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ABSTRACT
We propose a type-based taint analysis for Android. Con-
cretely, we present DFlow, a context-sensitive information
flow type system, and DroidInfer, the corresponding type in-
ference analysis for detecting privacy leaks in Android apps.
We present novel techniques for error reporting based on
CFL-reachability, as well as novel techniques for handling of
Android-specific features, including libraries, multiple entry
points and callbacks, and inter-component communication.
Empirical results show that our approach is scalable and
precise. DroidInfer scales well in terms of time and memory
and has false-positive rate of 15.7%. It detects privacy leaks
in apps from the Google Play Store and in known malware.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; D.4.6 [Security and Protection]: Infor-
mation flow controls

Keywords
Taint analysis, Android, information flow, CFL-reachability

1. INTRODUCTION
Android is the most popular platform on mobile devices.

As of the second quater of 2014, Android has reached 84.4%
share of the global smartphone market [19]. Android’s success
is partly due to the enormous number of applications available
at the Google Play Store, as well as other third-party app
stores. However, Android apps often collect sensitive data
such as location and phone state, usually for the purpose of
tracking and targeted advertising.
In this paper we consider a threat model where an app,

legitimate or malicious, obtains sensitive data and leaks this
data to either logs or the network. Logs are an issue, be-
cause until Android 4.0 any app that held the READ LOGS
permission could read all logs. We track log flows, but we
emphasize network flows (e.g., flows of the device identifier
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to the Internet through an HTTP request), which present a
more pertinent and challenging problem.
Taint analysis detects flows from sensitive data sources

(e.g., location, phone state) to untrusted sinks (e.g., logs, the
Internet). Many researchers have tackled taint analysis for
Android. Dynamic analyses such as Google Bouncer [10],
TaintDroid [4], DroidScope [41], CopperDroid [32], and Aura-
sium [40] instrument the app bytecode and/or use customized
execution environment to monitor the transition of sensitive
data. Unfortunately, dynamic analysis slows execution and
typically lacks code coverage.

Static taint analysis detects privacy leaks without running
the app. There has been considerable effort on static taint
analysis, with the majority of work focusing on dataflow and
points-to-based approaches [24, 42, 20, 9, 22, 7, 1]. Yet a
solution remains elusive.

FlowDroid, a highly-precise, context-, flow-, field-, object-
sensitive and lifecycle-aware static taint analysis for An-
droid [1], is the state-of-the-art. Unfortunately, FlowDroid
is computationaly- and memory-intensive. Further, while it
reports numerous log flows in apps from the Google Play
Store, it reports no network flows [1]. This is surprising,
given the knowledge that apps track their users pervasively.
We propose type-based taint analysis for Android lever-

aging previous work on type-based taint analysis for web
applications [15]. Our approach ismodular and compositional.
It can analyze any given set of classes. Modular analysis is
particularly suitable for Android apps because 1) the An-
droid app is an “open” program with multiple entry points
through callbacks, and 2) it uses large libraries that can be
suitably handled with conservative defaults. The analysis
requires annotations only on sources and sinks. Once the
sources and sinks are built into annotated libraries, Android
apps are analyzed without any input from the user.

Concretely, we propose DFlow, a context-sensitive informa-
tion flow type system and DroidInfer, the corresponding type
inference analysis. DroidInfer is as precision as, but much
more scalable than FlowDroid. DroidInfer is lightweight and
runs in ≈ 2 minutes on average, within a memory footprint
of 2GB. It uncovers numerous network flows in apps from
the Google Play Store and in known malware. DroidInfer
posts an F-measure of 0.88 on DroidBench [7], the standard
for evaluating static taint analysis for Android.
DroidInfer scales because it completely avoids points-to

analysis. It is precise because in essence it is a CFL-reachability
computation, a highly-precise analysis technique [33]. An
important contribution of our work is that it explains source-
sink flows intuitively in terms of CFL-reachability paths.
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1 public class WallpapersMain extends Activity {
2 private String BASE URL, deviceId;
3 private int pageNum, catId;
4 private DisplayMetrics metrics;
5 private WebView browser1;
6 protected void onCreate(Bundle b) {
7 start();
8 }
9 protected void onActivityResult(int rq, int rs, Intent i){

10 navigate();
11 }
12 private void start() {
13 BASE URL = ”getWallpapers Android2/”;
14 TelephonyManager mgr =
15 (TelephonyManager)this.getSystemService(”phone”);
16 deviceId = mgr.getDeviceId(); // source
17 }
18 private void navigate() {
19 String str = BASE URL + pageNum + ”/”+ catId + ”/”

+ deviceId + ”/”+ metrics.widthPixels + ”/”+
metrics.heightPixels;

20 browser1.loadUrl(str); // sink
21 }
22 }

Figure 1: WallpapersMain leaks the device identifier
(the source at line 16) to a content server (the sink
at line 20) in a URL.

This paper makes the following contributions:

• DFlow, a context-sensitive information flow type system
and DroidInfer, the corresponding worst-case cubic
inference analysis which amounts to CFL-reachability.
DroidInfer works on Application Package files (APKs).

• Effective handling of Android-specific features: “open”
programs with multiple entry points, callbacks and
large libraries, and a technique that improves precision
in the handling of inter-component communication.

• An extensive empirical evaluation on three sets of An-
droid apps: 1) DroidBench [7, 1], 2) 22 malware apps
from the Contagio website [25] and 3) 144 apps from
the Google Play Store [11]. DroidInfer achieves the
same F-measure as FlowDroid on DroidBench. It un-
covers all network flows in the Contagio apps, as well
as numerous network flows across 40 Play Store apps.

The rest of the paper is organized as follows. Sect. 2 gives
a motivating example and a brief discussion of our type-
based approach. Sect. 3 presents the DFlow type system
and the inference analysis. Sect. 4 outlines the connection
with CFL-reachability and the reporting technique. Sect. 5
describes the handling of Android-specific features. Sect. 6
presents the empirical evaluation. Sect. 7 discusses related
work and Sect. 8 outlines the limitations and concludes.

2. OVERVIEW
We begin with a motivating example that shows a privacy

leak in an Android app and proceed to outline our approach.

2.1 Motivating Example
The example shown in Fig. 1 is refactored from one of our

benchmarks, Backgrounds HD Wallpapers version 2.0.1
from the Google Play Store. The WallpapersMain activity
first obtains the device identifier by calling the getDeviceId

method and stores it into a field deviceId when it is created
(onCreate). Then it appends the deviceId into a search URL
url, which is sent to a content server in the navigate method.
Finally, the navigate method is called in callback method
onActivityResult, resulting in a privacy leak.
This example illustrates several challenges. Unlike Java

programs, Android apps do not have a single entry point.
Instead, each callback method is a potential entry point as
it could be called by the Android framework. In Wallpa-
persMain, both onCreate and onActivityResult are callback
methods that are implicitly called by the Android framework.

