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Abstract. We introduce an enhanced information-flow analysis for tracking
the amount of confidential data that is possibly released to third parties by a
mobile application. The main novelty of our solution is that it can explicitly
keep track of the footprint of data sources in the expressions formed and
manipulated by the program, as well as of transformations over them,
yielding a lazy approach with finer granularity, which may reduce false
positives with respect to state-of-the-art information-flow analyses.
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1 Introduction

Mobile applications typically ask for permission to access personal (i.e. relevant
with respect to privacy) information stored on the device. However, even in
non-malicious applications, once these permissions are granted it is often the
case that data concerning gender, sex, age, GPS location, smartphone ID, etc. is
managed in a way that partially releases it to third parties (e.g. for advertising,
profiling, analytics and social computing), with or without some degree of
obfuscation, leaving the user unaware of how much confidential information
actually leaked [29, 36]. Most systems, in fact, are designed to allow users to
configure access control (e.g., by setting permissions), without enabling them
to monitor the actual information flow of confidential data. In reality, users
may trust an application to manage their personal information, but might be
concerned about the obfuscation degree applied to that information before it
is passed to other (possibly untrusted) actors. The key issue is to keep track of
(and possibly restrict) the amount of confidential information that is released by
an app, without compromising the usability of the app itself by enforcing overly
conservative constraints.

In this challenging context, the aim of this work is to define a theoretical
framework to support the design of tools that provide developers as well as end
users with better control of how the values managed by the applications reveal
confidential data stored on the device.

1.1 Background

Preserving confidentiality of sensitive information in software systems is a
subject of intensive research. Various language-based information-flow security



analyses were proposed [18, 21, 32, 35]. Most of these works are based on the
non-interference notion that says that a variation of confidential data given as
input to a program does not cause any variation of publicly observable data
[12]. The approaches are different (type systems [28, 32, 34], dependence graphs
[18, 22], slicing [2, 6, 21, 35], etc.), and apply to different languages including
imperative, object-oriented, functional and structured query languages [17, 18, 21,
30]. Recent works address in particular data protection from permission-hungry
Android applications [4, 7, 15, 19, 24, 40], and data-leakage aggregation due to
undesired inter-application dataflows [31].

However, in the scenario depicted above the crucial point is not just to
discover if sensitive data is confined to private variables, but also to keep control
of how the authorized access to confidential data is compliant with respect
to a privacy policy, expressed in terms of minimal degree of obfuscation that
should be applied to sensitive data in the exposed values. In this respect, the
information-flow approach of the mentioned works yields overly conservative
results, as the granularity of public/private variables is too coarse, just like the
tampered/untampered granularity [1] assigned to data when declassification
mechanisms are introduced for relaxing confidentiality policies [5].

1.2 Contribution

This work extends taint analysis, which is a popular variant of information-flow
analysis [37–39] in order to trace the dependence flow of confidential information
from data sources to data sinks. A finer granularity of the analysis is obtained
by explicitly keeping track of the footprint of data sources in the expressions
managed by the program, as well as of the obfuscation impact of the program
operators. As the analysis is defined as an instance of the Abstract Interpretation
framework [10], the tradeoff between accuracy and efficiency can be tuned by a
suitable choice of the concrete domain abstraction.

The main contributions of this paper can be summarized as follows:

– We design an enhanced concrete semantics that makes explicit the depen-
dence of values on local data sources.

– We define the notion of “confidentiality value of an expression” in terms of
min/max confidentiality degree of its sources and of min/max obfuscation
degree of the operators that are used to generate it.

– We lift the enhanced concrete semantics to (computable) abstract semantics
according to the Abstract Interpretation framework.

– We show how a static analysis based on this framework can be used to verify
the satisfaction of privacy policies.

– We provide practical evidence of the effectiveness of our approach.

In concrete implementations, tracking indirect information flows negatively
impacts the effectiveness of the analysis due to the presence of exceptions.
Therefore, our approach disregards them. However, the treatment of implicit
flows can be further incorporated into our framework by infusing relational
operators’ footprint in the different conditional statements’ branches.



1 public class IMBanner {
2 public void loadBanner() {
3 UserInfo user = new UserInfo();
4 user.updateInfo();
5 BannerView banner = new BannerView(user);
6 banner.loadNewAd();
7 show(banner);
8 }

9 }

10

11 public class BannerView {
12 private UserInfo user;
13 BannerView(UserInfo user) {
14 this .user = user;
15 }

16 void loadNewAd() {
17 String url = ”http :// www.inmobi.com/...?id=”
18 + user.id + ”&lang=”+user.language+
19 ”&country=” + user.country + ”&loc=” + user.loc ;
20 // open an http connection with url
21 // update the new ad to display
22 }

23 }

25 public class UserInfo {
26 String language;
27 String country;
28 String id ;
29 Location loc ;
30

31 void updateInfo() {
32 Locale localLocale = Locale.getDefault ();
33 language = localLocale.getLanguage();
34 country = localLocale.getCountry();
35 String androidId = Settings.Secure.getAndroidId();
36 id = MessageDigest.hashSHA1(androidId);
37 loc = LocationManager.getLastKnownLocation();
38 }

39 }

Fig. 1: Snippet of Code from the Inmobi Library

1.3 Structure of the Paper

The rest of paper is structured as follows: Section 2 presents some examples that
motivate the main novelties of our approach. Sections 3, 4, and 5 describe the
syntax, and the enhanced concrete and abstract semantics, respectively. Section
6 introduces the notion of confidentiality and obfuscation values for sources and
operators. Section 7 shows how this framework can be applied to the verification
of privacy compliance policies. Section 8 discusses related work, while Section 9
concludes.

