
EcoDroid: An Approach for Energy-Based Ranking
of Android Apps

Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, Paul Ammann
Department of Computer Science

George Mason University

Fairfax, Virginia, USA

{rjabbarv, asadeghi, jgarci40, smalek, pammann}@gmu.edu

Abstract—The ever increasing complexity of mobile apps
comes with a higher energy cost, creating an inconvenience for
users on batter-constrained mobile devices. At the same time,
due to the meteoric rise of the numbers apps provisioned on
app repositories, there are often multiple apps from the same
category (e.g., weather, dictionary) that provide similar features.
In spite of similar functionality, the apps may present very
different energy costs, due to the choices made in their design and
construction. Given apps with similar features, users would prefer
an app with the least energy cost. However, app repositories
are currently lacking information about relative energy cost of
apps in a given category, forcing the users to blindly choose
an app for installation without a clear understanding of its
energy implications. To address this issue, we have developed
EcoDroid, an approach that ranks apps from the same category
based on their energy consumption. To that end, EcoDroid uses
both static and dynamic analyses to estimate energy consumption
of apps in the same category and rank them accordingly. Our
initial experiments have demonstrated the ability of EcoDroid
in accurately ranking the energy cost of multiple apps from a
particular category.

I. INTRODUCTION

Android has become one of the dominant mobile platforms.

Android app repositories, such as Google Play [3], have

created a fundamental shift in the way software is delivered

to consumers, with thousands of apps added and updated on

a daily basis. Recent studies [11], [16] have shown energy

consumption of apps to be a major concern for end users;

however, app repositories provide no, or very limited, infor-

mation as to the energy efficiency of apps provisioned on these

repositories.

Given the proliferation of apps, it is often the case that many

apps provide similar features, but with different implementa-

tion choices, thereby impacting their energy consumption. For

instance, Google Play hosts dozens of highly rated weather
apps, providing almost identical features, as depicted in Fig-

ure 1. These apps share highly similar features and ratings,

but do not provide any readily available information as to their

energy costs to help the user make an informed decision.

To make this information available for an entire app repos-

itory, a systematic approach is needed for repository main-

tainers or app developers to automatically produce accurate
rankings of similar apps in terms of their energy consumption.

Energy ranking of two apps α and β is accurate if α is ranked

lower than β only when the actual energy cost of α is lower

than β.

Accurate energy ranking of apps is challenging, as it re-

quires estimating the representative usage of apps by users.

Each app in a category must be exercised in a similar, uniform

manner, to avoid gross over- or underestimation of an app’s

actual energy consumption. In addition, to accurately obtain

energy rankings, an approach must account for all behaviors

of an app that constitute significant energy consumption. An-

droid API methods represent one significant source of energy

consumption. These methods typically constitute 80% of an

entire app’s energy consumption [14]. Without exercising or

representing these methods, the approach significantly under-

estimates the energy consumption of an app. Moreover, certain

behaviors recur during an app’s execution (e.g., due to loops,

callbacks, scheduling mechanisms, etc.). Consequently, the

repeated occurrence of such behaviors must be characterized

appropriately.

To address these issues, we introduce EcoDroid, a novel

approach for estimating and ranking the energy consump-

tion of Android apps using a combination of dynamic and

static analyses. EcoDroid uses automatically generated test-

cases to execute apps and estimates their energy cost based

on their API usage. These estimates take into account the

energy cost of the paths executed by test-cases. Comparing

energy consumption based on covered statements alone may

introduce significant error due to the varying, and possibly

low, coverage of generated tests using existing Android test

automation tools. Moreover, the executed paths from generated

test-cases may not cover energy-greedy behaviors of an app

Fig. 1: A snapshot from Google Play showing suggested apps

resulting from a “Weather” keyword search.

2015 IEEE/ACM 4th International Workshop on Green and Sustainable Software

978-1-4673-7049-3/15 $31.00 © 2015 IEEE

DOI 10.1109/GREENS.2015.9

8

Fig. 2: EcoDroid Framework.

that have a substantial impact on its energy consumption.

To address this limitation, EcoDroid leverages a novel static

analysis to estimate the energy consumption of parts of an

app that automatically generated tests do not execute. EcoDroid

combines the static and dynamic results to produce an energy-

consumption score for the app that is then used to rank

the app. App repository maintainers would utilize EcoDroid’s

rankings to aid end users in deciding which apps in a category

(e.g., weather or news reader) meets their energy-consumption

needs. App developers would utilize EcoDroid energy score to

evaluate and improve the efficiency of their apps

We demonstrate EcoDroid’s accuracy through a pilot study

on a set of apps from the dictionary category. Our study shows

that the ranking produced by EcoDroid’s combined use of static

and dynamic analysis highly corresponds to the ground-truth

ranking, which measures the actual energy consumption of

apps. Furthermore, we demonstrate that EcoDroid’s ranking

is significantly closer to the ground-truth ranking than the

ranking produced by an estimate based on dynamic analysis

alone.