Multiple entry points and callbacks by the framework are
a significant challenge to traditional points-to-based static
analyses, which usually require whole-program analysis.

2.2 Type Qualifiers
In our type-based approach, each variable is typed by

a type qualifier. There are two basic qualifiers in DFlow:
tainted and safe.

• tainted: A variable x is tainted, if there is flow from a
sensitive source to x. In the WallpapersMain example,
the return value of TelephonyManager.getDeviceId is
typed as tainted.

• safe: A variable x is safe if there is flow from x to
an untrusted sink. For example, the parameter url of
WebView.loadUrl(String url) is a safe sink.

Note that our analysis for Android is actually a confiden-
tiality analysis. We keep the term taint analysis and qualifiers
tainted and safe only in deference to previous work [4, 7].

In order to disallow flow from tainted sources to safe sinks,
DFlow enforces the following subtyping hierarchy:

safe <: tainted1

where q1 <: q2 denotes q1 is a subtype of q2. (q is also a
subtype of itself q <: q.) Therefore, it is allowed to assign a
safe variable to a tainted one:

safe String s = ...;
tainted String t = s;

However, it is not allowed to assign a tainted variable to a
safe one:

tainted String t = ...;
safe String s = t; // type error!

In the WallpapersMain example, the return value of getDe-
viceId is typed as tainted and the url parameter of loadUrl is
typed as safe, as they are a source and a sink, respectively.
The field deviceId is tainted and so is the local variable str
since it contains the value of deviceId. Because it is not al-
lowed to assign a tainted str to the safe parameter of loadUrl,
the program results in a type error, signaling the leak.
Once the sources and sinks are given, type qualifiers are

inferred automatically by our inference tool (Sect. 3.2). If
there is a valid typing, then there is no flow from a source
to a sink. Otherwise, the tool reports type errors, signaling
potential privacy leaks.

A longstanding issue with type inference is explaining type
errors [21, 39]. In general, the inference tool can issue a type
error anywhere along the long flow path from source to sink!

1This is the desired subtyping. However, it is not safe when
mutable references are involved [29, 35].
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We map each type error into intuitive, humanly-readable
CFL-reachability flow paths (Sect. 4). For example, the type
error in Fig. 1 (roughly) maps to

source
[deviceId→ thisstart → thisnavigate

]deviceId→ str → sink

meaning that the source flows into field deviceId of implicit
parameter this of start, which in turn flows into this of navigate,
where field deviceId is read into str, which flows to sink.

The problem is not limited to type inference. Any static
analysis (e.g., [1]) faces the issue of error reporting and there
are no satisfying solutions at this point. We believe that our
approach is a significant step forward.

2.3 Context Sensitivity
DFlow achieves context sensitivity by using a polymorphic

type qualifier, poly, and viewpoint adaptation [3].

• poly: poly is interpreted as tainted in some contexts
and as safe in other contexts.

The subtyping hierarchy becomes

safe <: poly <: tainted

The concrete value of poly is interpreted by the viewpoint
adaptation operation. Viewpoint adaptation of a type q�

from the viewpoint of another type q, results in the adapted
type q��. This is written as q✄q� = q��. Viewpoint adaptation
adapts fields, formal parameters, and method return values
from the viewpoint of the context at the field access or method
call. DFlow defines viewpoint adaptation below:

✄ tainted = tainted
✄ safe = safe

q ✄ poly = q

The underscore denotes a “don’t care” value. Qualifiers
tainted and safe do not depend on the viewpoint (context).
Qualifier poly depends on the viewpoint: e.g., if the viewpoint
(context) is tainted, then poly is interpreted as tainted.

The type of a poly field f is interpreted from the viewpoint
of the receiver at the field access. If the receiver x is tainted,
then x.f is tainted. If the receiver x is safe, then x.f is safe.
The type of a poly parameter or return value is interpreted
from the viewpoint of qi, the context at the method call.
Consider the example in Fig. 2, where method id is typed
as follows (code throughout the paper makes parameter this
explicit when necessary):

poly String id(tainted Util this, poly String p)

This enables context sensitivity because id can take as input
a tainted String as well as a safe one. poly is interpreted as
tainted at callsite 10, and as safe at callsite 11.

3. TYPE SYSTEM
In this section, we define the DFlow type system and

present the type inference technique.

3.1 Typing Rules
We define our typing rules over a syntax in “named form”

where the results of field accesses, method calls, and instan-
tiations are immediately stored in a variable. For space
reasons, we leave the syntax implicit in the typing rules; it is
specified precisely in the accompanying technical report [16].
Without loss of generality, we assume that methods have

parameter this, and exactly one other formal parameter. The

1 class Util {
2 poly String id(tainted Util this, poly String p) {
3 return p;
4 }
5 }
6 ...
7 Util y = new Util();
8 tainted String src = ...;
9 safe String sink = ...;

10 tainted String srcId = y.id10(src);

11 safe String sinkId = y.id11(sink);

Figure 2: Context sensitivity example.

(tnew)

Γ(x) = qx q <: qx

Γ � x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ � x = y

(twrite)

Γ(y) = qy typeof (f) = qf Γ(x) = qx qx <: qy ✄ qf

Γ � y.f = x

(tread)

Γ(y) = qy typeof (f) = qf Γ(x) = qx qy ✄ qf <: qx

Γ � x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(y) = qy Γ(x) = qx Γ(z) = qz
qy <: qi ✄ qthis qz <: qi ✄ qp qi ✄ qret <: qx

Γ � x = y.mi(z)

Figure 3: Typing rules. Function typeof retrieves
the DFlow types of fields and methods, Γ is a type
environment that maps variables to DFlow qualifiers.
qi is the context of adaptation at call site i.

DFlow type system is orthogonal to (i.e. independent of)
the Java type system, which allows us to specify typing rules
over type qualifiers q alone.
The typing rules are defined in Fig. 3. Rules (tnew) and

(tassign) enforce the expected subtyping constraints. The
rules for field access, (tread) and (twrite), adapt field f from
the viewpoint of receiver y and then enforce the subtyping
constraints. Recall that the type of a poly field f is interpreted
in the context of the receiver y. If the receiver y is tainted,
then y.f is tainted. If the receiver y is safe, then y.f is safe.

The rule for method call, (tcall), adapts formal parameters
this and p and return value ret from the viewpoint of callsite
context qi, and enforces the subtyping constraints that cap-
ture flows from actual arguments to formal parameters, and
from return value to the left-hand-side of the call assignment.