2 Motivating Examples

2.1 Inmobi

Consider the motivating example in Figure 1. This code is extracted from the
Inmobi library.3 Inmobi is among the three most popular advertisement engines
for Android apps [3]. This code sketches the main steps performed by the
Inmobi library when loading an advertisement banner. This is performed by
method IMBanner.loadBanner(), that first creates and updates a UserInfo object
(lines 3-4), then creates and loads the advertisement banner view passing the
information about the user (lines 5-6), and finally displays the banner (line
7). Even though, at a first glance, this method does not seem to access any

3 This library is obfuscated, and some parts (and in particular BannerView.loadNewAd())
cannot be decompiled. For the sake of readability, we represented the main components
of the library in this code snippet.



confidential information, user.updateInfo() collects and transforms various
pieces of information about the user and the device, and in particular (i) the
language and country of the user from the default Locale object (lines 32-34), (ii)
the hashing of the Android ID (lines 35-36)4, and (iii) the last known location
(line 37). When a UserInfo object is passed to the constructor of BannerView, it is
stored in a local field. The information contained in this field is then concatenated
in the URL (lines 17-19) used to retrieve the advertisement banner. In this way, the
data collected by UserInfo.updateInfo() is leaked to the advertisement server.
This data aggregates various sources (language and country from the Locale,
the android ID, and the location).

This example shows that we need to track complex flows of information.
For instance, with a standard taint analysis [39] an alarm would be raised upon
any flow from a source to a sink. In this particular example, we expect that it
would be fine to release to the advertisement server some of the sources (e.g.,
the country and the language, but not the Android ID), so taint analysis could
raise a false alarm in this scenario. Indeed, we are interested in computing the
global amount of data that is released (that is, country, language, Android ID,
and location), and to raise an alarm only if this amount exceeds a specified
threshold. In addition, one needs to specify if the transformation performed
on the confidential data (e.g., hashing the Android ID) is obfuscating the value
sufficiently or not. For instance, the hashing of the ID might be used to track
a user or device if the hash clashing is quite rare, and therefore the level of
obfuscation performed by this transformation might be insufficient.

2.2 IMSI

The following snippet of code is extracted from internal Android library
com.android. internal.telephony.cdma.RuimRecords:

1 String mImsi = telephonyManager.getDeviceId();
2 log( ”IMSI:” + mImsi.substring (0, 6) + ”xxxxxxxxx”);

It leaks a portion of the device identifier through the log. The fundamental
question here is whether the first 6 characters of the International Mobile
Subscriber Identity (IMSI) code contain confidential information that the user
does not want to leak outside. The IMSI code is usually made by 15 characters,
where the first 3 characters identify the country, the following 2 or 3 characters
identify the mobile network, and the rest is used to identify the device.5 Therefore,
we assume that the first 6 characters do not contain confidential information.

4 The Android ID is “randomly generated when the user first sets up the device and
should remain constant for the lifetime of the user’s device”. Therefore, it is used to
track a specific user (rather than a device) by advertisement engines. We simplify the
API call to make the code more readable.

5 http://en.wikipedia.org/wiki/International mobile subscriber identity.



3 Syntax

At the lowest level of the language, we consider expressions on strings (s ∈ S),
integers (n ∈ Z), and Boolean values (b ∈ B). We denote by bexp and nexp Boolean
and numerical expressions, respectively. In addition to basic numerical, textual,
and Boolean expressions, we introduce label constants (that refer to datastore
entries). Let Lab be the set of labels. We denote by `, possibly subscripted, labels
identifiers in Lab. Our language support a statement read(`) that returns the
value read from the datastore corresponding to the label `. We define string
expressions by sexp ::= s | sexp1 ◦ sexp2 | encrypt(sexp, k) | sub(sexp,nexp1,nexp2) |
hash(sexp) | read(lexp) where ◦ denotes the concatenation of two strings, k denotes
a key used to encrypt a textual value, sub(s,n1,n2) computes the substring of
s from the n1-th to the n2-th character, and hash(s) computes the hash value
of s. For the sake of simplicity, we focus our formalization on this minimal
representative language, and on operations over strings. Our approach can be
extended straigthforwardly to support other operations and types.

Finally, we define a standard minimal imperative set of statements. In
particular, we support string assignment (x := sexp), concatenation (c1; c2),
conditional if (if bexp then c1 else c2), and while loops (while bexp do c). In
addition, we have a special statement send(sexp) that leaks a string value.

4 Collecting Semantics

4.1 Domain

First of all, we define atomic data expressions by D = {〈`i,Li〉 : i ∈ I}. Given
a set of data labels, which identify the locations of the read-only6 datastore a
program interacts with, an atomic data expression adexp is a set of elements
〈`i, {(op j, `′j) : j ∈ J}〉. An element 〈`i, {(op j, `′j) : j ∈ J}〉 in adexp says that the value
of adexp has been obtained from the datum stored in the location `i by combining
it with data coming from the locations `′j through the corresponding operations
op j. In other words, an atomic data expression keeps track, for each source of the
expression value, of the set of other data sources that were used to get that value
from it. We denote by D the domain of atomic data.

We focus our collecting semantics on the variables referring to values coming
from the datastore. Therefore, we define a data environment mapping local
variables in Var to atomic data expressions (D : Var −→ ℘(D)). Note that each
variable may contain data about different sources (e.g., the concatenation of the
strings representing the Android identifier and the location), and therefore each
variable is related to a set of atomic data expressions. In addition, the concrete
state tracks value information as well (V : Var −→ (Z∪ S)). Formally, Σ = D×V.

6 We restrict our focus to a read-only datastore, for the sake of simplicity. Extending the
model to the general case brings about the problem of aliasing that should be studied
further.



