
WeChecker: Efficient and Precise Detection of Privilege
Escalation Vulnerabilities in Android apps

Xingmin Cui
The University of Hong Kong

xmcui@cs.hku.hk

Jingxuan Wang
The University of Hong Kong

jxwang@cs.hku.hk

Lucas C.K.Hui
The University of Hong Kong

hui@cs.hku.hk
Zhongwei Xie

The University of Hong Kong
jasonxie@connect.hku.hk

Tian Zeng
The University of Hong Kong

zengtian@connect.hku.hk

S.M.Yiu
The University of Hong Kong

smyiu@cs.hku.hk

ABSTRACT
Due to the rapid increase of Android apps and their wide
usage to handle personal data, a precise and large-scaling
checker is in need to validate the apps’ permission flow be-
fore they are listed on the market. Several tools have been
proposed to detect sensitive data leaks in Android apps. But
these tools are not applicable to large-scale analysis since
they fail to deal with the arbitrary execution orders of dif-
ferent event handlers smartly. Event handlers are invoked by
the framework based on the system state, therefore we can-
not pre-determine their order of execution. Besides, since all
exported components can be invoked by an external app, the
execution orders of these components are also arbitrary. A
naive way to simulate these two types of arbitrary execution
orders yields a permutation of all event handlers in an app.
The time complexity is O(n!) where n is the number of event
handlers in an app. This leads to a high analysis overhead
when n is big. To give an illustration, CHEX [10] found
50.73 entry points of 44 unique class types in an app on
average. In this paper we propose an improved static taint
analysis to deal with the challenge brought by the arbitrary
execution orders without sacrificing the high precision. Our
analysis does not need to make permutations and achieves
a polynomial time complexity. We also propose to unify the
array and map access with object reference by propagat-
ing access paths to reduce the number of false positives due
to field-insensitivity and over approximation of array access
and map access.

We implement a tool, WeChecker, to detect privilege es-
calation vulnerabilities [7] in Android apps. WeChecker
achieves 96% precision and 96% recall in the state-of-the-art
test suite DriodBench (for compairson, the precision and re-
call of FlowDroid [1] are 86% and 93%, respectively). The
evaluation of WeChecker on real apps shows that it is effi-
cient (average analysis time of each app: 29.985s) and fits
for large-scale checking.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’15, Jun 24-26 2015, New York City, NY, USA
Copyright 2015 ACM. ISBN 978-1-4503-3623-9/15/06 ...$15.00
DOI: http://dx.doi.org/10.1145/2766498.2766509.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Verification

General Terms
Algorithms, Security, Verification

Keywords
Android, Privilege Escalation Attack, Taint Analysis, Con-
trol Flow and Data Flow Checking

1. INTRODUCTION
Android has won a dominate market share in the smart-

phone market [19]. With Android devices being prevalent
and their wide usage to handle private data, they have be-
come an attractive target for malware developers. [7] dis-
covered the privilege escalation attack in Android apps. The
idea is that an application with less permissions can gain ac-
cess to the components of a more privileged application. By
making use of the privilege escalation vulnerabilities, the
malicious app cannot acquire extra permission. However it
can perform privileged functions or get sensitive data with-
out asking for the required permission. To prevent this at-
tack, an application must enforce additional checks to pro-
tect the permissions it has been granted. However, since
most Android application developers are not security ex-
perts, there is a need to validate the permission flow of An-
droid apps before they are listed on the market.

In view of the rapid increase of Android apps on the mar-
ket, a precise and scalable checker is in need for large-scale
analysis. Taint analysis can be used to check the leak of sen-
sitive data by tracing sensitive data to see whether it will
flow into interested sinks. It has been widely used in the val-
idation of Android apps by various works [4, 13, 1]. In this
paper we propose an improved static taint analysis to detect
privilege escalation vulnerabilities in Android apps precisely
and efficiently. Privilege escalation attacks can be classified
into two classes according to [3]: confused deputy attacks
and attacks by colluding applications. In this work we fo-
cus on confused deputy attacks, which concerns malicious
apps leveraging unprotected interfaces of a benign applica-
tion. We classify the leak paths that would lead to confused
deputy attacks into two types: capability leak paths and
sensitive data leak paths.

Capability leak paths start from an entry point of the vul-
nerable app and end at an action call which is protected by

1

permissions. By utilizing this path, an unauthorised app can
also perform protected actions. Sensitive data leak paths
start from retrieving sensitive data by invoking a permis-
sion protected data call and end at a sink through which
the retrieved data can be leaked to an unauthorised app.
This type of leak paths are further divided into three sub-
types based on their sink methods. The first subtype leaks
sensitive data by returning it to the unauthorised caller ap-
plication. The second subtype attaches the sensitive data to
an implicit intent which can be intercepted by the attacker.
The third subtype writes the data to a given url or a log file
which can be accessed by any application.

One issue that effects the precision of taint analysis is
Android’s event-driven programming paradigm, which en-
ables the arbitrary execution orders of different user-defined
event handlers. Besides, since all exported components are
accessible by an external app, the execution orders of these
components are also arbitrary. The naive way to simulate
the two types of arbitrary execution orders yields the per-
mutation of all event handlers in an app. Suppose there
are n event handlers in an app, the time complexity would
be O(n!). The statistics of CHEX [10] discovers 50.73 en-
try points of 44 unique class types in an app on average.
The permutation solution would lead to a large overhead.
In fact, in the time evaluation of CHEX, 22% of the tested
apps needed more than 5 minutes to be analyzed, and lead
to timeout since they set a maximum processing time to
be 5 minutes for a optimized throughput. Its performance
decomposition indicates that the permutation process con-
stitutes the majority of the time overhead. In this paper we
propose a summary based taint analysis to reduce this part
of overhead, and achieve a precise yet efficient analysis.

During the analysis, we record the set of current tainted
variables as the context information. We consider three
types of variables based on their scope: Local variables,
which are only valid within the current method, are recorded
in set L; private class variables, which are valid within the
current class, are recorded in set C; public class variables,
which are valid through the current app, are recorded in set
G. For clarity, we denote the private class variables as class
variables and public class variables as global variables.

We calculate two types of summaries: method summary
and class summary. Method summary is used to deal with
the arbitrary orders of event handlers in a component and
class summary is used to simulate the arbitrary execution
orders of different components. Since local variables are ef-
fective only within the current method, execution of other
methods only effects the taint status of class variables and
global variables. In a method invocation, the taint status of
the formal parameters cannot be determined without giving
that of the actual parameters. Therefore a method summary
contains information related to class variables, global vari-
ables and method parameters. Once the method summary
is calculated, later invocation of this method only needs to
refer to the method summary and do not need to step into
the method. A class summary only includes the information
related to global variables.

We use a call graph to represent a component. User-
defined event handlers that can execute in arbitrary orders
are put between a pair of EventBegin and EventEnd nodes.
The checker first extracts the method list in each compo-
nent and calculates the summary of each method. After that
traversal of the call graph is converted to traversal of each

method summary. In the first round, the context passed to
the method summary of each event handler is the context
at the EventBegin node. In the second round, the effect of
other event handlers that can execute before the current one
are taken into account. We will define how to get the con-
text passed to each event handler in the system design part.
In this way we considered the interference of other event
handlers without permutation. Class summaries are used
to deal with the arbitrary execution orders of different com-
ponents using the same two round analysis strategy. Our
strategy reduces the analysis overhead from O(n!) to O(n2).
The time complexity analysis will be given in the system
design part. The evaluation on DroidBench test cases and
randomly downloaded apps shows that our strategy is both
efficient and precise.

