analytics library by identifying the STR
in the advertisement library.

(C3) Stealthily send out SI but not for app functions. We
identify 15 apps that stealthily send out users’ SI to remote
servers, but such SI transmissions cannot be justified. Those
apps do not describe anything about their stealthy behavior
in their descriptions in Google Play. To avoid possible false
alarms, we manually and carefully check their app logic by
analyzing their intermediate representation (Jimple) to en-
sure that the discovered SI transmission does not provide
any function to users. Besides, we use the dynamic taint
analysis tool Andrubis to expose their privacy leak behavior
in runtime.

Table 2 shows a summarized result for these 15 apps.
From left to right, the table shows app’s package name,
leaked SI identified by DroOIDJUST, if Andrubis can iden-
tify the same leak, if the app is still available for down-
load on Google Play, and how many antivirus engines in
VirusTotal identify the app as malicious. From this ta-
ble, our observations and findings are as follows. First,
we can see that the most frequently leaked SI is device
ID (IMEI). This is expected based on the past research
work [9,36]. Second, Andrubis’s dynamic taint analysis did
not identify all the SI transmissions in 8 apps, mostly due
to the failure in generating appropriate inputs. For example,
com.kingdom_card_wcm777_1 and 1k.bhasha.vishwa require
users to provide correct authentication information for a
mobile payment account and the Facebook account, respec-
tively, at the very beginning, and dynamic taint analysis
fails to bypass the authentication in runtime. Third, after
almost one year, Google Play only removed two apps while
the remaining 13 apps are still available for download. Last
but not least, 10 of these 15 apps cannot be detected by any
antivirus engines in VirusTotal.

5.2 [Evaluation on Known Malware




In this experiment, we evaluate DROIDJUST on 340 mal-
ware known for stealing users’ SI. To collect them, we first
collect a list of malware families that are known for steal-
ing user private information from Genome [36] and Foren-
sics blog [2], and then download the apps related to these
malware families from VirusTotal by using their advanced
reverse search system [3]. We run DROIDJUST against these
340 apps to evaluate its detection precision. We start with
340 apps and unfortunately 42 apps fail to go through due
to the same reason as we mentioned above. Thus, here we
only show our experimental results for the rest 298 apps.

Results. Table 3 shows the analysis results for each mal-
ware family. There are 43 malware families in total. For
each malware family, the number of samples is between 1
and 31. In the table, the column Positive gives the num-
ber of samples that are identified to contain unjustifiable SI
transmission and column Negative gives the number of sam-
ples that are identified to contain only justifiable SI trans-
missions. The total number of positive outcomes is 274,
while the total number of negative outcomes is 24. Thus,
the detection rate is 91.94%. The malware samples leak five
kinds of SI, as shown in the middle of the table: phone in-
formation (P), contacts (C), messages (S), locations (L) and
accounts (A). We note that the marks in each row indicate
the union of sensitive information types that are leaked by
all samples in the malware family; as such, not every sam-
ple in a malware family leaks all marked types. We can see
that phone information is the most leaked SI among the 43
malware families.

Validation. We manually inspect the 24 apps with neg-
ative outcomes by analyzing their intermediate represen-
tation. There are two main sources of false negatives for
DRroOIDJUST. One is because of dynamic code loading. That
is, some malicious apps download and install other malware
after exploiting certain root access vulnerability. It is the dy-
namically downloaded malware code that leaks user privacy.
Static taint analysis inherently cannot detect the leakage be-
havior by the malware installed later. The second reason is
due to the inaccurate callback-based lifecycle modeling in
FlowDroid [14].

6. DISCUSSION

In this section, we discuss the limitations of our approach.

Security Analysis. In our design, we ignore the mean-
ingless inbound flows (i.e., those not leading to any SP.S)
to prevent attackers from introducing noisy inbound flows
to evade our detection. Determined attackers, however, may
manage to introduce noisy inbound flows that indeed lead to
some SPS. Since SPS is sensible to users, the attacker will
need to ensure that such noisy flows will only cause min-
imal changes of phone states to not degrade the usability
and functionality of the app. We will examine the practical-
ity of this and other attacks and accordingly design possible
countermeasures in our future work.

Implicit Information Flows. Sensitive information can
propagate in other channels than direct channels, such as
control flow and timing channels. It is very challenging to
detect and track these channels. In this work, we do not
consider tracking implicit information flows. The limitation
is also shared by other taint analysis tools, such as Taint-
Droid [9] and PiOS [8]. We leave it as our future work to
support the discovery of implicit information flows.

Malware Sensitive information Pos. | Neg.
familiy PIS|JLJCJ]A
anserver X 30 1
avpass X 1 0
backflash X X 2 0
basebridge X X 27 1
beanbot x | x 6 0
bgserv X X 3 1
droiddreamlight | x X X X 25 2
droidkungfu b 20 2
extension X 1 0
fakeangry X 5 0
fakebank X X 8 0
fakemart X 1 0
faketaobao X 2 1
fjcon b b b 4 0
fokonge X 19 1
geinimi X X X 17 1
ggtracker X X 6 1
gingermaster X X 16 3
godwon X X 3 1
golddream x | x x | x 29 0
hongtoutou X X 17 1
kmin X X 29 0
lena X 2 0
loozfon X X 3 0
mobilespy X X X 4 1
mobiletx X 2 1
pjapps X 22 1
plankton X 12 1
roguelemon be 1 0
roidsec X X X 2 0
sinpon X X X 2 0
skullkey X 1 0
smspacem X X 1 0
sndapps X b 9 0
spitmo b'e b'e 3 1
Spyoo X 3 0
ssucl X b b b 1 0
tetus X 1 0
typstu X X 9 0
usbcleaver X 1 0
vdloader X 1 0
yzhc X 11 2
zitmo X X 2 1
| Total (43) [37]20] 5 J10] 6 [ 274 | 24 |

Table 3: Malware families featuring privacy leakage
P: Phone information; C: Contacts; S: Messages;
L: Locations; A: Accounts.