SA[[x]](a, v) = a(x)
SA[[read(lexp)]](a, v) = {〈SL[[lexp]](a, v), ∅〉}

SA[[encrypt(sexp, k)]](a, v) = {〈`1,L1 ∪ {([encrypt, k], `1)}〉 : 〈`1,L1〉 ∈ SA[[sexp]](a, s,n)}
SA[[s]](a, v) = {〈?, ∅〉}

SA[[sexp1 ◦ sexp2]](a, v) = {〈`1,L1 ∪ {(◦, `2)}〉, 〈`2,L2 ∪ {(◦, `1)}〉 :
〈`1,L1〉 ∈ SA[[sexp1]](a, v) , 〈`2,L2〉 ∈ SA[[sexp2]](a, v)}

SA[[sub(sexp, k1, k2)]](a, v) = {〈`1,L1 ∪ {([sub, k1, k2], `1)}〉 : 〈`1,L1〉 ∈ SA[[sexp]](a, v)}
SA[[hash(sexp)]](a, v) = {〈`1,L1 ∪ (hash, `1)〉 : 〈`1,L1〉 ∈ S[[sexp]](a, v)}

Fig. 2: Semantics of Expressions on Atomic Data

We then introduce a concrete datastore that contains all the possible atomic
data that may be read by a program, where the special label? is used to represent
data coming either from the input of the program or from the constant set of the
program itself, i.e. data that is not contained in the datastore.

Definition 1 (Concrete Datastore). A concrete datastore C is a set {〈`i, ∅〉} : i ∈ I} ⊆
D such that ∀i, j ∈ I : i , j⇒ `i , ` j, and `i , ?}.

Given a program p, we will denote the concrete datastore associated with
this program by Cp.
Example Consider the Inmobi example from Section 2. Method updateInfo
accesses various data coming from the datastore. We represent by (i) 〈Language, ∅〉
the language returned by the Default object (line 30), (ii) 〈Country, ∅〉 the country
returned by the Default object (line 31), and (iii) 〈AndroidId, ∅〉 the Android
identifier. These three data sources are stable, that is, they always return the same
values. For the locations (that is, line 34) it may be the case that different calls
of getLastKnownLocation retrieves different locations. Therefore, the concrete
datastore contains 〈Locationi, ∅〉 : i ∈N as well. Instead, for the IMSI example
we have only one datum 〈IMSI, ∅〉.

4.2 Semantics

We suppose that a standard concrete evaluation of numerical (SN : nexp×V → Z)
and string (SS : sexp × V → S) expressions is provided, as well as the evaluation
of Boolean conditions (SB : bexp × V → {true, false}). In addition, we suppose
that the semantic evaluation of label expressions (SL : lexp × Σ→ Lab) returns a
data label given a label expression.

The evaluation of the expressions on atomic data SA : sexp × Σ → ℘(D) is
defined in Fig. 2. Observe that this enhanced concrete semantics of expressions
can be seen as an abstract representation of partial execution traces, where each
expression tree is projected to the data associated to the labels in Lab.

Once the semantics of expression is formalized, the (concrete enhanced)
semantics of statements can be expressed as depicted in Figure 3.



S[[x := sexp]](a, v) = (a[x 7→ SA[[sexp]](a, v)], v[x 7→ SS[[sexp]](v)])
S[[send(sexp)]](a, v) = (a, v)

S[[c1; c2]](a, v) = S[[c2]](S[[c1]](a, v)))

S[[if bexp then c1 else c2]](a, v) =

{
S[[c1]](a, v) if SB[[bexp]](v)
S[[c2]](a, v) otherwise

S[[while bexp do c]](a, v) = S[[ if (bexp) (c; while bexp do c)](a, v)

Fig. 3: Concrete Semantics of Statements

Example Consider again the Inmobi example of Section 2. After the execution
of updateInfo (line 4) we have that (i) user.language 7→ {〈Language, ∅〉}, (ii)
user.country 7→ {〈Country, ∅〉}, (iii) user.id 7→ {〈AndroidId, {(hash.Android-
Id)}〉}, and (iv) user.loc 7→ {〈Location1, ∅〉}. We then concatenate all this data in
a string stored in url at line 17. Therefore, we obtain the following atomic data
expression with label AndroidId:
〈AndroidId, {(hash, AndroidId), (◦, Language), (◦, Country), (◦, Location1)}〉

while for Location1 we obtain 〈Location1, {(◦, AndroidId)}〉 since this is the last
element concatenated when building url. For the IMSI example, we obtain that
the data expression leaked at line 2 is 〈IMSI, {([sub, 0, 6], IMSI)}〉.

4.3 Canonical Form of Atomic Data

The definition of atomic data does not impose any constraint on the number
of elements. In particular, the same source label can appear several times in an
atomic datum, when its data have multiple impact on the expression’s value.
However, if we are just interested to observe the sources of an expression, and
the set of operators applied to each source, a more compact representation of
atomic data can be given, where each source label appears at most once.

Given an atomic datum d = {〈` j,L j〉 : j ∈ J}, we denote by src(d) its source
set {` j : j ∈ J}. Moreover, given a label ` and an atomic datum d, we denote by
links(`, d) the links set of ` in d if ` ∈ src(d), and ∅ otherwise.

Definition 2. We say that an atomic datum d is in canonical form if every label in
src(d) occurs as a source label exactly once in d. Given an atomic datum, its canonical
form can be obtained by applying the following unary source collapse operator ρ:

ρ(d) = {〈`,∪links(`, d)〉 : ` ∈ src(d)}

5 Abstract Semantics

There are two main ways to get abstractions of the concrete semantics defined
so far: abstracting values, and abstracting labels. The abstract elements should
be an overapproximation of the concrete values assigned to variables in the
concrete computation steps.