Another challenge that needs to be dealt with in static
analysis is the resolution of array and collection access. Pre-
vious work based on static analysis [1, 13] usually conserva-
tively mark the whole array or collection as tainted when one
element gets tainted. This results in false positives when
tainted data is stored in one position but data access oc-
curs in another position. In this paper we propose to unify
the analysis of array and map access with object reference
using access paths. The access path is identified by fields
(for an object), indexes (for an array) or keys (for a map).
Through propagating access paths, we can distinguish dif-
ferent elements of an array or map, and different fields of
an object, thus achieving field sensitivity and reducing the
number of false positives.

We implement a tool, WeChecker, to automatically iden-
tify capability and sensitive data leaks in Android apps.
The analysis of WeChecker is highly precise by being flow-
sensitive, context-sensitive, object-sensitive and field-sensitive
[18]. It performs context-sensitive alias analysis to get an
accurate approximation of the tainted variables. Besides,
it constructs invocation chains to connect different com-
ponents in the analyzed app through analyzing intents for
inter-component communication. Each invocation chain starts
from one entry point of the app and includes all other com-
ponents that are reachable from this entry point. Here we
denote the entry points of an app as exported components
which require no permission from other components to in-
teract with them. In this way, WeChecker gets a list of
components that can be accessed and exploited by exter-
nal apps and at the same time, identifies leak paths whose
source and sink methods reside in different components.

The contributions of this paper are as follow:

• First, we did a systematic study on classifying leak
paths that can lead to privilege escalation and classify
them into two types: capability leak path and sensitive
data leak path.

• Second, we propose a summary based static taint anal-
ysis to deal with the arbitrary execution orders of dif-
ferent event handlers and different components. It
saves the overhead to make permutations of the event
handlers and components without effecting the analy-
sis precision.

• Third, we propose to unify the array and map ac-
cess with object reference using access paths. This
effectively reduces the false positives result from field-
insensitivity and over approximation.

2

• Fourth, we implement a checker, WeChecker, to detect
leak paths in Android apps. It achieves a 96% precision
and 96% recall on the state-of-the-art test suite Droid-
Bench. Its evaluation on real apps randomly down-
loaded from GooglePlay shows it is efficient and fits
for large scale analysis.

The rest of the paper is organized as follows: We will in-
troduce related background knowledge and the motivating
example in section 2; In section 3, we present the two types
of leak paths that would lead to privilege escalation attacks;
System design is introduced in section 4; System implemen-
tation and evaluation are presented in section 5. Related
work is listed in section 6. We conclude the paper in section
7.

2. BACKGROUND AND MOTIVATING EX-
AMPLE

Android is an open-source mobile operating system based
on the Linux kernel[14]. All Android applications consist
of four kinds of components: activities, services, broadcast
receivers and content providers. These components can pro-
vide different functionalities and work together to imple-
ment the designed function. The manifest file declares the
components contained in the application and presents other
essential information to the Android system.

The lifecycle of Android components is managed by the
Android framework in an event-driven manner. Besides, An-
droid provides Event Listener interfaces. Developers can
implement these interfaces and override the callback meth-
ods in react to users’ UI interaction or system state change
(eg. locationUpdate). Therefore unlike traditional Java pro-
grams which use a single main method as the entry point,
Android components can have many entry points. These
entry points include Android lifecycle methods and user-
defined event handlers. These methods are invoked by the
Android framework at runtime and their order of execution
cannot be determined in advance.

Taint analysis checks whether tainted variables can reach
sink methods. If any tainted variables reach a sink method,
an alarm will be raised. The example in figure 1 imple-
ments an Activity. In the method onCreate, three buttons
(button1, button2 and button3) register their event handlers.
sData is a class variable shared between different methods.
The statements in each event handler will be executed when
the user clicks the corresponding button. The user can click
these buttons in arbitrary orders. To find the leak by sink1
on line 8, the checker needs to consider the situation that
the user may click button2 before clicking button1.

The event handler of button2 invokes taintIt on line 16
using the return value of a source method as the first pa-
rameter. To find the leak by sink6 on line 40, the checker
needs to perform alias analysis to find out that out.f also
gets tainted on line 38. When the method invocation re-
turns on line 16, the return value is assigned to rs. Since
taintIt returns the first parameter which is tainted, rs is also
tainted. Therefore sink2 on line 21 should raise an alarm.
Lines 17-19 create a String array and initializes its first two
elements. To avoid a false positive on line 22, the analysis
needs to differentiate arrayS[0] and arrayS[1]. After the in-
vocation of taintIt, d is sanitized on line 20, hence sink4 on
line 23 will not lead to a leak. To avoid a false alarm, the
checker needs to sanitize tainted values when needed.

1 public class ExampleAct extends Activity {
2 Data sData;
3 protected void onCreate(Bundle savedInstanceState

) {
4 sData = new Data();
5 Button button1 = (Button) findViewById(R.

id.button1);
6 button1.setOnClickListener(new

OnClickListener () {
7 public void onClick(View arg0) {
8 sink1(sData.f);
9 }

10 });
11

12 Button button2= (Button) findViewById(R.
id.button2);

13 button2.setOnClickListener(new
OnClickListener () {

14 public void onClick(View arg0) {
15 Data d=new Data();
16 String rs=taintIt(source (), d);
17 String [] arrayS=new String [10];
18 arrayS [0]=rs;
19 arrayS [1]="no taint";
20 d=new Data();
21 sink2(rs);
22 sink3(arrayS [1]);
23 sink4(d.f);
24 }
25 });
26

27 Button button3 =(Button) findViewById(R.id
.button3);

28 button3.setOnClickListener(new
OnClickListener () {

29 public void onClick(View arg0) {
30 Data d1=new Data();
31 taintIt("no taint", d1);
32 sink5(d1.f);
33 }
34 });
35 }
36 String taintIt(String in, Data out) {
37 Data x = out;
38 x.f = in;
39 sData = x;
40 sink6(out.f);
41 return in;
42 }
43 }

Figure 1: Example of Android Component Entry Points

The event handler of button3 also invokes taintIt on line
31 but with the first parameter untainted. Therefore sink6
on line 40 and sink5 on line 32 will not yield any leaks. To
differentiate the two invocations of taintIt on line 16 and
line 31, the analysis needs to be context-sensitive.

From the example in figure 1, we conclude that a highly
precise analysis needs to: (1) Take into account the arbitrary
execution orders of user-defined event handlers in one Activ-
ity and arbitrary execution orders of different components in
one app. (2) Perform context-sensitive alias analysis to get
an accurate approximation of the tainted variables. (3) Pre-
cisely resolve array access to avoid false positives brought by
over-approximation. Meanwhile, it needs to perform inter-
component communication analysis to get the list of acces-
sible components by external apps. According to [1], the
analysis also needs to be be flow-sensitive, context-sensitive,
object-sensitive and field-sensitive[18].

In the system design section we will explain how our anal-
ysis meets these requirements.