Java Reflection & Native Code. Static information
flow analysis always has the trouble to handle Java reflec-
tion and native code due to the lack of full knowledge on
Java reflective calls and JNI calls [11]. In our work, we use
taint wrappers with various crafted function summaries to
partially resolve the propagation through Java Reflection,
which however may introduce some false positives. We do
not deal with native code for data propagation. Potentially,
we could model the well-known JNI calls and thereby create



the corresponding taint wrappers for the calls to exercise
static data propagation. We leave it as our future work to
enhance our tool.

7. RELATED WORK

Most prior approaches to detecting privacy leakage in mo-
bile apps use either static or dynamic analysis. TaintDroid [9]
is a dynamic analysis tool for monitoring potential privacy
leakage in Android apps by modifying Dalvik virtual ma-
chine and dynamically instrumenting Dalvik bytecode in-
structions. PiOS et al. [8] is a static analysis tool for dis-
covering possible leaks of SI from a mobile device to third
parties in iOS devices. Enck et al. [10] use ded [22], a
re-targeting tool, to convert a Dalvik executable back to
Java source code, and leverage a commercial Java source
code static analysis tool named Fortify 360 [1] to detect
suspicious information flow. AndroidLeaks [12] is another
static analysis tool to detect potential privacy leakage in
Android applications by leveraging the WALA [4] frame-
work. Mann et al. [21] also proposed a static taint analysis
based framework by using their self-crafted abstract Dalvik
virtual machine instruction set and a security type system.
Permlyzer [31] is a hybrid permission analysis tool which
uses both dynamic and static analysis to identify the use
of sensitive permissions. FlowDroid [5] is a precise context,
flow, field, object-sensitive and lifecycle-aware static taint
analysis tool to detect SI transmissions in Android apps.
FlowDroid uses SuSi [25], a machine-learning approach to
identifying an app’s sensitive information sources and sinks.
To summarize, all these approaches are capable of detect-
ing an app’s SI transmissions, but they are not designed to
justify the SI transmission automatically.

Several approaches have focused on the justification of an
app’s Sl transmission by examining the contextual informa-
tion of the leakage. Applntent [33] is an analysis tool to
provide a human analyst with the contextual information of
privacy data transmission, particularly, the chain of events
leading to the triggering of a transmission, to help justify dis-
covered SI transmissions. However, the approach still needs
human effort to justify every discovered SI flow. Tripp et
al. proposed a bayesian approach to statistically classify SI
transmissions as legitimate or illegitimate based on the ev-
idences arising at the release point [28]. The effectiveness
of the approach highly depends on the select feature of the
evidences for their statistical inference, which is the similar-
ity between actual sensitive data and the data about to be
released. Different to those two approaches, which consider
the evidences arising before and at the release point, our ap-
proach uses the evidence arising after the release point for
privacy leakage detection. Zhang et al. proposed Capper,
a bytecode rewriting tool, to instrument Android apps to
alert users on SI transmissions in runtime and enable users
to allow/deny the transmission [35] . Market providers and
antivirus vendors, however, cannot use the reactive approach
to perform large-scale detection.

Past research work have also demonstrated the strong re-
lationship between an app’s meta information and its de-
clared permissions. Pandita et al. and Qu et al. proposed
WHYPER and AutoCog to automatically infer an app’s nec-
essary permissions from its description by using natural lan-
guage processing [23,24]. These approaches can be poten-
tially used to provide additional useful information to justify
an app’s SI transmission. However, it is nearly impossible
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to only use meta information to justify an app’s SI trans-
mission because meta information is often very high-level,
incomplete and sometimes inaccurate in reflecting all per-
mission needs. Note that DROIDJUST is not designed for per-
mission analysis, but rather a tool for sensitive information
flow analysis. Because a privacy-sensitive permission might
be needed in multiple sensitive information flows in an app,
even if the purpose of a permission is justified, a dependent
individual SI flow may still be unjustifiable. For example, a
malicious weather forecast app may be justified for the lo-
cation permission based on its description, but one of its SI
flows stealthily sending to an unknown third party cannot
be justified. This indicates that these tools and DROIDJUST
work at different granularities and may complement each
other.

8. CONCLUSION

We present DROIDJUST, an automated approach to justi-
fying an app’s S transmission by bridging the gap between
ST transmission and app’s functionality. It uses static taint
analysis to first discover the SI transmissions to the net-
work, then discover the information receptions (from the
network) that serve application functions, and finally jus-
tify the discovered SI information transmissions by corre-
lating the outbound and inbound information flows. Our
evaluation on real-world Android apps and known malware
demonstrates that DROIDJUST can effectively and efficiently
analyze both benign apps and malware.
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