5.1 Values Abstraction

Values can be abstracted by means of well-known either relational or non-
relational domains for numerical and textual values [9, 26]. Therefore, we suppose
that a value abstract domain Va is provided, and it is equipped with the standard
lattice and semantic operators.

5.2 Labels Abstraction

Labels can be abstracted by any abstract domain for categorical data, like a
flat constant propagation domain. Observe that when dealing with data stored
in relational form, i.e. by means of bi-dimensional tables, a relational abstract
domain for array representation can be adopted, as defined in [11].
Example In the Inmobi example of Section 2, we do not need to apply any
abstraction on Language, Country, and AndroidId, since these are persistent
throughout the execution. Instead, we need to apply abstraction to the locations
Locationi : i ∈ N, since the statement at line 37 may produce many values.
Therefore, we abstract together all the locations produced by the same program
point pp with Locationpp. In our example, this means that we abstract the data
source at line 37with Location37.

5.3 Atomic Data Abstraction

We are now in position to formalize the atomic data abstract domainAD.

Definition 3 (Abstract Atomic Data). Given a set of atomic data, an abstract element
will be a set of tuples {〈`a

j ,L
au
j ,L

at
j 〉 : j ∈ J} ∈ AD, where

– `a
j is an element of an abstract domain that abstracts labels in Lab

– Lau
j = {(opa

i j, `
a
i j) : i ∈ I} is an under-approximation of the set of operators applied to

the sources represented by `a
j with values coming from sources represented by `a

i j
– Lat

j = {(opa
i j, `

a
i j) : i ∈ I′} is an over-approximation of the set of operators applied to

the sources represented by `a
j with values coming from sources represented by `a

i j
– Lau

j ⊆ Lat
j .

The order on the abstract elements is given by the order on the Cartesian
product of the components’ domain, and the least upper bound and greatest
lower bound operators are defined accordingly.

Definition 4 (Partial Order on Abstract Atomic Data). Given two abstract atomic
data d1 = {〈`a

1i,L
au
1i ,L

at
1i 〉 : i ∈ I1} and d2 = {〈`a

2i,L
au
2i ,L

at
2i 〉 : i ∈ I2} on the same abstract

domains for values and labels,
d1 v d2 ⇔ ∀i ∈ I1 ∃ j ∈ I2 : `a

1i = `a
2 j, Lau

1i ⊇ Lau
2 j , Lat

1i ⊆ Lat
2 j

Given an abstract atomic datum {〈`a
j ,L

au
j ,L

at
j 〉 : j ∈ J}, we denote by src(d) its

source set {`a
j : j ∈ J}.



Definition 5 (Least Upper bound of Abstract Atomic Data). Given two abstract
atomic data d1 = {〈`a

1i,L
au
1i ,L

at
1i 〉 : i ∈ I1} and d2 = {〈`a

2i,A,L
au
2i ,L

at
2i 〉 : i ∈ I2} on the

same abstract domains for values and labels, the least upper bound of d1 and d2 is the
atomic datum

d1 t d2 =
⋃

`a∈src(d1)∪src(d2)


〈`a,Lau

1 ,L
at
1 〉 if `a

∈ src(d1) \ src(d2)
〈`a,Lau

2 ,L
at
2 〉 if `a

∈ src(d2) \ src(d1)
〈`a,Lau

1 ∩ Lau
2 ,L

at
1 ∪ Lat

2 , 〉 otherwise


Let Laba and A be complete lattices featuring Galois Connections with the

concrete domains of labels and values, respectively. Let (γLab, αLab), (γA, αA) be
the corresponding concretization and abstraction functions. When applied to a
set of links {(opi, `i) : i ∈ I}, the function αLab returns the set {(opa

i , αLab(`i)) : i ∈ I},
where opa

i is the abstract operator that safely approximates opi in the abstract
domain A.

Definition 6 (Abstraction function). The abstraction function α : ℘(D) −→ AD is
first defined on singletons and then extended to sets by applying the least upper bound
operator.

αs({〈`i,Li〉 : i ∈ I}) = {〈αLab(`i), αLab(Li), αLab(Li)〉 : i ∈ I}
α({d j ∈ D : j ∈ J}) =

⊔
j∈J αs(d j).

Notice that in the definition above, when considering a single atomic datum,
in its abstract representation the under- and over-approximations of the link
sets are equal. The gap among these sets is introduced in fact by the least upper
bound operator.

Definition 7 (Concretization function). The concretization of abstract atomic data
is defined as an adjoint of the abstraction function: γ(ad) = {d ∈ D : α(d) v ad}

Theorem 1 (Galois Connection). The functions α and γ defined above form a Galois
Connection between ℘(D) and AD, i.e.:

i) α and γ are monotone,
ii) ∀ad ∈ AD : α(γ(ad)) vAD ad

iii) ∀S ⊆ D : S ⊆ γ(α(S)).

Proof. AD is the Cartesian product of abstract domains featuring Galois Connec-
tions with the concrete domain ℘(D), and the functions α and γ are defined in
canonical way w.r.t. the Cartesian product [8].

We define by ADa : Var 7→ ℘(AD) the component of the abstract domain
tracking information on atomic data expressions. The partial order, the upper
bound and the concretization function are defined as pointwise application of
the operators defined onAD.

5.4 Abstract Domain

Our abstract domain is the Cartesian product of the Atomic Data abstract domain
(ADa), and the value domain (Va).



5.5 Data-Store Abstraction

The analysis of a program P aimed at verifying that it satisfies a given confiden-
tiality policy with respect to data stored in devices running P can be defined
either as a ”datastore-aware” analysis, i.e. running the analysis on the actual
data contained in the device, or in a ”datastore-unaware” way, i.e. running the
analysis on a generic datastore that represents the actual datastores under a
suitable abstraction of labels and values.