3

invoke

invoke

Exported Activity A1

 Private Activity A2

 Action Call

Activity M1

 Misconfigured App A
 Granted P: SEND_SMS
 Required P: None

 Malicious App M
 Granted P: None

 Malicious App M
 Granted P: None

Activity M1

SetResult

startActivity
ForResult

Exported Activity A1

Data Source

 Misconfigured App A
 Granted P: READ_CONTACT
 Required P: None

invoke

A4invoke

 Malicious App M
 Granted P: None

Activity M1 Activity M2

intercept
Exported A1

A2

implicit
intent

 Misconfigured App A
 Granted P: READ_CONTACT
 Required P: None

invoke

A3:Data Souce

 Malicious App M
 Granted P: None

Activity M1

invoke with
injected url

A1:Write data to a given url

invoke return value

A2:Data source

 Misconfigured App A
 Granted P: READ_CONTACT
 INTERNET
 Required P: None

Figure 2: Leak path: type 1(leftmost), type 2.1(left), type 2.2(right), type 2.3(rightmost)

3. LEAK PATHS
Privilege escalation attacks can be enabled by making use

of a chain of components (denoted as a leak path) through
which the unauthorised application can perform permission
protected actions or retrieve sensitive data using an autho-
rised application as a deputy. Thus we check whether an
application is vulnerable by checking whether leak paths ex-
ist in it. We use static taint analysis to catch the vulnerable
application before it is delivered to users.

In previous studies, there does not exist a systematic study
on classifying leak paths. In this paper, we classify leak
paths into two types based on the nature of Android API
calls. Android API calls can be classified into two types: ac-
tion calls and data calls. The former has side effects on the
system while the latter returns data without causing side
effects. By utilizing the vulnerable app’s privilege to invoke
permission protected action calls, an unauthorized app gains
the capability to invoke these calls. By utilizing the vul-
nerable app’s privilege to invoke permission protected data
calls, an unauthorized app can get access to sensitive data.
Therefore we classify leak paths into capability leak paths
(type 1) and sensitive data leak paths (type 2). To be more
precise, we define capabilities as the ability to invoke per-
mission protected action calls and sensitive data as data
returned by permission protected data calls. Examples are
the action call“sendTextMessage”which asks for the permis-
sion SEND SMS and the data call “getLastKnownLocation”
which asks for the permission ACCESS FINE LOCATION.

The first type of leak paths lead to capability leaks. Capa-
bility leak often occurs when a function which is intended to
be used internally within an application can be invoked by
external applications because of misconfiguration. This type
of leak path starts from one entry point of the vulnerable
app and ends at a permission protected action call. Figure
2 (leftmost) illustrates such a path. Misconfigured applica-
tion A is granted the permission SEND SMS but requires
no permission from other applications to interact with it.
The exported Activity A1 serves as an entry point to app
A for the malicious app M. As a result, app M acquires the
capability to send SMS using A as a deputy. If the action
call also takes an argument which is passed from the mali-
cious app, the risk would be higher. The malicious app can
manipulate the vulnerable app to alter the system settings
to a designated state or browse a specified website.

The second type of leak paths lead to sensitive data leaks.

It starts from one entry point of the vulnerable app and
retrieves sensitive data by invoking a permission protected
data call. However, this is not enough because the mali-
cious app needs to gain access to this sensitive data to make
the attack practical and meaningful. We classify the leakage
of data to the attackers into three types. First (type 2.1),
return the data to the invoking (malicious) application us-
ing the method SetResult. Second (type 2.2), send out the
data using an implicit intent that can be intercepted by the
malicious app. Third (type 2.3), write the sensitive data to
external entities such as an url or log files which the mali-
cious app or the attacker can get access to. Figure 2 shows
these three subtypes of leak paths. Data sources are meth-
ods that can retrieve sensitive data. For type 2.1, the sink
method is SetResult. Another requirement is that the Com-
ponent A1 in which the SetResult method resides must be
exported and can act as an entry point to the misconfigured
app. This is because SetResult can only return data to the
direct invoking component which should be a component
in the malicious app. For type 2.2, the sink methods are
inter-component communication methods (eg.startActivity)
which are attached with implicit intents. If the intent con-
tains sensitive data, it can be hijacked by a malicious app.
For type 2.3, the sink methods are methods that write sen-
sitive data to a given url or to log files. For type 2.2 and
type 2.3, both the source methods and sink methods can
reside in private components. Since only exported compo-
nents are accessible by external apps, these paths cannot be
found without performing inter-component communication
analysis.

4. SYSTEM DESIGN
We provide a tool, WeChecker, to check whether an app is

vulnerable to privilege escalation attacks. Figure 3 gives an
overview of WeChecker. It takes an apk file as input and de-
cides whether this apk contains capability or sensitive data
leak paths. If yes, it prints out each statement along this
path from source to sink. Analysis based on some intermedi-
ate representations is easier than directly on bytecode. Our
analysis is based on Jimple, a typed and compact 3-address
code representation of bytecode [30]. We use Soot1 to parse
the apk files and get the Jimple representation.

WeChecker will perform the following procedures: (1)Parse

1http://sable.github.io/soot/

4

Improved Taint
 Analysis

Soot

Leak paths
Call graph of

the app

Call graph of

each component

Invoking chains

 Entry points of

each component

Extracted callback file

CFG

of each component

APK file(.apk)

Entry Points to the app

Intent-filter list

Components

Registered callbacks

Layout XMLManifest

Figure 3: System Overview

the Manifest file and layout XML file to extract the list of
components contained in the app, intent-filter list and call-
backs registered in the layout file. If a component is exported
and is not protected by any permissions, we regard it as an
entry point to the app. If no entry point exists in the app, the
checking will terminate and conclude it is secure since ex-
ternal applications are restricted to access the components
in this app. If this app is protected by the same permis-
sions (declared in the manifest file using the <permission>
tag) as it is granted (declared in the manifest file using the
<uses-permission> tag), the checking also terminates and
concludes this app cannot be used as a deputy for privilege
escalation. (2)Use SOOT to convert the apk to Jimple files,
and build the control flow graph (CFG) of the methods in
each component based on the Jimple files. (3)By traversing
the CFG of each method, WeChecker discovers the intents
sent by them and builds up the invocation chain. The defini-
tion and construction of invocation chains will be introduced
in section 4.1. (4)Identify the entry points of each compo-
nent, including the lifecycle methods and user-defined event
handlers. (5)Construct the call graph of each component
and the whole app. (6)Traverse the call graph of the app to
detect leak paths.

In the remaining part of this section we will briefly intro-
duce how to identify the entry points of each component and
how to construct the invocation chains and call graphs. We
lay our emphasis on how to traverse the call graph to find
leak paths at a high precision.

4.1 Call Graph and Invocation Chain
Unlike traditional Java programs which use a single main

method as the entry point, Android components can have
many entry points, including Android lifecycle methods and
user-defined event handlers. An entry point is invoked by
the Android framework in an event-driven manner based on
the state of the app or that of the smartphone. For example,
event handlers registered for location change will be invoked
when the location of the phone changes. Since there is no
main method to organize these callbacks together, disconti-
nuity will occur if we construct the call graph of a compo-
nent in a traditional way [21, 8, 32, 23, 20] . Besides, since
these entry points are invoked in an event-driven manner,
we cannot pre-determine their order of execution.

Two issues need to be tackled in order to construct the
call graph of a component: identification of entry points and
reasonably represent their order of execution. To identify a
complete list of entry points, we need to spot the lifecycle
methods and user-defined event handlers. We extracted a
list of lifecycle methods and align them according to the or-

der defined in the Android documentation [15]. For example,
for an Activity, we consider the following four sequences:
(1) {onCreate, onStart, onResume, RunningStateMethods,
onPause, onStop, onDestroy}, (2) {onCreate, onStart, on-
Resume, RunningStateMethods, onPause, onStop, onCreate,
onStart, onResume, RunningStateMethods, onPause, onStop,
onDestroy}, (3) {onCreate, onStart, onResume, RunningStateMeth-
ods, onPause, onResume, RunningStateMethods, onPause,
onStop, onDestroy}, (4) {onCreate, onStart, onResume, Run-
ningStateMethods, onPause, onStop, onRestart, onStart, on-
Resume, RunningStateMethods, onPause, onStop, onDestroy}.
Here RunningStateMethods represent methods that are in-
voked when the Activity is in the running state, i.e. user-
defined event handlers. These sequences are illustrated in
the example of figure 4.