The callsite context qi is a value that is not important, ex-
cept that it should exist. It can be any of {tainted, poly, safe}.
Consider the example in Fig. 2. At callsite 10, q10 is tainted
and q10 ✄ poly is interpreted as tainted. The following con-
straints generated at callsite 10 are satisfied2:

y <: q10 ✄ tainted src <: q10 ✄ poly q10 ✄ poly <: tainted

At callsite 11, q11 is safe and q11 ✄ poly is interpreted as safe.

2For brevity and clarity, we omit q when dealing with vari-
ables from code examples, i.e., we write y instead of qy.
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Therefore, the constraints at callsite 11 are satisfied:

y <: q11 ✄ tainted sink <: q11 ✄ poly q11 ✄ poly <: safe

We compose DFlow with ReIm, a reference immutability
type system [17]. This is necessary to overcome known issues
with subtyping in the presence of mutable references [29, 35].
Specifically, if the left-hand-side of an assignment (explicit
or implicit) is immutable according to ReIm, we enforce
a subtyping constraint; otherwise, we enforce an equality
constraint. For example, at (tassign) x = y, if x is immutable,
i.e. x is not used to modify the referenced object, we enforce
qy <: qx; otherwise, we enforce qy = qx. The more variables
are proven immutable, the more subtyping constraints there
are, and hence, the more precise DFlow is [26].

Method overriding is handled by the standard constraints
for function subtyping. If n overridesm, we require typeof (n) <:
typeof (m) and thus

(qthisn , qpn → qretn) <: (qthism , qpm → qretm)

This entails qthism <:qthisn , qpm <:qpn , and qretn <:qretm . Sound-
ness of DFlow is argued as in [14].

3.2 Type Inference
Given sources and sinks, type inference derives a valid

typing, i.e. an assignment from program variables to type
qualifiers that type checks with the typing rules in Fig. 3. If
type inference succeeds, then there are no leaks from sources
to sinks. If it fails the app may contain leaks.

Type inference first computes a set-based solution S, which
maps variables to sets of potential type qualifiers. Then it
uses method summary constraints, a technique that refines
the set-based solution and helps derive a valid typing.

3.2.1 Set-based Solution
The set-based solution is a mapping S from variables to

sets of qualifiers. For instance, if S(x) = {tainted, poly},
that means variable x can be tainted or poly, but not safe.
Programmer-annotated variables, including sources and sinks,
are initialized to the singleton set that contains the provided
type qualifier. For example, sources and sinks from the
annotated library map to {tainted} and {safe}, respectively.
Fields f are initialized to S(f) = {tainted, poly}; we forgo
safe fields, which makes the inference converge faster. All
other variables and callsite contexts qi are initialized to the
maximal set of qualifiers, i.e. S(x) = {tainted, poly, safe}.

The inference then creates constraints for all program state-
ments according to the typing rules in Fig. 3. It takes into
account the mutability of the left-hand-side of assignments
as discussed in Sect. 3. Then the set-based solver iterates
over constraints c and calls SolveConstraint(c). Solve-
Constraint(c) removes infeasible qualifiers from the set of
variables in c [13]. Consider constraint c: qy <: qx where
S(y) = {tainted} and S(x) = {tainted, poly, safe} before solv-
ing the constraint. The solver removes poly and safe from
S(x), because there does not exist a qy ∈ S(y) that satisfies
qy <: poly and qy <: safe. In the case that the infeasible
qualifier is the last element in S(x), the solver reports a type
error. For example, y{tainted} <: x{safe} is a type error
because it is not satisfiable.
The solver keeps removing infeasible qualifiers for each

constraint until it reaches a fixpoint. If there are type errors,
this indicates potential flows from sources to sinks.

1: procedure SummarySolver
2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy ✄ qf and S(f) is {poly} then � Case 1
6: Add qx <: qy into C
7: else if c is qx ✄ qf <: qy and S(f) is {poly} then � Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then � Case 3
10: for each qy <: qz in C do Add qx <: qz to C end for
11: for each qw <: qx in C do Add qw <: qy to C end for

12: for each qw <: qi ✄ qx and qi ✄ qy <: qz in C do � Case 4
13: Add qw <: qz to C
14: end for
15: end if
16: end for
17: until S remains unchanged
18: end procedure

Figure 4: Initially, S is the result of the set-based
solution and C is the set of constraints for program
statements. See [16] for details.

3.2.2 Valid Typing
Unfortunately, even if the set-based solver terminates with-

out type errors, a valid typing still may not exist. That is,
there still may be undiscovered flows from sources to sinks.
We adapt method summary constraints, a technique that

removes additional infeasible qualifiers, and helps arrive at a
valid typing or uncover additional type errors. The algorithm,
adapted from [15] to DFlow, is shown in Fig. 4.
The method summary constraints are constraints that

“connect” parameters to return values. Recall the id example
in Fig. 2. p <: ret is a method summary constraint reflecting
the flow from the parameter p to the return value ret.

In many cases however, the flow from formal parameters to
return values is “connected” indirectly. For example, the pa-
rameter p and the return value ret can be connected through
two constraints: qp <: qx and qx <: qret. Due to transitivity,
we have qp <: qret. The algorithm “searches” for a subtyping
chain from the formal parameter (including this) to the re-
turn value of method m (Cases 1, 2, and 3 in Fig. 4). It uses
the method summary constraints to “connect” the actual
argument and the left-hand-side of the call assignment at
calls to m (Case 4).

Consider again the id method in Fig. 2. We have p <: ret
due to the return statement return p. The inference adds
constraints between actual arguments and left-hand-sides at
callsites 10 and 11. First, p <: ret implies q10✄p <: q10✄ ret.
This constraint and the constraints at callsite 10

src <: q10 ✄ p <: q10 ✄ ret <: srcId

entail src <: srcId. The inference adds src <: srcId, connecting
the actual argument src and the left-hand side srcId at callsite
10. Similarly, the inference adds sink <: sinkId at callsite 11.
Such new constraints remove additional infeasible qualifiers,
and help arrive at a valid typing or uncover new type errors.