A ”datastore-aware” analysis has the advantage of being in general more
accurate, as it allows to deal with the actual values that are leaked by the
program. However, this scenario requires the analysis being applied only once
the program is installed on the device, as an app that runs on the device itself or
on a third-party verifier that should be given access permission to the device’s
datastore.

The accuracy of a ”datastore-unaware” analysis heavily relies on the datastore
abstraction, but it has the advantage of being applicable to the program with no
need to access the actual confidential data when running the analysis itself.

Definition 8 (Abstract Datastore). Given a Galois connection between ℘(D) and
AD, an abstract datastore is a set Da = {{〈`a

j , ∅, ∅〉} : j ∈ J} ⊆ AD such that ∀i, j ∈ J :
i , j⇒ `a

i , `
a
j .

An abstract datastore Da = {{〈`a
j , ∅, ∅〉} : j ∈ J} is an abstraction of all concrete

datastores D = {{〈`i, ∅〉} : i ∈ I} that satisfies the following conditions:
⋃

i∈I{α(`i)} =⋃
j∈J{`

a
j }, and ∀i ∈ I ∃! j ∈ J such that `i ∈ γLab(`a

j ).
Example Consider the Inmobi example introduced in Section 2. In particular,
we have the following atomic data expressions: 〈Language, ∅, ∅〉, 〈Country, ∅, ∅〉,
and 〈AndroidId, ∅, ∅〉. The only case that is slightly different regards Location
since we abstract with 〈Location37, ∅, ∅〉 all the concrete data expressions in
〈Locationi, ∅〉 : i ∈N. Similarly, for the IMSI example we have 〈IMSI, ∅, ∅〉.

5.6 Abstract Semantics of Statements

Figure 4 depicts the abstract semantics of statements7. We omit the abstract
semantics of expressions, as it can be easily formalized by mimicking the concrete
semantics, the only difference being that (1) every operation has impact on both
link sets associated to an abstract label, and (2) abstract atomic data are kept in
canonical form by systematically applying the following normalization operator
in presence of multiple occurrences of the same label in the source set of an
abstract atomic datum: ρ(ad) = {〈`a,∩links(`a, ad),∪links(`a, ad)〉 : `a

∈ src(ad)}

Example The abstract semantics of the Inmobi example does not substantially
differ from the concrete semantics for the the example of Section 2. After the
execution of updateInfo (line 4), we have the same information described in
Section 4.2, the only difference being that the abstract label for the location is

7 Observe that this semantics does not capture indirect information flow.



Sa[[x := sexp]](aa, va) = (aa,Sa
v[[x := sexp]](va))

Sa[[send(sexp)]](aa, va) = (aa, va)
Sa[[c1; c2]](aa, va) = Sa[[c2]](Sa[[c1]](aa, va))

Sa[[if bexp then c1 else c2]](aa, va) = Sa[[c1]](aa,Sa
B[[bexp]](va)) t Sa[[c2]](aa,Sa

B[[¬bexp]](va))
Sa[[while bexp do c]](aa, va) = f ix(Sa[[ if (bexp) (while bexp do c)](aa, va))

Fig. 4: (Abstract) Semantics of Statements

Location37 instead of the concrete label Location1
8. The same consideration

applies to the results of the concatenation at line 17.
For the IMSI example, the abstract semantics tracks that we log the abstract

datum 〈IMSI, {([sub, 0, 6], IMSI)}, {([sub, 0, 6], IMSI)}〉.

The following theorem formalizes the soundness of the analysis.

Theorem 2. The abstract semantics of a program P with an abstract datastore Da is a
conservative (sound) over-approximation of the enhanced concrete semantics of P with a
concrete datastore D ∈ γ(Da).

Proof. By induction on the lenght of the trace as in [23], by lifting the local
correctness of the operations to the Cartesian product [8].

We observe in particular that for each execution of P with input I, if a value
assigned to a variable v in the store is obtained from values coming from local
data stored in ` through operations in R, then there is a corresponding abstract
trace of P with input α(I), assigning v an abstract atomic datum ad such that
(i) `a

∈ src(ad), and (ii) R ⊆ {op : (opa, `a
j ) ∈ links(`

a, ad)} (where `a = α(`) is the
label in the abstract datastore representing `).

6 Confidentiality and Obfuscation

So far, we made no distinctions among data contained in the data-store, with
respect to their confidentiality level. In general, we can consider a lattice of
confidentiality levels S, and we can associate to each label ` in Lab an element
s` ∈ S. Confidentiality levels are assigned to labels, and values corresponding to
these labels will inherit from them the same confidentiality level.

On the operation side, we introduce the notion of obfuscation degree. The
intuitive idea is that if you know which operation has been applied to get an
expression, and the expression itself, you can look at the amount of information
which is necessary to recover the sources the operation applied to. This leads
us to assume the existence of a partial-order relation among operations that
captures their different obfuscation impact.

8 For the sake of simplicity, we ignore the issues related with heap abstraction. It has
been demonstrated [16] that value domains (like ADa and Va) can be combined with
heap abstractions relying on standard operators of value domains.



This can be seen as a generalization of the all-or-nothing tainting approach
[37, 39], where only declassification operators (e.g., encryption) are tracked.

The obfuscation degree of an operator can be seen as a measure of the
complexity of the brute-force analysis needed by an external observer in order
to detect the actual source data when knowing just the result of the operation
and the applied operator.

Definition 9 (Obfuscation Degree). Consider a complete lattice (O,vO), and a map
ζ : Op→ O, such that ζ(op1) vO ζ(op2) if the obfuscation power of op1 is smaller than
the obfuscation power of op2. We say that the obfuscation degree of an operator op ∈ Op
is ζ(op).