(4)(3)
(2)

(1)

End

Begin

onDestroy

onStop

onPause

EvtEnd onRestart

Button3.
Handler

Button2.
Handler

Button1.
Handler

EvtBegin

onResume

onStart

onCreate

Figure 4: Call Graph of an Activity

There are two ways to define an event-handler: explicitly
state them in the layout file or implicitly implement event
listener interfaces and override event listener methods. For
the first way, we parse the layout file to find the registered
callback methods and add them to the call graph of the
hosting activity. Several variants exist for the second way.
Developers can choose to implement the predefined event-
handler interface in a separate class or an inner class. Some-
times the Activity class itself implements the event-handler
interface. We extract a list of event-handler interfaces (eg.
OnClickListener) and retrieve the list of classes that imple-

5

ment these interfaces and record their overridden methods.
When the analysis encounters a button that registers one of
these classes, it will correlate the corresponding overridden
method as the event handler of this button.

User-defined event handlers can execute in arbitrary or-
ders during the running state of the hosting activity. This
looks like different threads that can execute in parallel. There-
fore we represent them in parallel between a pair of EvtBegin
and EvtEnd nodes. An example of a call graph is given in
figure 4.

Analyzing inter-component communication is prerequisite
to find all potential leak paths. On one hand, the source and
sink methods of a leak path can reside in different compo-
nents. On the other hand, without parsing the sender and
receiver components of an intent, we cannot get the set of
components that can be accessed and exploited by external
malicious apps. Consider the type 2.2 leak path in figure
2, a malicious app cannot invoke A3 directly if A3 is not
exported. By resolving the intents sent by A1 and A2, an
invocation chain can be constructed from A1 to A3. Since
this chain starts from an app entry point A1, all components
in this chain become accessible for external applications.

WeChecker performs inter-component analysis and con-
structs invocation chains for the analyzed app. An invo-
cation chain starts from an entry point of the app and is
extended to include all components that are reachable from
this entry point through inter-component communication.
At first WeChecker initializes an invocation chain for each
entry point. When it encounters an intent, it will parse the
parameters to find the target receiver components according
to the intent resolution rules in [16]. The receiver compo-
nents are added to the corresponding invocation chain.

By constructing invocation chains, we can get a list of
reachable components for external apps. WeChecker only
raises an alarm when source and sink methods reside in these
components to make sure the leak paths are exploitable.
Inter-component analysis also enables WeChecker to identify
leak paths whose source and sink methods are in different
components. Since an invocation chain can be triggered by
its initial component, the arbitrary execution of different
exported components is converted to the arbitrary execution
of different invocation chains.

4.2 Call Graph Traversal
WeChecker traverses the call graph of each component

to check whether there exists a path from source methods
to sink methods. We adopt the result of SUSI [25] as our
source and sink methods. We further divide these methods
into data calls and action calls for detection of the two types
of leak paths.

During the traversal, WeChecker maintains three sets of
tainted variables. One set, L, is for local variables, i.e. vari-
ables that are only valid within the current method. These
include variables declared in the current method and for-
mal parameters. This set is set empty at the entry of each
method. The second set, C, is for variables that are valid
within the scope of the current class (or component). We
call these variables class variables in this paper. The taint
status of these variables can be different given different ex-
ecution orders of event handlers. The third set, G, is to
store variables that are valid through the app. We denote
these variables as global variables. The taint status of these
variables may be effected by the execution of other invoca-

tion chains. Since an external app can invoke any exported
component in the analyzed app and the invocation chain
starting from this component will be executed subsequently,
we assume that each invocation chain can be executed in
arbitrary order.

Local variables in Jimple are named and fully typed, there-
fore the checker can step into the right invoked method based
on the actual type of the instance. This is especially im-
portant for the analysis of class inheritance when there are
overridden methods. Besides, our analysis is flow-sensitive,
context-sensitive, object-sensitive and field-sensitive.

- Flow-sensitive: a flow-sensitive analysis takes into ac-
count the order of statements in a program[18]. The
construction of the control flow graph of each method
has considered the order of each statement and the
control flow, therefore our analysis is flow-sensitive.

- Field sensitive: To achieve field-sensitivity, we adopt
the idea of [29] and [1] and propagate access paths dur-
ing taint analysis. An access path is of the form x.f.g
where x is an object and f and g are fields[1]. In this
way different fields of the same object are separated.

- Context-sensitive: that is, procedure calling context is
taken into account, and separate information is com-
puted for different calls of the same procedure [18].
Our checker keeps a record of currently tainted vari-
ables (using access paths) during the analysis. This
record along with the parameters serve as the con-
text information to distinguish different call sites of
a method invocation.

- Object-sensitive: that is, different host objects for the
same field are treated differently [18]. Besides, differ-
ent receiver object of a method call should be analyzed
separately. Since we use access paths to identify local
variables and heap variables, different initiator of the
access path indicates different host object of the same
field. Our analysis passes the status of the caller ob-
ject to the callee (identified by @this in Jimple) at a
method call and passes back the callee status to the
caller when the method returns to distinguish differ-
ent receivers of a method invocation.

To avoid the problem of infinite loop due to recursion,
WeChecker restricts the depth of method invocation to be
less than 50.

4.3 Alias Analysis
During the analysis, WeChecker computes two types of

sets for each method: (1) Type1: the set of heap variables
that refer to the same memory location, i.e, alias set. (2)
Type2: the set of parameters, class variables, global vari-
ables and return variables that have the same value even if
they are not heap variables. These sets are used to decide
the taint status of certain variables in a method summary.

Let A denote the current type1 and type2 sets, i.e. A =
{A1, A2, · · · , An} where Ai is a type1 or type2 set. At the
entry of the method A is ∅. WeChecker performs context-
sensitive alias analysis[29, 28] to generate the type1 sets.
Type2 sets are generated from assignment statements. We
define the function p(x) to return the set that contains x, i.e,
p(x) = Ai if x ∈ Ai. A new set is added to A when there

6

are assignments in the form x.f = y.g and p(y.g) returns
NULL. The semantic rules to update A are as follow:

Case 1: When the analysis encounters the statement x =
new · · · , x.fn should be removed from the current set since
x will point to a different memory location. The effect of
this statement is:

∀Ai ∈ p(x.fn), Ai = Ai\x.fn,

Case 2: When the analysis encounters the assignment
x.f = y.g, x.f.fn will be removed from the current set and
added to the same set with y.g.fn. The effect of this state-
ment is:

∀Ai ∈ p(x.f.fn), Ai = Ai\x.f.fn

∀A′
i ∈ p(y.g.fn), A′

i = A′
i ∪ {x.f.fn}

Case 3: When the analysis encounters the method invo-
cation b = c.m(a0, · · · , an), four types of information needs
to be taken into account when the method returns: (1) The
receiver object c, i.e., if this.fn belongs to a set in the callee’s
context, c.fn should be added to the corresponding set in
the caller’s context. (2) Parameters of the method call, i.e.,
if the formal parameter parami.f

m is included in a set in
the callee’s context, the actual parameter ai.f

m should also
be added to the corresponding set in the caller’s context.
(3) Class variables and global variables. If the callee adds a
class or global variable x.fq to a set, it should be added to
the correlated set in the caller’s context. (4) Return value
of the method call, i.e, the corresponding return variable
should be added to the caller’s set if it is enclosed in the
callee’s set.