When SummarySolver (Fig. 4) terminates without type
errors, the inference derives a concrete typing by picking
up the maximal element of S(x) according to the ranking
tainted > poly > safe. Such maximal typing almost always
type-checks, which guarantees that there is no unsafe flow
from sources to sinks. Even in the rare cases when the
maximal typing does not type check, there is no unsafe
flow [27]. In contrast, the maximal typing derived from the
set-based solution before running SummarySolver, usually
does not type check. SummarySolver is O(n3) [14].
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1 public class Data {
2 String secret;

3 String get(Data this) {return this.secret;}
4 void set(Data this, String p){this.secret = p;}
5 }
6 public class FieldSensitivity3 extends Activity {
7 protected void onCreate(Bundle b) {
8 Data dt = new Data();

9 TelephonyManager tm = (TelephonyManager)
getSystemService(”phone”);

10 String sim = tm.getSimSerialNumber();

11 dt.set(sim);
12

13 SmsManager sms = SmsManager.getDefault();
14 String sg = dt.get();
15

16 sms.sendTextMessage(”+123”,null,sg,null,null);
17 }
18 }

Constraints Set-based solution New constraints✄✂ �✁S(secret) = {poly}
thisget ✄ secret <: retget

✄✂ �✁S(retget) = {poly, safe} thisget <: retget

p <: thisset ✄ secret
✄✂ �✁S(p) = {tainted, poly} p <: thissecret

✄✂ �✁S(dt) = {tainted, poly, safe}

q10 ✄ tainted <: sim
✄✂ �✁S(sim) = {tainted}

sim <: q11 ✄ p sim <: dt

dt = q11 ✄ thisset
✄✂ �✁S(thisset) = {tainted, poly}

dt <: q14 ✄ thisget
✄✂ �✁S(thisget) = {poly, safe}

q14 ✄ retget <: sg dt <: sg
✄✂ �✁TYPE ERROR!

sg <: q16 ✄ safe
✄✂ �✁S(sg) = {safe}

Figure 5: FieldSensitivity3 example refactored from DroidBench. The frame boxes beside each statement show
the corresponding constraints the statement generates. We omitted uninteresting constraints. The oval
boxes show propagation during the set-based solution. 16 forces sg to be {safe}, then 14 forces retget to be
{poly, safe} and then 3 forces thisget to be {poly, safe} and secret to be {poly} (recall that fields are initialized to
{tainted, poly}, Sect. 3.2.1). 10 forces sim to be {tainted}, which in turn forces the parameters p and thisset to be
{tainted, poly}. There are no type errors in the initial set-based solution. The red frame boxes in the fourth
column (New constraints) show the constraints due to SummarySolver. Since field secret is poly, constraint
thisget ✄ secret <: retget leads to method summary constraint thisget <: retget, which in turn leads to dt <: sg due to
the call at 14. Similarly, p <: thisset ✄ secret leads to p <: thisset, which in turn leads to sim <: dt due to the call
at 11. Since sim is {tainted} and sg is {safe}, these constraints cause a TYPE ERROR, detecting the leak.

DroidInfer is fully context-sensitive in the call-transmitted
dependences (i.e., it uses infinitely deep context). It approxi-
mates in the field-transmitted dependences by defaulting to
field insensitivity in some cases (see [27] for details). DroidIn-
fer remains precise for two reasons: (1) Android apps rarely
trigger default to field insensitivity, and (2) even when they
do trigger default, CFL-Explain (described in the following
section) restores fields sensitivity.

3.2.3 Example
Let us consider the FieldSensitivity3 example refactored

from DroidBench [7] in Fig. 5. The return of Telephony-
Manager.getSimSerialNumber (line 10) is a source and the
parameter msg of SmsManager.sendTextMessage (line 16) is
a sink. The serial number of the SIM card is obtained and
stored into a Data object. Later, it is retrieved from the Data
object and sent out through an SMS message without user
consent. Fig. 5 demonstrates the analysis.

4. EXPLAINING TYPE ERRORS
Type inference produces type errors whenever there may

be flow from a source to a sink. Unfortunately, type errors
by themselves are rarely useful. For example, DroidInfer
produces the following type error at Statement 10 in Fig. 5:

q10 ✄ retgetSimSerialNumber{tainted} <: sim{safe}

meaning that the right-hand-side of the call assignment is
tainted while the left-hand-side is inferred safe. The challenge
is to map each type error into a concise and intuitive source-
sink path that explains the error.

In recent work [27], we studied the connection between
DFlow/DroidInfer and CFL-reachability [33, 6]. The key
idea is that the type constraints in Fig. 3 correspond to edges
in an annotated dependence graph, and that type inference
amounts to CFL-reachability computation over the graph.

Field access constraints correspond to field-annotated edges
(those constraints account for structure-transmitted depen-
dences in Reps’ terminology [34]). In the example in Fig. 5,
the field read return this.secret and its DFlow constraint
thisget ✄ secret <: retget correspond to edge

thisget
]secret→ retget

As it is standard in CFL-reachability, the open bracket [f
denotes a write to field f, and the close bracket ]f denotes
a read of f. Similarly, callsite constraints correspond to
callsite-annotated edges (those account for call-transmitted
dependences). In the example in Fig. 5, callsite 14 gives rise
to the following constraints:

dt <: q14 ✄ thisget q14 ✄ retget <: sg

which correspond to the following edges:

dt
(14→ thisget retget

)14→ sg

Again standard in CFL-reachabililty, the open parenthesis
(i denotes a call at callsite i, and the closed parenthesis )i
denotes a return at callsite i.

The constraints in Fig. 5 give rise to source-sink path

source → sim
(11→ p

[secret→ thisset
)11→ dt

(14→ thisget
]secret→ ret

)14→ sg → sink

which gives an intuitive explanation of the type error at
the beginning of this section: the source flows into local
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variable sim, which in turn flows to formal parameter p at
callsite 11, where in turn p is written into field secret of this,
etc. Perhaps the only unintuitive part is the inverse edge

thisset
)11→ dt (naturally, the flow at callsite 11 is from dt to

thisset). This edge is due to the mutation of thisset, which
amounts to a return from set at 11.
Let L(F ) denote the context-free language of balanced

open and closed brackets, and let L(C) denote the analogous
language of balanced open and closed parentheses. For ex-
ample, string [f ]f [g ]g is in L(F ) but [f ]g is not in L(F ). For
precise treatment, we refer the interested reader to [27]. A
feasible source-sink path is a path where the field string be-
longs to L(F ) and the call string belongs to L(C). The above
path is feasible because its field string [secret ]secret ∈ L(F ) and
its call string (11 )11 (14 )14 ∈ L(C). Our goal is to map each
type error to one or more feasible source-sink paths.

We run DroidInfer with the option that pushes type errors
towards sources. (This can be done with a prioritization of
the constraints in SummarySolver in Fig. 4.) The result is
that when DroidInfer terminates, the safe sinks have affected
the set-based solution of each variable that flows to a sink.
More precisely, if x flows to a sink, then tainted /∈ S(x).
Thus, we can construct the dependency graph from the
constraints for program statements, omitting all nodes whose
set-based solution contains tainted. The resulting graph
can be viewed as a backward slice that excludes the parts
of the program unaffected by the sinks. This significantly
reduces the size of the dependency graph and renders CFL-
reachability reasoning practical.