Example The string operators of sexp introduced in Section 3 have different
obfuscation degrees. For instance, encrypt obfuscates more that hash, while the
power of obfuscation of substring may depend on the indexes used to compute
the substring, and the particular information contained in the string. For instance,
in the IMSI example of Section 2 the substring operator at line 2 has a high
obfuscation degree, but this relies on the value information tracked on the
indexes passed to substring.

6.1 Confidentiality of Atomic Data

Given an atomic datum, a confidentiality value can be assigned to it by consid-
ering an under- and over-approximation of the confidentiality levels of source
data, and by considering an under- and over- approximation of obfuscation
power of the operations applied to them.

We first define it at a concrete level, on top of our instrumented atomic data
semantics, and then we can lift this notion to the abstract case.

Definition 10 (Confidentiality of Atomic Data for Monotonic Operators). Let
S be a lattice representing confidentiality levels of labels. Let O be a lattice represent-
ing the obfuscation power of operators. Finally, let η and ζ be functions assigning
confidentiality/obfuscation values in S and O to labels and operators, respectively.

If the combination of operators in
⋃

i∈I Li is monotonic with respect to the obfuscation
order in the lattice O, the confidentiality value of an atomic datum {〈`i,Li〉 : i ∈ I} with
respect to (η, ζ) is the tuple (scmin, scmax, lcmin, lcmax), where:

scmin = uD{η(`i) : i ∈ I} lcmin = uO{ζ(opi j) : (opi j, ` j) ∈ Li, i ∈ I}
scmax = tD{η(`i) : i ∈ I} lcmax = tO{ζ(opi j) : (opi j, ` j) ∈ Li, i ∈ I}

Example Imagine that we have L < M < H as both the confidentiality and obfusca-
tion lattice. We then establish that encrypt has H obfuscation level, and hash has
level M, whereas the obfuscation level of substring depends on the parameters:
[sub, k1, k2] has level L if k1 = 6 and k2 = 9, it has level M if 6 < k1 + k2 < 15, and it
has level H if k1 + k2 ≤ 6 . Consider then the concrete labels of the Inmobi example
introduced in Section 4.1. We define as L both Language and Country, since they
do not contain particularly confidential information. Instead, we define as H
AndroidId, since this datum allows to uniquely identify our Android account,



and track our activity. Finally, Locationi : i ∈ N are all M, since these locations
allow to identify our geographical location at a given point, but do not uniquely
identify us. For the IMSI example, we obtain that for the data expression leaked at
line 2, i.e. 〈IMSI, {([sub, 0, 6], IMSI)}〉, we get scmin = scmax = H and lcmin = lcmax = H.
This says that even if sensitive data items are leaked, a powerful obfuscation is
definitely applied to them before releasing them.

Notice that Definition 10 is explicitly restricted to the case of operators whose
combination is monotonic with respect to the obfuscation order in O. If we are
interested to consider also programs where the combination of operators is
non-monotonic, we just need to give an obfuscation value to sets of operators
instead of singletons.

Definition 11 (Confidentiality of Atomic Data - General Case). Let S be a lattice
representing confidentiality levels of labels. Let O be a lattice representing the obfuscation
power of operators. Finally, let η be a function assigning confidentiality values in S to
labels, and let ζ be a function assigning to each set of operators an interval in O × O
representing its min and max obfuscation power.

The confidentiality value of an atomic datum {〈`i,Li〉 : i ∈ I} with respect to (η, ζ) is
the tuple (scmin, scmax, lcmin, lcmax), where:

scmin = uD{η(`i) : i ∈ I} lcmin = uO{π1(ζ({opi j : (opi j, ` j) ∈ Li})) : i ∈ I}
scmax = tD{η(`i) : i ∈ I} lcmax = tO{π2(ζ({opi j : (opi j, ` j) ∈ Li})) : i ∈ I}

where π1 and π2 denote the on the min and max element of the interval, respectively.

Notice that keeping track of mimimal confidentaility and maximal obfus-
cation allows us (when they are equal to maximal confidentiality and minimal
obfuscation, respctively) to be aware of the precision of these values.

6.2 Confidentiality of Abstract Atomic Data

In order to define the confidentiality value of abstract atomic data, we need to
assign a confidentiality value to abstract labels. As abstract labels may represent
concrete labels with different confidentiality values, the confidentiality function
ηa returns an interval min/max of values in S × S instead of a single value. On
the obfuscation side, we just lift the value, as we can assume there is a always a
one-to-one correspondence between concrete and abstract operators.

As in the concrete setting, we distinguish the case in which all operator
combinations behave monotonically with respect to the obfuscation order, from
the general case, that takes into account non-monotonic behaviors, the price to
pay being to assign obfuscation values to sets of operators instead of single ones.

Definition 12 (Confidentiality Value of Abstract Atomic Data - Monotonic
Operators). Let S and O be the lattices representing the labels’ confidentiality and the
obfuscation power of operators, respectively. Let η and ζ be functions assigning confiden-
tiality/obfuscation values in S and O to (concrete) labels and operators, respectively. Let
ηa : Laba → S × S such that ηa(`a) = [u{η(`) : ` ∈ γ(`a)},t{η(`) : ` ∈ γ(`a)}]. Let ζa

be the function assigning to each abstract operator the same obfuscation value assigned
by ζ to the concrete operator it corresponds.