Ai caller = {c.fn : this.fn ∈ Ai callee}
∪ {ai.f

m : parami.f
m ∈ Ai callee}

∪ {x.fq : x.fq ∈ Ai callee ∧ x.fq not local}
∪ {b.fv : r.fv ∈ Ai callee}

After the update on each statement, sets that contain only
one element will be removed from A. Transitive closure of
the existing sets is computed to derive a more complete set.

Let’s take the taintIt method in figure 1 as an example.
At the entry of the method, A = ∅. Two sets {x, par2}
and {x.f, par1} are added to A after the analysis of lines
37-38. Line 39 adds sData to the existing set {x, par2}
and gives {x, par2, sData}. The return statement on line 41
gives {r, par1} (r represents the return value). Transitive
closure of existing sets gives {x.f, par2.f, sData.f, par1, r}.
At the exit of this method,

A = {{par2, sData}, {par2.f, sData.f, par1, r}}

Note that local variables such as x are eliminated since
they are invalid outside the method. Mapping A back to
the invocation of taintIt on line 16 gives {d, sData} and
{d.f, sData.f, temp1, rs}, where temp1 = source() is tainted.
Therefore sink2 on line 21 would raise an alarm for a leak.
However, the statement on line 20 removes d and d.f from
the set, hence sink4 on line 23 would not give any warn-
ing. In comparison, method invocation on line 31 would
render sets {d1, sData} and {d1.f, sData.f, temp2} where
temp2 = “notaint” which is not tainted. Therefore no leak
occurs on line 32.

4.4 Method Summary and Class Summary

For each method, the method summary includes the fol-
lowing information: (1) The type1 and type2 sets computed
according to the rules in section 4.3. Taint status of the
variables in these sets is also recorded if can be determined.
(2) Conditional sinks. We call a sink a conditional sink if
the taint status of its parameters cannot be determined, i.e,
its parameters contain parameters of the hosting method or
class/global variables of the hosting class or their alias. If
the parameter of the sink method is a local variable, we re-
place the local variable by its alias in the type1 or type2 set.
(3) Paths that would definitely lead to a leak. This infor-
mation is used to give warnings of leak paths. (4) The sets
of tainted class variables and global variables (C and G).

In the example of figure1, the summary of taintIt in-
cludes the following information: (1) Two types of sets:
{par2, sData}, {par1, par2.f, sData.f, r}. Here r represents
the return value. Since we cannot determine their taint sta-
tus, no information about their taint status will be recored
at this moment. (2) Conditional sink: sink5(par2.f). (3)
Definite leak paths. Since there is no path that will defi-
nitely lead to a leak, no such information is recorded either.
(4) Tainted variable lists: since no class or global variables
are tainted, C and G are ∅.

WeChecker extracts the method list of each component
and computes their method summaries. Our analysis is
path-sensitive when it calculates the summary of each method.
In other words, WeChecker considers every possibility of
data flow. For example, if there are three if-else branches
in a method, WeChecker will traverse all 8 (i.e. 23) possible
paths. After extracting the method summaries, the traver-
sal of the call graph converts to the traversal of each method
summary according to their order in the call graph.

The traversal starts from the method summary of the first
method in the call graph and invokes the next method it
points to. During the traversal, at the entry of each method,
the checker passes the set of current tainted variables as con-
text to find answers to these questions: (1) Will the condi-
tional sinks in the method summary actually lead to a leak
with the given context? (2) What is the taint status of the
class/global variables after the execution of this method?
In the case of a method invocation, it also needs to answer
the third question: (3) What is the taint status of the return
value? When the method returns, the checker will determine
which variable would get tainted after mapping the tainted
variables in the callee back to the caller. For the example in
figure 1, the invocation of taintIt on line 17 passes a tainted
value as the first parameter. From the method summary
of taintIt we know that par2.f is also tainted, therefore the
conditional sink sink5(par2.f) would lead to a leak. When
taintIt returns, d.f , sData.f and rs would get tainted since
par1 is tainted. Therefore sink2 will lead to a leak.

At the entry of the first method, the three sets of tainted
variables (L, C and G) are all initialised to ∅. The con-
text passed to the next method is the context at the return
statement of the previous method. Methods between the
EventBegin and EventEnd nodes are treated exceptionally.
We will introduce how to deal with these methods in the
next section.

The summary of a class is constructed after the analysis
of this class. A class summary contains the following infor-
mation: (1) Tainted global variable list (G). (2) Conditional
sinks whose parameters are public class variables or alias of
public class variables. The class summary can be extracted

7

from method summaries.

4.5 Strategy for Arbitrary Execution Orders
Within an activity, user-defined event handlers may exe-

cute in arbitrary orders depending on user input or system
status. To get an accurate approximation of the tainted vari-
ables, the analysis need to consider the interference of other
event-handlers when analyzing one event handler. In order
to simulate the arbitrary execution orders of different event
handler methods, a naive way is to get the list of all per-
mutations of these methods and execute each permutation
in this list. Suppose there are n event handlers, the num-
ber of permutation would be n!. This would lead to a high
analysis overhead when n is big. We propose to check each
event handler two times in two rounds to achieve a precise
yet efficient analysis.

Note that the context passed to each method summary in
the second round is different from that in the first round. In
the first round, the context passed to each event handler is
the context at the EvtBegin node. In the second round, the
analysis takes into account the interference of other event
handlers that can execute before the current method. As
introduced in section 4.2, during the traversal of the call
graph, WeChecker maintains three sets of tainted variables:
L for local variables, C for class variables and G for global
variables. The execution of other event handlers only effect
C and G. Suppose there are n event handlers and they
can execute in arbitrary orders. Li1 , Ci1 and Gi1 denote
the context after the analysis of event handler i in the first
round. In the second round, the context passed to an even
handler is the merge of the other (n−1) events’ context. The
rule to merge the context of two events, ei and ej is defined
in algorithm 1. Recall that we defined p(x) to return the
type1 or type2 set that contains x. For clarity, we further
define pi(x) to return the set that contain x in the method
summary of ei. We denote the type1 and type2 sets of event
i as Ai.

Algorithm 1 Merge the Context of ei and ej

Require: Ci1 , Gi1 , Cj1 , Gj1 ,Ai,Aj

Ensure: Cm1 , Gm1

1: function ContextMerge(Ci1 , Gi1 , Cj1 , Gj1 ,Ai,Aj)
2: for var : var ∈ Ci1 ∪Gi1 do
3: Aj = pj(var)
4: Cj1 ← Cj1 ∪ c: c ∈ Aj ∧ c is classVar
5: Gj1 ← Gj1 ∪ g: g ∈ Aj ∧ g is globalVar
6: end for
7:
8: for var : var ∈ Cj1 ∪Gj1 do
9: Ai = pi(var)

10: Ci1 ← Ci1 ∪ c: c ∈ Ai ∧ c is classVar
11: Gi1 ← Gi1 ∪ g: g ∈ Ai ∧ g is globalVar
12: end for
13:
14: Cm1 ← Ci1 ∪ Cj1

15: Gm1 ← Gi1 ∪Gj1

16: end function

Algorithm 1 takes as input the tainted variable sets and
alias sets of ei and ej and outputs the merged context of
these two events. Lines 2-6 traverse the tainted variable
sets of event i and check if any variables in event j would
get tainted if event i happens before event j. If so, add these

variables to the corresponding tainted variable set of event
j, i.e. add the variable to Cj1 if it is a class variable and
add it to Gj1 if it is a global variable. Lines 8-12 consider
the situation that event j happens before event i and check
whether Cj1 and Gj1 would effect the taint status of the
variables in event i. The merged tainted variable list is the
union of the tainted variable sets of the two events. The
process continues until the context of all other n− 1 events
except the current analyzed event handler has been merged
together.