For each type error, we run CFL-explain, which prints fea-
sible paths from the source at the type error, to all reachable
sinks. CFL-Explain, a breadth-first-search (BFS) augmented
with CFL-reachability, is described in detail in Fig. 6. Note
that one must restrict the keys of map M to ensure termi-
nation. Currently we distinguish keys by the last two open
parentheses and the last two open brackets. This means
that if CFL-Explain has recorded in M a path to x with a
call string, say, that ends at (i (j , and it later arrives at a
different path to x, whose call string also ends at (i (j , the
latter path will not be recorded.

Continuing with the example in Fig. 5, CFL-Explain takes
as input sim, and produces the source-sink path:

sim
(11→ p

[secret→ thisset
)11→ dt

(14→ thisget
]secret→ ret

)14→ sg → sink

Type inference and CFL-reachability inherently provide
a data-flow guarantee but lack a control-flow guarantee. In
other words, in order for the flow from source to sink to
happen, control must reach the statements on the path in
the particular order specified by the path. But does control
reach the path? DroidInfer takes as input the entire APK
and infers types and source-sink paths across the entire APK,
even though some classes and methods may be unreachable.

To provide a (degree of) control-flow guarantee, we incor-
porate a conservative call graph. Concretely, line 9 in Fig. 6
ensures that the target node m appears in a method, which
is live in the call graph CG .

CFL-Explain can refute a type error reported by DroidInfer
for one of two reasons: 1) one or more methods on the path
from source to sink is unreachable on the call graph and 2)
the type error is a false positive due to field insensitivity
(see [27]), and CFL-Explain cannot confirm a feasible path.

1: procedure CFL-Explain
2: Add �start, �, �� to Q
3: Add �start, �, �� → [] to M
4: while Q is not empty do
5: dequeue next node �n, f, c� from Q
6: if n is a sink node then
7: print the path in M associated with �n, f, c�
8: end if
9: for each edge e = �n,m, f �, c�� s.t. Method(m) ∈ CG do
10: Let p be the path in M associated with �n, f, c�
11: Let p� be the path formed by appending e to p
12: if f+f �∈L(F ) ∧ c+c�∈L(C) ∧ �m, f+f �, c+c�� /∈M then
13: Add �m, f+f �, c+c�� → p� to M
14: Add �m, f+f �, c+c�� to Q
15: end if
16: end for
17: end while
18: end procedure

Figure 6: CFL-Explain is a BFS augmented with
CFL-reachability. M maps graph nodes n, aug-
mented with field-access strings f ∈ L(F ) and call
strings c ∈ L(C), to paths in the graph. f � is a
field write [f , a field read ]f or �. Similarly, c� is
(i, )i or �. For each edge, f � or c� is empty (e.g.,
e = (thisget, ret, ]secret, �)). CG is a precomputed call
graph. Method(m) gives the enclosing method of m.

5. ANDROID-SPECIFIC FEATURES
In this section, we discuss our techniques for handling

Android-specific features, including libraries, multiple entry
points and callbacks, and inter-component communication.

5.1 Libraries
Libraries are ubiquitous in Android apps. An effective

analysis should keep track of flows through library method
calls. Unfortunately, analyzing the Android library is a signif-
icant challenge. Computing safe summaries for the Android
library is an open problem (to the best of our knowledge).
Analyzing library calls on-demand, i.e., using some form of
reachability analysis faces challenges due to callbacks and
reflection, which are pervasive in Android. The most popular
solution appears to be manual summaries for common library
methods [20, 7], which is clearly unsatisfying.
DroidInfer inserts annotations (type qualifiers) into the

Android library for sources (e.g. location access, phone state)
and for sinks (e.g., Internet access) by using the Stub Gener-
ation Tool and the Annotation File Utility from the Checker
Framework [31]. DroidInfer uses conservative defaults for
all unknown library methods. For any unanalyzed library
method m, it assumes the typing poly, poly → poly. This
typing conservatively propagates a tainted receiver/argument
to the left-hand side of the call assignment. Similarly, it
propagates a safe left-hand-side to the receiver/arguments.
Consider the following code snippet:

1 public class MyListener implements LocationListener {
2 @Override
3 public void onLocationChanged(Location loc){//source
4 double lat = loc.getLatitude();
5 Log.d(”History”, ”Latitude: ”+ lat); // sink
6 }
7 }

LocationListener.onLocationChanged(tainted Location l) is a
callback method. Parameter l is a tainted source that must
propagate throughout the overriding user-defined method
MyListener.onLocationChanged(Location loc). The method
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1 public LocationLeak2 extends Activity implements
LocationListener {

2 private double latitude;
3 protected void onResume() {
4 double d = this.latitude;
5 Log.d(”Latitude”, ”Latitude: ”+ d); // sink
6 }
7 public void onLocationChanged(Location loc) {
8 double lat = loc.getLatitude(); // loc is a source
9 this.latitude = lat;

10 }
11 }

Figure 7: LocationLeak2 refactored from DroidBench,
highlights DroidInfer’s novel handling of callbacks.

overriding constraints (Sect. 3) lead to:

typeof (MyListener.onLocationChanged(Location loc))
<:

typeof (LocationListener.onLocationChanged(tainted Location l))

This entails l <: loc, forcing loc to be tainted as well.
DroidInfer types library method Location.getLatitude()
poly double getLatitude(poly Location this)

and creates the following constraints at Statement 4:

loc <: q4 ✄ poly q4 ✄ poly <: lat

Because loc is tainted, the callsite context q4 is inferred as
tainted. Consequently, lat is inferred as tainted as well, which
leads to a type error because Statement 5 requires a safe
argument. (Here the parameter msg of Log.d(String tag,
String msg) is a safe sink.)
We apply these conservative defaults to the Java and

Android libraries. We can apply these defaults to any third-
party library we do not wish to analyze.