If the combination of operators in Op appearing in
⋃

i∈I Lat
i is monotonic with respect

to the obfuscation order in O, then the confidentiality value of an abstract atomic datum
{〈`a

i , valai ,Ai,Lau
i ,L

at
i 〉 : i ∈ I} is a tuple (sca

min, sca
max, lca

min, lc
a
max), where:

sca
min = uS{π1(ηa(`a

i )) : i ∈ I} lca
min = uO{ζa(opa

i j) : (opa
i j, `

a
j ) ∈ Lau

i , i ∈ I}
sca

max = tS{π2(ηa(`a
i )) : i ∈ I} lca

max = tO{ζa(opa
i j) : (opa

i j, `
a
j ) ∈ Lat

i , i ∈ I}
where π1 and π2 denote the min and max element of the interval, respectively.

Observe that lca
min is obtained as the greatest lower bound of the obfuscation

values corresponding to operators that are surely applied to compute the value,
while lca

max is obtained as the least upper bound of the obfuscation values
corresponding to operators that are possibly applied to compute the value. As
Lau

i ⊆ Lat
i for each i ∈ I, we get that lca

min vO lca
max.

Definition 13 (Confidentiality Value of Abstract Atomic Data - General Case).
Let S and O be the lattices representing the labels’ confidentiality and the obfuscation power
of operators, respectively. Let η and ζ be functions assigning confidentiality/obfuscation
values in S and O to (concrete) labels and operators, respectively. Let ηa : Laba → S × S
such that ηa(`a) = [u{η(`) : ` ∈ γ(`a)},t{η(`) : ` ∈ γ(`a)}]. Finally, let ζa be a function
assigning to each set of (abstract) operators an interval in O × O representing the min
and max obfuscation power.

The confidentiality value of an abstract atomic datum {〈`a
i , valai ,Ai,Lau

i ,L
at
i 〉 : i ∈ I}

is a tuple (sca
min, sca

max, lca
min, lc

a
max), where:

sca
min = uS{π1(ηa(`a

i )) : i ∈ I} lca
min = uO{π1(ζa(S)) : S ⊆ {opa

i j : (opa
i j, `

a
j ) ∈ Lat

i }, i ∈ I}
sca

max = tS{π2(ηa(`a
i )) : i ∈ I} lca

max = tO{π2(ζa(S)) : S ⊆ {opa
i j : (opa

i j, `
a
j ) ∈ Lat

i }, i ∈ I}

where π1 and π2 denote the on the min and max element of the interval, respectively.

Notice that lca
min and lca

max in the general case are both obtained as the greatest
lower bound and least upper bound, respectively, of the obfuscation values
corresponding to operators that are possibly applied to compute the value. This
conservative approach guarantees the soundness of the result also in presence of
operators whose combination does not behave monotonically with respect to
obfuscation, i.e. the monotonicity of confidentiality with respect to the partial
order in the domain of abstract atomic data.

7 Privacy Compliance Policies

Definition 14 (Confidentiality Policy). Given the set of data source labels Lab, and
the confidentiality/obfuscation lattices S and O for labels and operations, respectively, a
confidentiality policy is a tuple π = (η, ζ, κsc max, κlc min) such that

– η, ζ assign each label and each operator a corresponding value in the confidentiality
lattices S and O, respectively.

– κsc max is a source confidentiality threshold (the max confidentiality level allowed for
sources).



– κlc min is an obfuscation threshold (the min obfuscation level required for operators).

Given a program P, let X be the set of concrete/abstract atomic data P
generated as an output. We say that P satisfies the confidentiality policy π =
(η, ζ, κsc max, κlc min) if:
∀d ∈ X, if (scmin, scmax, lcmin, lcmax) is the confidentiality value of d with respect

to (η, ζ), then, scmax vS κsc max and lcmin wO κlc min.

Theorem 3. Consider a program P, an abstract datastore A, and a confidentiality policy
π = (η, ζ, κsc max, κlc min). If the program P terminates, and the output of the analysis on
P and A satisfies π, then any actual execution of program P on a concrete datastore in
γ(A) satisfies the confidentiality policy π.

Proof. By Theorem 2, and by the monotonicity of confidentiality values with
respect to the partial order on the domain of abstract atomic data.

Example A reasonable privacy policy for the Inmobi example of Section 2 may
be that a datum can be released only if its obfuscation level is equal or higher
than its confidentiality level. This program satisfies this model for Country and
Language (whose confidentiality level is L and they are released without any
obfuscation), but not for Locationi (with confidentiality level M and released
without any obfuscation) and AndroidId (whose confidentiality level is H and it
is released after invoking hash, that is, with obfuscation level M).

7.1 Sources’ Confidentiality Policies

The definition of confidentiality policy of atomic data discussed in the previous
sections allows to capture the min and max levels of confidentiality/obfuscation
carried by the values returned by a program, or shared with other applications.

As an orthogonal approach, we may define (at the concrete level) a confiden-
tiality policy as a propositional formula that captures constraints on the allowed
releasing levels of confidential data in the datastore, and verify if the atomic data
returned by the concrete execution of the program satisfy that formula.

Let Lab denote as usual the set of data source labels, and Op denote the set
of operators in the program. Consider a set of propositional variables V (with
empty intersection with the set of program variables), and a function λ that
maps elements of V into either labels or links.

λ : V −→ Lab ∪ {(op, `) : op ∈ Op, ` ∈ Lab}

A policy formula is a positive propositional formula on V, i.e. a propositional
formula using only ∧,∨ and↔ logical operators9.
Example For instance, we can express the fact that we can leak the Android
ID if encrypted and the location, or the hashed Android ID, or the first six

9 The advantage of using positive formulas, i.e. formulas that are satisfied by assigning
true to all its propositional variables, is that they well capture monotonic behaviors
[42].



characters of the IMSI, by means of the formula ϕ = (x∧ y)∨ z∨w, where λ(x) =
([encrypt, k], AndroidId), λ(y) = Location, and λ(z) = (hash, AndroidId), λ(w) =
([sub, 0, 6], AndroidId).