In the second round, we denote the context information
at the entry of event i as {Li2 , Ci2 , Gi2}. Li2 is initialized as
∅, Ci2 and Gi2 are initialized as the final Cm1 and Gm1 after
merging all other n− 1 event handler’s context respectively.
The time complexity of the merging process is O(n). Since
we need to analyze the n event handlers one by one, therefore
the total time complexity is O(n2).

For the example in figure1, our checker identifies the event
handlers for the three buttons and give them temporary
method names eventH1, evntH2, eventH3. Their method
summaries are listed here:
eventH1 : {conditionalSink: sink1(sData.f);C11 = ∅;G11 =
∅}
eventH2 : {leakPath: line21 sink2(rs), rs tainted on line16
C21 = sData.f,G21 = ∅}
eventH3 : {C31 = ∅, G31 = ∅}

When we analyze eventH1 in the second round, the con-
text at the entry is: L12 = ∅, C12 = {sData.f}, G12 = ∅,
here C12 and G12 are merging results of the context of
eventH2 and eventH3. Therefore the conditional sink sink1
would lead to a leak.

The same technique is used to deal with the arbitrary
execution orders of different invocation chains in one app.
Each invocation chain is checked two times in two rounds.
In the first round, the analysis goes into each component
and traverses each method summary according to its call
graph. At the end of the first round, the class summary
of each class is dirived. In the second round, the effect of
other invocation chains are taken into account to figure out
whether the conditional sinks in the class summaries will
actually lead to a leak. Take the test case ActiviyComm1[27]
in DroidBench as an example. The variable data1 is valid
through the app. Since both Activity1 and Activity2 are
exported, two invocation chains {{Activity1}, {Activity2}}
exist for this app. data1 gets tainted in Activity2, therefore
in the second round the conditional sink in Activity1 (line
26 of [27]):

sms.sendTextMessage(” + 49”, null, data1, null, null);

will lead to a leak.

4.6 Array and Collection Access
Previous work based on static analysis [1, 13] usually con-

servatively mark the whole array or collection as tainted
when one element gets tainted. This results in false posi-
tives when tainted data is stored in one position but data
access occurs in another position. Array is one of the prime
data structures in Java to store a set of values. Other classes
for this purpose include all types of List, Set and Map imple-
mentations (such as LinkedList, ArrayList, HashMap, etc.).
Arrays use indexes to identify different elements. Maps store
<key, value> pairs and use keys to identify different values.
In our checker we partially reduce the false positives resulted

8

from array and collection access by resolving and differenti-
ating elements in arrays and maps.

1 $r4 = newarray (java.lang.String)[10];
2 ...
3 $r3 = virtualinvoke $r6.<android.telephony.

TelephonyManager: java.lang.String
getDeviceId () >();

4 $r4[5] = $r3;
5 $r4[4] = "no taint";
6 $r2 = staticinvoke <android.telephony.SmsManager:

android.telephony.SmsManager getDefault ()
>();

7 $i0 = specialinvoke $r0.<de.ecspride.ArrayAccess2
: int calculateIndex () >();

8 $r7 = $r4[$i0];
9 virtualinvoke $r2.<android.telephony.SmsManager:

void sendTextMessage(java.lang.String ,java.
lang.String ,java.lang.String ,android.app.
PendingIntent ,android.app.PendingIntent)>("
+49 1234", null , $r7 , null , null);

Figure 5: Jimple code of ArrayAccess2

Like the representation of instance fields, we use access
path to represent array and map elements. The access path
of an array element initiates from the array variable and is
followed by the index of this element. Take the Jimple code
in figure 5 as an example (excerpt from the DroidBench test
case ArrayAccess2), $r4[5] is represented using the access
path $r4.5. If the index cannot be computed statically, the
checker will list all the possibilities and raise an alarm unless
it can figure out all these possible values are not tainted. For
the test case ArrayAccess2, method calculateIndex() returns
the constant value 4, therefore $r7 equals to $r4.4 which is
not tainted.

1 $r4 = new java.util.HashMap;
2 specialinvoke $r4.<java.util.HashMap: void <init

>() >();
3 ...
4 $r6 = virtualinvoke $r7.<android.telephony.

TelephonyManager: java.lang.String
getDeviceId () >();

5 interfaceinvoke $r4.<java.util.Map: java.lang.
Object put(java.lang.Object ,java.lang.Object
)>("tainted", $r6);

6 interfaceinvoke $r4.<java.util.Map: java.lang.
Object put(java.lang.Object ,java.lang.Object
)>("untainted", "Hello World");

7 $r2 = staticinvoke <android.telephony.SmsManager:
android.telephony.SmsManager getDefault ()

>();
8 $r5 = interfaceinvoke $r4.<java.util.Map: java.

lang.Object get(java.lang.Object)>("
untainted");

9 $r3 = (java.lang.String) $r5;
10 virtualinvoke $r2.<android.telephony.SmsManager:

void sendTextMessage(java.lang.String ,java.
lang.String ,java.lang.String ,android.app.
PendingIntent ,android.app.PendingIntent)>("
+49 1234", null , $r3 , null , null);

Figure 6: Jimple code of HashMapAccess1

The access path of a map element initiates from the map
variable and is followed by the key of this element. The key
is determined when this element is put into the map. In the
example of figure 6 (excerpt from the DroidBench test case
HashMapAccess1), $r4.tainted=$r6, $r4.untainted=“Hello
World”. Therefore $r5 equals to $r4.untainted which is not
tainted.

~=correct warning, ? = false warning, ◦ =missed warning
multiple circles in one row: multiple leaks expected
all-empty row: no leaks expected, none reported

App Name FlowDroid WeChecker

Arrays and Lists

ArrayAccess1 ?
ArrayAccess2 ?
ListAccess1 ? ?

Callbacks

AnonymousClass1 ~ ~
Button1 ~ ~
Button2 ~ ~ ~? ~ ~ ~
LocationLeak1 ~~ ~~
LocationLeak2 ~~ ~~
MethodOverride1 ~ ~

Field and Object Sensitivity

FieldSensitivity1
FieldSensitivity2
FieldSensitivity3 ~ ~
FieldSensitivity4
InheritedObjects1 ~ ~
ObjectSensitivity1
ObjectSensitivity2

Inter-App Communication

IntentSink1 ◦ ~
IntentSink2 ~ ~
ActivityComm1 ~ ~

Lifecycle

BroadcastRecvLifecycle1 ~ ~
ActivityLifecycle1 ~ ~
ActivityLifecycle1 ~ ~
ActivityLifecycle1 ~ ~
ActivityLifecycle1 ~ ~
ServiceLifecycle1 ~ ◦

General Java

Loop1 ~ ~
Loop2 ~ ~
SourceCodeSpecific1 ~ ~
StaticInitialization1 ◦ ~
UnreachableCode1

Miscellaneous Anrdriod-Specific

PrivateDataLeak1 ~ ~
PrivateDataLeak2 ~ ~
DirectLeak1 ~ ~
InactiveActivity
LogNoLeak

Sum, Precision, and Recall

~, higher is better 26 27
?, lower is better 4 1
◦, lower is better 2 1
Precision p = ~/(~ + ?) 86% 96%
Recall r = ~/(~ + ◦) 93% 96%
F-measure 2pr/(p + r) 0.89 0.96

Table 1: DroidBench Test Results

It is not easy to unify the analysis of Lists using access
paths since elements are added or removed without referenc-
ing to the index but are accessed by referring to the index.
The precise resolution of List access is left for future work.