5.2 Multiple Entry Points and Callbacks
DroidInfer is type-based and modular. Therefore, it can

analyze any given set of classes. However, the analysis of an
Android app is different from the analysis of an open library
and it requires special consideration.
Roughly speaking, we need to capture the “connections”

among callback methods, or DroidInfer might miss privacy
leaks through fields. Consider the LocationLeak2 example
refactored from DroidBench in Fig. 7. The tainted lat of
the current location, obtained in callback method onLoca-
tionChanged, flows through field latitude and reaches the
safe parameter of Log.d in another callback method, on-
Resume. Local variables lat and d are tainted and safe,
respectively. If DroidInfer analyzed the app as a stan-
dard open library (e.g., as in [17]), it would infer this of
onResume as safe. This is because of (tread) constraint
thisonResume ✄ latitude <: d where S(latitude) = {tainted, poly}
and S(d) = {safe}. Due to this constraint, S(latitude) would
be updated to {poly}. Further, DroidInfer would infer this of
onLocationChanged as tainted, because of (twrite) constraint
lat <: thisonLocationChanged ✄ latitude where S(lat) = {tainted}.
The inferred typing would type check and the leak through
field latitude would be missed.
In Android, the Activity, as well as other component ob-

jects, are instantiated by the Android framework. DroidInfer
handles the implicit instantiation by creating equality con-
straints for all pairs of this parameters of callback methods in
the same class. Intuitively, the constraints “connect” callback
methods of implicitly instantiated objects.

1 public class SmsReceiver extends BroadcastReceiver {
2 public void onReceive(Context c, Intent i) {
3 Bundle bundle = intent.getExtras();
4 Object[] pdusObj = (Object[]) bundle.get(”pdus”);
5 StringBuilder sb = new StringBuilder();
6 for (int i = 0; i < pdusObj.length; i++) {
7 SmsMessage msg = SmsMessage.createFromPdu((byte

[]) pdusObj[i]); // source
8 String body = msg.getDisplayMessageBody();
9 sb.append(body);

10 }
11 Intent it = new Intent(c, TaskService.class);
12 it.putExtra(”data”, sb.toString());
13 startService(i);
14 }
15 }
16 public class TaskService extends Service {
17 public void onStart(Intent it, int d) {
18 String body = it.getSerializableExtra(”data”);
19 List list = new LinkedList();
20 list.add(body);
21 HttpClient client = ....getHttpClient();
22 HttpPost post = new HttpPost();
23 post.setURI(URI.create(”http://103.30.7.178/getMotion.

htm”));
24 Entity e = new UrlEncodedFormEntity(list, ”UTF8”);
25 post.setEntity(e); // sink
26 client.execute(post);
27 }
28 }

Figure 8: SMS message stealing in Fakedaum. The
SMS message is intercepted in SmsReceiver and passed
to TaskService via Intent. Finally, the message is sent
out to the Internet using HTTP post method, re-
sulting in a message leak.

In the LocationLeak2 example, the inference creates an
equality constraint for the this parameters of onResume and
onLocationChanged:

thisonResume = thisonLocationChanged

This causes a type error, thus detecting the privacy leak.

5.3 Inter-Component Communication (ICC)
Android components (activity, service, broadcast receiver

and content provider) interact through ICC objects — mainly
Intents. There are two forms of Intent: 1) Explicit Intents
have an explicit target component — the exact target class of
the Intent is specified, and 2) Implicit Intents do not have
a target component, but they include enough information
for the system to implicitly determine the target component.

Consider the example refactored from a real malware app,
Fakedaum3 in Fig. 8, where the return value of SmsMes-
sage.createFromPdu is a source and the Http request is a
sink. The broadcast receiver SmsReceiver intercepts the SMS
messages, then puts the messages into an Intent and starts
the background service TaskService with the Intent. Then
TaskService sends the messages to the Internet without user
consent. We must capture the communication between broad-
cast receiver SmsReceiver and background service TaskService.
We improve analysis precision in the presence of ICC

through Intents. For an explicit Intent whose target class is
specified by a final or constant string, DroidInfer connects

3http://contagiominidump.blogspot.com/2013/11/
fakedaum-vmvol-android-infostealer.html
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Tool Name AppScan Fortify FlowDroid DroidInfer
Source SCA

Sum, Precision and Recall–excluding implicit flows√
14 17 26 27

× 5 4 4 7
� 14 11 2 1
Precision 74% 81% 86% 79%
Recall 50% 61% 93% 96%
F-measure 0.60 0.70 0.89 0.87

Figure 9: Comparison on DroidBench 1.0 [7].
√

=
correct warning (higher is better), × = false warning
(lower is better), � = missed flow (lower is better),
Precision p =

√
/(
√

+ ×), Recall r =
√
/(
√

+ �), F-
measure = 2pr/(p+ r).

the data carried by the Intent using placeholders. DroidInfer
replaces the Intent with a “typed” Intent at both the sender
and the receiver components. In addition, each putExtra and
getExtra are treated as writing and reading a field in the
“typed” Intent, respectively. Since the target class of Intent it
in Fig. 8 (line 11) is specified by constant TaskService.class,
DroidInfer transforms the program into:

10 ...
11 TaskService Intent it = new TaskService Intent();
12 TaskService Intent.data = sb.toString();
13 ...
18 String body = TaskService Intent.data;

As a result, the intercepted message is connected to the post
data via placeholder data of TaskService Intent. The leak is
captured by DroidInfer.
DroidInfer makes the worst-case assumption for explicit

Intents whose target class is not specified by a constant
string, as well as for implicit Intents carrying sensitive data,
as their content can be intercepted by any, possibly malicious,
component. This is achieved by annotating as safe the Intent
parameter of library methods that start new components,
such as startActivity and startService. For example, if it2 refers
to an implicit Intent carrying location information, then there
is a type error due to statement startSerivce(it2) because
startSerivce requires a safe argument, but it2 is tainted.

6. EMPIRICAL RESULTS
We have built a type inference and checking framework

and we have instantiated the framework with several type
systems and their corresponding inferences. Initially, the
framework had one front-end, built on top of the Checker
Framework [31] (CF). CF takes as input the Java source code,
which unfortunately is not available for most Android apps, as
they are usually delivered as Android Package Files (APKs).
Therefore, we extended our type inference framework by
building an Android constraint generation front-end, based
on Soot [37] and Dexpler [2]. It is worth noting that we came
upon DFlow and DroidInfer as instances of our framework
and they proved very effective.

The Android front-end takes as input the Jimple files trans-
formed by Soot and Dexpler and outputs the constraints
generated according to the typing rules in Sect. 3. Next,
the generated constraints along with the annotated libraries
where sources and sinks are defined, are supplied to the type
inference engine, which computes the set-based solution then
either extracts a valid typing or reports type errors for the
analyzed program. All sources and sinks are listed in the

technical report [16]. They are the union of the sources and
sinks of DroidBench 1.0 [7, 1] and the network sinks of Con-
tagio [25]. The sources are various phone state and location.
The sinks include the expected log sinks and the following
Internet sinks: WebView.loadUrl, URL.openConnection, and
Http request. The sinks include Intents, which are necessary
for the flows in DroidBench 1.0. The type inference frame-
work, including DFlow and DroidInfer, is publicly available
at http://code.google.com/p/type-inference/.