Given a set of atomic data S, a set of propositional variables V and an
assignment λ on V, we say that S satisfies the policy formula ϕ on V if S, λ |= ϕ,
as defined inductively as follows:

S, λ |= v ∈ V ⇔

{
λ(v) ∈

⋃
d∈S src(d) if λ(v) ∈ Lab

λ(v) ∈
⋃

d∈S links(d) otherwise.
S, λ |= ϕ1 ∨ ϕ2 ⇔ S, λ |= ϕ1 or S, λ |= ϕ2
S, λ |= ϕ1 ∧ ϕ2 ⇔ S, λ |= ϕ1 and S, λ |= ϕ2
S, λ |= ϕ1 ↔ ϕ2 ⇔ S, λ |= ϕ1 iff S, λ |= ϕ2.

Observe that, by construction, if the data resource denoted by λ(x) contributes
to any of the values represented by the atomic data S, then S, λ |= x.
Example The formula ϕ in the Example above is satisfied by the data expressions
leaked by either Inmobi and IMSI as described in the Example in Section 3.2.

Observe that checking the policy reduces to checking the satisfiability of the
propositional assignment [42].

When we lift to the abstract setting, three-valued models of propositional
formulas should be used in order to preserve soundness. Let Sa be a set of
abstract atomic data, and λa : V −→ Laba ∪ {(opa, `a) : op ∈ Op, `a

∈ Laba} be a
function mapping propositional variables into abstract labels and links. Consider
the three value assignment assign(Sa, λ) : V→ {true, false,>} defined by

assign(Sa, λa)(v) =



true if λa(v) ∈ Laba and λa(v) ∈
⋃

d∈S links lab(L
u

d )
or
if λa(v) < Laba and λa(v) ∈

⋃
d∈S L

u(d)
false if λa(v) ∈ Laba and λa(v) <

⋃
d∈S src(d)

or
if λa(v) < Laba and λa(v) <

⋃
d∈S L

t(d)
> otherwise

(where Lu(d) and Lt(d) denote the last two components of d, respectively), and
consider the logical operators extended to the top value > by:

∧ true false >

> > false >

∨ true false >

> true > >

↔true false >

> > > >

Theorem 4. Letϕ be a positive formula on a set V of propositional variables, Sa be a set of
abstract atomic data, and λa : V −→ Laba∪{(opa, `a) : op ∈ Op, `a

∈ Laba} be a function
mapping propositional variables into abstract labels and links. If assign(S, λ)(ϕ) = true,
then there is a set of atomic data S ⊆

⋃
d∈Sa γ(d) and a function λ satisfying ∀v ∈ V :

λ(v) ∈ γLab(λa(v)), such that S, λ |= ϕ.

Proof. By structural induction on the formula ϕ, and by Theorem 1.



8 Related Work

In this section, we discuss in details how our work compares to some similar
approaches in the area in addition to the high-level overview on the state of the
art of Section 1.1.

Quantitative Information Flow (QIF) [25] is aimed at measuring the quantity
of information that is leaked by a program. A given confidential datum might be
manipulated by the program, that at the end releases only partial information.
Then, the analysis checks if the quantity of released information is below a
given threshold. Our approach shares with QIF the intuition that is crucial to
estimates the quantity of information revealed, since ofter it is necessary to
partially disclose a part of the information. Nevertheless, instead of measuring
a quantity, our approach tracks the set of operators that have been applied to
the datum before its release, and then we check if this matches what specified
on the policy. We believe that QIF can be seen as an abstraction of a concrete
semantics tracking the exact order of operators applied to a datum (instead of a
set of operators as we do). In addition, QIF can track implicit flows, while we
explicitly ignored these flows as we believe they lead to many false alarms.

Declassification-based approaches [33] suppose that a list of declassifier
operators is given, and as soon as one of these operators is applied to a datum,
then it can be sent to a sink. Our analysis can represent declassifiers through a
policy stating that it is allowed to release the data on which at least one of these
operators has been applied.

Decentralized Information Flow Control [20, 27] systems represent a finer
grained and more expressive model, in which each process can declassify
information, rather than a central authority as in centralized system and classical
declassification-based approaches. Nevertheless, our analysis can support this
more complex scenarios by defining specific policies per process.

Another approach that has gained relevant results recently is Differential
Privacy [13, 14]. Given a data store, the goal of Differential Privacy is to discover
if the variation of a query over the data set stays below a given threshold when
an entry is added. Usually, some statistical noise is added in order to ensure
differential privacy. Our approach may track how the data from the data set
is aggregated and noise added, and this may be a first step towards proving
differential privacy. However, how to relate this information on the operators
applied to data and ε-differential privacy is not straightforward at all, and it
requires further investigation.

9 Conclusion

Our semantic framework for fine-grained information-flow analysis captures
how the values released by an application may partially reveal confidential
data stored on the device through different levels of obfuscation. The enhanced
concrete semantics and the generic abstract domain we presented provide a
workbench for (static) analysis of mobile apps that can be tuned by setting a
few parameters: the domain representing values, the domain representing data



locations, and the confidentiality and obfuscation values for data and operators.
This data-centric approach may be utilized to refine existing tools like [15, 41,
40] aimed at enforcing privacy policies, providing the user with more accurate
privacy control.

The problem of formalizing how the semantics of operations reflects on the
corresponding obfuscation values, as well as the problem of assisting the user
in the definition of privacy compliance policies remain of course, as there is a
tradeoff between the amount of sensitive information that she allows the device
to release and the accuracy and efficiency of some functionalities.
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