5. IMPLEMENTATION AND EVALUATION

5.1 Implementation
The entire system of WeChecker consists of around 9,000

lines of JAVA code. The system runs under Linux Ubuntu
13.04 on a computer with Intel Core I5 3.4GHz CPU and
4GB RAM.

5.2 Evaluation

5.2.1 Evaluation on DroidBench
DroidBench [26] is an open test suite for evaluating the

effectiveness of taint analysis tools especially for Android
apps. It contains test cases for general static analysis prob-
lems (field sensitivity, object sensitivity, etc.) and Android-
specific challenges like correctly modeling an app’s lifecycle,
adequately handling asynchronous callbacks and interacting
with the UI. For easy compairson with previous work[1], we
evaluated our system on DroidBench V1.1 which contains
39 hand-crafted Android apps. Table 1 gives the analysis
results of FlowDroid [1] and WeChecker when applied to
DroidBench.

9

As table 1 shows, WeChecker achieves 96% recall and 96%
precision. Thanks to the precise resolution of array access,
WeChecker did not raise any false alarms for the test case
ArrayAccess1 and ArrayAccess2. However, as mentioned in
section 4.6, we conservatively take the whole LinkedList as
tainted if one element gets tainted. This leads to the false
positive for the case ListAccess1. In comparison, FlowDroid
gives false warning for all the three test cases. ServiceLife-
cycle1 is not detected because there is no exploitable path
in it. It only contains one service component which is not
exported, therefore malicious applications cannot get access
to this component. The result shows that WeChecker ef-
fectively tackles challenges brought by Android callbacks,
inter-app communication, field and object sensitivity, etc.

5.2.2 Evaluation on downloaded apps
Apart from the evaluation on DroidBench, we also ap-

plied WeChecker to 1137 Android apps randomly down-
loaded from Google Play. WeChecker finished checking all
the applications in less than 9.5hrs. The average analysis
time of each app is less than 30 seconds (29.985s). For com-
pairson, Bati’s [2] average analysis time per app is about
26min. FlowDroid [1] finished checking most of its examined
apps in under a minute. However FlowDroid only focuses on
a single component and did not take inter-component analy-
sis into account. CHEX [10] makes permutations to emulate
the arbitrary execution orders of different splits. They de-
fine a split as a subset of app code that is reachable from
a particular entry point method. CHEX limited the pro-
cessing time of each app within 5 minutes to optimize the
throughput. Their results on real applications show that
22% apps needed more than 5 minutes to be analyzed which
leads to timeout. Their statistic of the median processing
time for an app (37.02s) has excluded these apps. The me-
dian processing time of WeChecker is 21s even after taking
the longest processing time (around 9mins) into account.
[10] further found that split permutation causes the major-
ity of the time overhead. WeChecker uses summary based
two round taint analysis to reduce this part of overhead.
Therefore it achieves a higher efficiency than other checkers.

WeChecker raised alarms for 79 leak paths among which 2
are capability leak paths and 77 are sensitive data leak paths.
Among the sensitive data leak paths, 2 of them leak sensitive
data to the caller app (type 2.1), 21 attach the data to im-
plicit intents (type 2.2) and 56 of them write data to log files
or external storage (type 2.3). FlowDroid over-approximates
explicit inter-component communication by taking methods
which send intents as sinks and callbacks which receive in-
tents as sources [1]. Although WeChecker uses the same
source and sink set as FlowDroid, it aims at the detection
of privilege escalation vulnerabilities. Therefore either the
source or sink method of a leak path requires permission.
Hence WeChecker will not regard a path that sends out the
received data from another app as a leak path since neither
putExtra nor getExtra method requires permission.

6. RELATED WORK
Davi et al.[7] first proposed the privilege escalation attack

in Android applications and demonstrated how to exploit a
vulnerability at runtime. After that, there have been many
approaches proposed to deal with this attack.

Some researchers proposed dynamic solutions to remedy
the attack at runtime. TaintDroid[9] uses dynamic taint

tracking to trace the flow of privacy sensitive data in third-
party apps. It helps to detect when sensitive data leaves the
system via untrusted apps. But evaluation shows that it is
not efficient to use practically. [11] proposed IPC Inspec-
tor to mitigate permission re-delegation attacks by checking
IPC call chains. IPC Inspector ensures that unauthorized
applications cannot invoke privileged operations by reducing
the permission set of an app after it receives communication
from a less privileged application. However their mecha-
nism is restrictive because of its limited usage scenario and
large overhead. [3] uses a run-time monitor to regulate com-
munications between applications. They designed and im-
plemented a practical security framework to protect against
confused deputy and collusion attack.

In contrast to dynamic analysis which brings in large per-
formance overhead at runtime, static analysis checks the
vulnerabilities in Android apps before installation. SCan-
Droid[12] is the first static analysis tool for Android. It
checker whether inter-component(ICC) and inter-app(IPC)
data flows violate the specification extracted from the man-
ifest file. DroidChecker[4] and CoChecker[6] use static taint
analysis to detect whether data from source methods can
reach sink methods. But they both work on the source code.
This makes their precision dependent of that of the decom-
piler tools. Besides, they fail to perform alias analysis, which
further detriments their precision.

[17] proposed Woodpecker to deal with the problem of ca-
pability leak which essentially reflects the privilege escala-
tion attack. They handled two categories of capability leaks:
explicit and implicit. But they only considered 13 permis-
sions that are defined by the framework itself without paying
attention to user-defined permissions in third-party applica-
tions. Besides, they conclude a capability leak exists as long
as there is a path that enables data to flow from one entry
point to a permission-protected API without any security
checkings in-between. This is true when this API has side-
effect on the system settings. However, if this API aims to
retrieve sensitive data and there is no way for the malicious
app to get the retrieved data, the attacker cannot get any
benefit.

AndroidLeaks [13] verifies whether sensitive data will be
propagated and finally sent out of the phone. It computes
forward slices from tainted data, and analyze the slice to
check if any parameters to sink methods are tainted. But it
performs pointer analysis in a context-insensitive way. Be-
sides, it taints the entire collection and the whole object
if any tainted data is stored in them. This leads to over-
tainting and results in false positives.

CHEX [10] relies on static data-flow analysis to deal with
component hijacking vulnerabilities. They designed a reli-
able way to discover all types of entry points in an Android
component and modelled the asynchronous invocation of ev-
ery entry point by splitting the app code. In this way, CHEX
tackled the problem brought by the event-driven property.
However, their solution requires a permutation of all splits
which is time and resource consuming. FlowDroid[1] pro-
vides a novel and highly precise taint analysis for Android
applications. It modelled the Android lifecycle and car-
ried out context, flow, field and object-sensitive analysis to
achieve a high degree of precision. However, it fails to per-
form inter-component analysis.