We build 0-CFA call graphs using WALA4. Recall that we
use the set of reachable methods from the call graph to check
that the finding of DroidInfer occurs entirely within those
methods (Sect. 4). We use support in WALA, contributed
by SCanDroid[8], to build call graphs of APKs.

All experiments run on a server with IntelR� XeonR� CPU
X3460 @2.80GHz and 8 GB RAM. The maximal heap size
is set to 2 GB. The software environment consists of Oracle
JDK 1.6 and the Soot 2.5.0 nightly build.

6.1 Hypotheses
We evaluate the DroidInfer system along three hypotheses:

(H1) High recall and precision. DroidInfer misses few
true flows and reports few false positive flows.
(H2) Network flows. DroidInfer detects leaks of phone or
location data to the network.
(H3) Scalability. DroidInfer scales to large apps.

We run DroidInfer on three sets of apps: 1) DroidBench
1.0 [7], 2) 22 apps from the Contagio website [25], known to
contain leaks, and 3) 144 popular apps from the Google Play
Store, including the top free 30 apps at the time of writing.

6.2 DroidBench
We run DroidInfer on DroidBench 1.0, which is a suit of

39 Android apps designed by Fritz et al. [7, 1]. DroidBench
exercises many difficult flows, including flows through fields
and method calls, as well as Android-specific flows. Droid-
Bench is the standard evaluating taint analyses for Android.
We compare with three other taint analysis tools – AppScan
Source [18], Fortify SCA [12], and FlowDroid [7, 1], using the
results presented by Fritz et al. [7]. Fig. 9 summarizes the
comparison. DroidInfer outperforms AppScan Source and
Fortify SCA, which miss substantial amount of flows. The low
recall contributes to the slightly higher precision reported
by Fortify SCA. FlowDroid is slightly more precise than
DroidInfer because it uses a flow-sensitive analysis. Droid-
Bench tests for flow sensitivity and our analysis, which is
flow-insensitive, misses those tests. Overall, the F-measures
for FlowDroid and DroidInfer are essentially the same. This
strongly supports hypothesis H1.

6.3 Contagio
We analyzed all 22 apps tagged as “infostealer” on the

contagio website [25]. DroidInfer detects that 19 out of the
22 apps send out phone state (e.g. DeviceId, SimSerialNum-
ber, and PhoneNumber), SMS messages, and/or location
information through HTTP or text messages, or write into a
socket. The list of apps and detailed leaks can be found in
the technical report [16]. DroidInfer detects no leaks for the
remaining 3 apps. For two of the APK files, FakePlay and
Repane, Soot/Dexpler did not generate Jimple files and
DroidInfer in turn did not generate constraints. DroidInfer
reports zero type error on Phospy. (Phospy appears to

4http://wala.sourceforge.net
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Figure 10: A source-sink path in Fiksu. When a flow
is triggered by a library call, CFL-Explain labels the
edge with the corresponding library method. When
types change, e.g., due to library calls, we show the
new type at the target (e.g., List r5). We keep the
identifiers exactly as they appear in the Jimple code.
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Figure 11: Results.

steal jpg and mp4 files, and such sources are not included
in DroidInfer at this point). All type errors on these apps
are explained and there are no false positives. These results
strongly support hypotheses H1 and H2.

6.4 Google Play Store
We analyze 144 free Android apps from the official Google

Play Store. These include the top 30 free apps (as of Jan
5th 2015, the time of writing) as well as other popular apps
from the Editor’s Choice list, and cover at least 24 categories.
DroidInfer throws an Internal error in Dexpler on 1 app and
an Out-of-memory error on 5 apps. (Recall that the max
heap size is 2 GB.) It analyzes all other 138 apps successfully.

6.4.1 Results
DroidInfer identifies sources and sinks in 111 apps and

reports 632 type errors over 88 apps. Two authors of the
paper inspected all type errors with CFL-Explain.

Fig. 11 summarizes our results. Of the 632, 161 type errors
are refuted by CFL-Explain. Almost all of the refutations
are due to the call graph. The false positive rate is 15.7%,
which is well within the accepted bounds. (The reason false
positives happen will be explained shortly.) 113 true flows
(29%), spanning 40 apps, are network flows (i.e., Location
or DeviceId flows to the Internet). The remaining flows are
flows of Location or DeviceId to Logs and to a lesser extent
to Intent. This strongly supports hypothesis H2.

DroidInfer takes 139 seconds per app on average. It takes
less than 3 minutes on 99 of the 138 apps, between 3 and 5
minutes on 31 apps, and between 5 and 8 minutes on 6 apps.
The 2 outliers run in 18 and 19 minutes. The call graphs are
built in, on average, 90 seconds per APK, with a range of
6s to 373s. CFL-Explain prints source-sink paths instantly.
This timings strongly support hypothesis H3.

In contrast to the FlowDroid researchers [1], who report

no network flows, we uncover many network flows. Almost a
third of all apps and almost a half of the apps with errors
collect sensitive data and send this data over the network.
In numerous cases, the DeviceId is sent over the network as
part of the URL string. The detailed list of apps and leaks
can be found in the technical report [16].
We show one representative network flow. DroidInfer

reports the following type error in the Fiksu tracking library
(com.fiksu.asotracking.*) included in the Zillow app:

qi ✄ retgetDeviceId{tainted} <: r2{safe}
The source-sink path reported by CFL-Explain is shown
in Fig. 10. Source DeviceId is returned from method get-
DeviceId into method buildUrl, which forms a URL string
“https://...&deviceId=...&uiud=...”. buildUrl adds this string
to a list of saved URLs; subsequently it iterates over the
list, retrieves each URL string and sends the string as an
argument to method doUpload. Other examples of complex
flows can be found in the technical report [16].
Similarly to the FlowDroid researchers [1], we uncover

many flows of DeviceId and Location to logs. In one inter-
esting case, the Whatsapp app dumps the SMS message
body into the log when a certain IOException occurs. In
the majority of cases the logs appear for debugging purposes
(to the best of our understanding.) It is unclear why apps
log so much sensitive info, usually in clear text, given that
malicious apps may read the logs (until Android 4.0, any app
that held the READ LOGS permission could read the logs).
The reader may wonder why false positives occur given

that CFL-Explain filters out infeasible paths. Recall that
the DroidInfer system does not analyze libraries. Thus,
constraints due to library calls result in “local” edges by
CFL-Explain, that is, edges connecting two local variables,
with no field or call annotations. Edge r4 → r5 in Fig. 10,
constructed from DroidInfer constraint r4 <: r5 is an example
of such local edge. These edges subsume the field accesses
and method calls that happen inside the library.
In rare cases, these edges cause infeasible paths. The

most common case writes sensitive data (e.g., DeviceId)
into a field, then calls a library method on the object: e.g.,

source → r1
[f→ UserActivity : r2

getPackageName→ sink . We assume
that the library method does not access the sensitive data
stored in fields, and count such cases as false positives.
We conclude this section with a brief discussion of the

usability of the system. DroidInfer is completely automatic.
CFL-Explain requires users to enter an identifier and examine
the paths, because, as discussed above, library calls may give
rise to false positive paths. In our experience, it takes less
than 1 minute to vet the flow paths for a given type error,
2 minutes in rare cases. The tool was used successfully by
two of the authors of this paper, as well as an undergraduate
research assistant with no knowledge of program analysis.