AppIntent [31] aims to detect whether sensitive data trans-
mission is user intended or not. It uses a guided symbolic

10

execution approach to generate a sequence of GUI manipu-
lations that would lead to the identified sensitive data trans-
mission. Bati [2] claims to provide a vetting framework for
Android apps. Their analysis considers a complete Android
lifecycle that includes the asynchronous communication of
multi-threading. They also introduce a value analysis algo-
rithm to determine primitive values and string parameters.
Despite of its claimed high precision, Bati’s average analysis
time per app is about 26min which is too long for large-scale
app checking.

[5] and [22] studied potential vulnerabilities brought by
the intent mechanism in Android apps. ComDroid focuses
on the analysis of one single application and gives warn-
ings when it encounters misconfigurations such as exported
components or implicit intents. However, ComDroid pro-
duces too many false positives. [22] aims to connect com-
ponents within one application and between different appli-
cations. Therefore it works on a large scale of applications
and matches the exit/entry points of the currently analyzed
application with a set of entry/exit points stored in the
database. In our analysis, we only need to get the connec-
tion between components within the analyzed application
to construct the invoking chain. For intents to communi-
cate with components in another application, we only check
whether sensitive data is attached to indicate potential data
leakage.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we aim at checking whether an Android

application is vulnerable to privilege escalation attacks by
detecting two types of leak paths: capability leak paths and
sensitive data leak paths. We use a summary (method sum-
mary and class summary) based two round static taint anal-
ysis to reduce the analysis overhead brought by the arbitrary
execution orders of different event handlers and different in-
vocation chains. During the analysis we use access paths
to represent object fields, array elements and map elements.
This reduces the false positives due to field-insensitivity and
over-approximation of array access and collection access. We
designed and implemented a tool, WeChecker to automati-
cally detect whether privilege escalation vulnerabilities ex-
ist in Android apps. We demonstrated the high precision
of WeChecker on the state-of-the-art test suite DroidBench.
The evaluation of WeChecker on real apps shows that it is
efficient and fits for large-scale analysis.

For future research, we aim to improve the analysis preci-
sion by taking implicit flow and reflection calls into consid-
eration. Besides, we aim to resolve the inter-app communi-
cation at a higher precision to reduce the false alarms due
to mis-resolution of the receiver components of an intent.

8. ACKNOWLEDGEMENT
The work described in this paper was partially supported

by a collaboration research fund by Huawei, HKU Seed Fund-
ings for Applied Research 201409160030, and HKU Seed
Fundings for Basic Research 201311159149 and 201411159122.
A patent about this technology is filed.

9. REFERENCES
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,

J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, page 29. ACM, 2014.

[2] M. Backes, S. Bugiel, E. Derr, and C. Hammer.
Taking android app vetting to the next level with
path-sensitive value analysis. Report (Bericht), 2014.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In 19th Annual
Network & Distributed System Security Symposium
(NDSS), Feb. 2012.

[4] P. P. Chan, L. C. Hui, and S.-M. Yiu. Droidchecker:
analyzing android applications for capability leak. In
Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks, pages
125–136. ACM, 2012.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th international conference on
Mobile systems, applications, and services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[6] X. Cui, D. Yu, P. Chan, L. C. Hui, S. Yiu, and
S. Qing. Cochecker: Detecting capability and sensitive
data leaks from component chains in android. In
Information Security and Privacy, pages 446–453.
Springer, 2014.

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Proceedings of the 13th international conference on
Information security, ISC’10, pages 346–360, Berlin,
Heidelberg, 2011. Springer-Verlag.

[8] S. K. Debray and T. A. Proebsting. Interprocedural
control flow analysis of first-order programs with
tail-call optimization. ACM Trans. Program. Lang.
Syst., 19(4):568–585, July 1997.

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, pages 1–6, 2010.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Chex: Statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of
the 2012 ACM Conference on Computer and
Communications Security, CCS ’12,NY, USA, pages
229–240. ACM, 2012.

[11] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, pages 22–22,
Berkeley, CA, USA, 2011. USENIX Association.

[12] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
Scandroid: Automated security certification of android
applications. Manuscript, Univ. of Maryland,
http://www. cs. umd. edu/˜
avik/projects/scandroidascaa, 2009.

[13] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In S. Katzenbeisser, E. Weippl, L. Camp,

11

M. Volkamer, M. Reiter, and X. Zhang, editors, Trust
and Trustworthy Computing, volume 7344 of Lecture
Notes in Computer Science, pages 291–307. Springer
Berlin Heidelberg, 2012.

[14] Google. Android. http://source.android.com/.

[15] Google. Android Developers.
http://developer.android.com/index.html.

[16] Google. Intent. http://developer.android.com/
reference/android/content/Intent.html.

[17] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In Proceedings of the 19th
Annual Symposium on Network and Distributed
System Security, 2012.

[18] C. Hammer and G. Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow
control based on program dependence graphs.
International Journal of Information Security,
8(6):399–422, 2009.

[19] IDC. Smartphone OS Market Share, Q3 2014.
http://www.idc.com/prodserv/smartphone-os-

market-share.jsp.

[20] T. Jensen, D. Le Métayer, and T. Thorn. Verification
of control flow based security properties. In Security
and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on, pages 89–103. IEEE, 1999.

[21] J. Midtgaard and T. P. Jensen. Control-flow analysis
of function calls and returns by abstract
interpretation. In Proceedings of the 14th ACM
SIGPLAN international conference on Functional
programming, ICFP ’09, pages 287–298, New York,
NY, USA, 2009. ACM.

[22] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in android with epicc: An
essential step towards holistic security analysis. In
Proceedings of the 22nd USENIX Security Symposium,
2013.

[23] M. Pistoia, R. J. Flynn, L. Koved, and V. C.
Sreedhar. Interprocedural analysis for privileged code
placement and tainted variable detection. In ECOOP
2005-Object-Oriented Programming, pages 362–386.
Springer, 2005.

[24] G. Play. Ulysses Gizmons. https://play.google.com/
store/apps/details?id=com.binarytoys.ulysse.

[25] S. Rasthofer, S. Arzt, and E. Bodden. A
machine-learning approach for classifying and
categorizing android sources and sinks. In 2014
Network and Distributed System Security Symposium
(NDSS), 2014.

[26] E. SPRIDE. DroidBench.
https://github.com/secure-software-

engineering/DroidBench.

[27] E. SPRIDE. DroidBench test case for inter-component
communication.
https://github.com/secure-software-

engineering/DroidBench/tree/master/eclipse-

project/InterComponentCommunication/

ActivityCommunication1.

[28] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and
E. Yahav. Alias analysis for object-oriented programs.
In Aliasing in Object-Oriented Programming. Types,

Analysis and Verification, pages 196–232. Springer,
2013.

[29] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and
S. Guarnieri. Andromeda: Accurate and scalable
security analysis of web applications. In Fundamental
Approaches to Software Engineering, pages 210–225.
Springer, 2013.

[30] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot-a java bytecode optimization
framework. In Proceedings of the 1999 conference of
the Centre for Advanced Studies on Collaborative
research, page 13. IBM Press, 1999.

[31] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and
X. S. Wang. Appintent: Analyzing sensitive data
transmission in android for privacy leakage detection.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
1043–1054. ACM, 2013.

[32] B. Zeng, G. Tan, and G. Morrisett. Combining
control-flow integrity and static analysis for efficient
and validated data sandboxing. In Proceedings of the
18th ACM conference on Computer and
communications security, CCS ’11, pages 29–40, New
York, NY, USA, 2011. ACM.

12