6.4.2 Runtime Results
To gauge the usefulness of the static results, we run 10

random apps and collect and analyze their logs using Android
Device Monitor. There are 76 type errors reported as true
flows across the 10 apps. Despite short runs, we covered 14
type errors, or almost 20%. These errors span 8 apps and
expose flows of DeviceId to both logs and the network. The
flows are obvious tracking, as in Fig. 10, which is covered.
Fig. 12 summarizes the results. Of the 62 type errors we

did not cover, 13 are impossible to cover with our technique.
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Figure 12: Runtime results.

For example, several type errors are flows to the network.
However, there is no log around the network call and we
cannot confirm the call.
The analysis reports a substantial number of type errors

that reveal true, dangerous flows. In the same time, it reports
many “difficult” errors, i.e., type errors that are likely true
flows, but are difficult to trigger with runtime analysis. A lot
of the uncovered type errors are in ad libraries that do not
load during our runs. Yet we found it impossible to trigger
a specific ad library. For example, in Cut the Rope 2 we
observed ads from AdMarvel and other libraries in unrecorded
runs. (Our tool reported several type errors in AdMarvel.)
Unfortunately, when recording the logs, we observed ads only
from Unity3D until the app stopped serving ads altogether.

6.4.3 Comparison with FlowDroid
We ran FlowDroid [1] on the top 30 free apps from the

Google Play Store with max heap size set to 6 GB. FlowDroid
threw an Out-of-memory error on 28 of the apps (we con-
firmed with the developers that FlowDroid indeed requires
more than 6 GB of memory5). In contrast, DroidInfer runs
with a max heap size of 2 GB and succeeds on 28 of the 30
apps. This result strongly supports hypothesis H3.
FlowDroid succeeds on 50 of the remaining 114 apps. It

reports more than 4000 flows over the 50 apps. We examined
a random 21 apps and compared the results with DroidInfer.
FlowDroid reports thousands of flows from Bundle, Intent
and Context, as it is overly-conservative in its handling of
inter-process communication. In only 6 apps does FlowDroid
report “classical” flows: there are 4 log flows (DeviceId or
Location to log) and 2 network flows (DeviceId or Location
to Internet). In contrast, DroidInfer reports only “classical”
flows, 14 network, in all 21 apps. These results are consistent
with Artz et al. [1]. It is unclear why FlowDroid reports so
few log flows and virtually no network flows — like DroidInfer,
it does specify DeviceId and Location as sources, and logs,
URL.openConnection and Http request as sinks.

7. RELATED WORK
There is a large body of work on Android malware analysis,

both dynamic and static. We focus the discussion on static
analyses, excluding FlowDroid. LeakMiner [42] is a points-to
based static analysis for Android. It models the Android
lifecycle to handle callback methods. However, LeakMiner is
context-insensitive which may lead to false positives. It is
unclear whether LeakMiner supports ICC. Cassandra [23]
is a type-based information- flow analysis for Android apps.
It is not evaluated on real-world apps. SCANDAL [20] is a
static analyzer that detects privacy leaks in Android apps. It
directly processes Dalvik bytecode. SCANDAL is limited by

5Eric Bodden: personal communication.

high false positive rate — the average false positive rate is
about 55%, primarily due to the unknown paths, which make
up more than half of the total paths [20]. AndroidLeaks [9]
finds potential leaks of private information in Android apps.
It uses WALA to construct a context-sensitive System De-
pendence Graph (SDG) and a context-insensitive overlay
for tracking heap dependencies in the SDG. CHEX [24] can
automatically vet Android apps for component hijacking
vulnerabilities. It models the vulnerabilities from a data-
flow analysis perspective and detects possible hijack-enabling
flows and data leakage. Unfortunately, these tools are not
publicly available and we cannot compare with DroidInfer.
Fritz et al. have contacted the authors of these tools, but
still, they were unable to compare due to various reasons [7].

SCanDroid [8] focuses on ICC. It formalizes the data flows
through and across components in a core calculus. Epicc [30]
discovers ICC for Android apps by identifying a specification
for every ICC source and sink, including the ICC Intent
action, data type, category, etc. We plan to integrate Epicc
in DroidInfer to provide more channels for privacy leaks.
In previous work we built SFlow [15], a type-based taint

analysis for Java web applications, which can also analyze
Java source of Android apps. Although we build upon this
work, this paper has several substantial contributions. First,
we interpret type errors in terms of CFL-reachability, which
is a major step towards usability of type-based tools. Sec-
ond, we incorporate control-flow guarantees via call graphs;
SFlow provides no such guarantees, which means that many
type errors may be unreachable. Another key difference is
that SFlow uses the receiver, while DFlow uses the callsite
context at method calls. Thus, DFlow is more precise than
SFlow and accepts more programs (see [16] for details). In
addition, SFlowInfer, the inference tool of SFlow, only works
on Java source, which is not available for most Android
apps. DroidInfer works on both Java source and Android
APKs and it can analyze any real-world Android app. The
extensive evaluation on Google Play Store apps is a major
contribution over our previous work. Ernst et al. [5] present
a type-based taint analysis system similar to ours. However,
they target source code and therefore do not analyze Google
Play Store apps. Furthermore, they require user annotations,
while DroidInfer requires no user annotations. Earlier work
on type-based taint analysis comes from Shankar et al. [36]
who present a type system for detecting string format vulner-
abilities in C. Classical work on type-based information flow
control includes the type systems by Volpano et al. [38] and
Myers [28]. DFlow and DroidInfer are substantially simpler
and thus more practical.

8. CONCLUSION
We have presented DroidInfer a system for detecting pri-

vacy leaks in Android apps. Empirical evaluation has shown
that our approach is effective.
One limitation of our approach is that CFL-Explain may

be difficult to use by non-experts on static analysis. Further-
more, while CFL-Explain reduces imprecision (by reversing
field insensitivity), it may introduce unsoundness. We will
investigate approaches that mitigate these limitations.
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