The remainder of this paper is organized as follows. Sec-

tion II explains research challenges that arise when measuring

and estimating the energy consumption of mobile apps. Sec-

tion III describes the details of the approach. Section IV- V

present the implementation and evaluation of EcoDroid. The

paper then outlines related research and concludes with a

discussion of future work.

II. RESEARCH CHALLENGES

Measuring and estimating the typical energy consumption

of an app entail determining its representative use-cases. Such

use-cases can be provided by the app developers in the form

of manually constructed tests, recorded from users’ phone

logs over a sufficient period of time, or generated using test

automation tools. Unfortunately, very few apps in open-source

repositories provide test-cases, which are mostly limited to

unit tests and not representative of the app’s typical usage.

Similarly, collecting information about usage of apps from

users is challenged by the privacy issues (e.g., logging of

sensitive user data), as well as the overhead associated with

collection of data.

Most prior research has studied energy behavior of mo-

bile apps by manually utilizing and running apps several

times [10], [13], [14]. However, such a manual process is

neither systematic (e.g., may fail to exercise certain features

of the app), nor scalable for use on an entire repository of

apps. To address this issue, Li and colleagues [12] proposed

leveraging Monkey [5], a widely used Android test generation

tool, to automatically interact with apps and collect energy

measurements. Monkey is a command-line tool that generates

pseudo-random streams of user events such as clicks, touches,

or gestures, as well as a number of system-level events. Li

and colleagues considered statement coverage as a criterion to

measure the extent to which automatically generated tests are

representative of an app’s typical use-cases. However, several

issues arise with using statement coverage to represent typical

usage of an app for analyzing its energy consumption.

Statement coverage, even when particularly high, can sig-

nificantly misrepresent energy usage, because uncovered code

may have a substantial impact on the energy cost. Prior

research has shown that energy costs vary significantly across

bytecodes [9], lines of code [13], and system APIs [14]. A

test suite with high statement coverage may still not execute

code that utilizes energy-greedy API calls. For example, APIs

related to GUI and image manipulation tend to be particularly

energy greedy. To measure and estimate energy consumption

of an app, it is crucial to have tests that cover the energy-

greedy parts of code.

Statement coverage for energy estimation is further unable

to capture constructs involving statements that may execute

many times. Specifically, statement coverage does not take into

account statements that may execute in a loop or a recurring

callback (e.g., due to thread scheduling or setting alarms on

a mobile device). Mobile apps frequently utilize loops and

call backs, making them important factors to consider for

determining energy consumption of apps.

To overcome the limitations of statement coverage, we

propose a new coverage criterion that indicates the degree to

which energy-greedy statements of a program are tested. This

new coverage criterion discriminates among different energy-

greedy statements based on their energy cost and whether

they re-execute due to recurring constructs, such as loops and

callbacks.

Relying only on generated tests, even if they achieve high

code coverage, can bias the energy measurement toward the

executed statements. While dynamic analysis approaches, like

testing and profiling, provide energy-related information about

executed statements of an app, static analysis can be used

in tandem to determine energy behavior of the unexplored

statements. Prior research has leveraged program analysis to

track energy-related information during execution and map

9

them to executed paths in order to measure/estimate energy

consumption [10], [13]. To the best of our knowledge, no

previous work has used static analysis to estimate the energy

cost of the statements that are not covered by dynamic

analysis.
EcoDroid overcomes the aforementioned challenges by com-

bining static analysis with dynamic analysis in a complemen-

tary fashion to estimate the energy behavior of mobile apps.

The reminder of the paper describes our proposed approach

in detail.

III. APPROACH

The overall EcoDroid framework is shown in Figure 2.

EcoDroid consists of three main components: (1) Dynamic
Model Extractor (DME), which automatically generates ran-

dom tests and provides path information; (2) Static Model
Extractor (SME), which statically analyzes an app to obtain

a call graph annotated with energy cost estimates; and (3)

Analyzer, which combines information about executed paths

and energy estimates from the annotated call graph in order

to generate energy labels for each app.
We illustrate the manner in which EcoDroid computes the

energy cost estimation of an app, using the call graphs of two

hypothetical apps—app1 and app2—as depicted in Figure 3.

Each method in a call graph is annotated by a number

representing the estimated energy consumption of the method,

where greater values for a method indicate higher energy

consumption.

A. Dynamic Model Extractor
DME is responsible for interacting with apps in order to

generate test-cases and convert the test events (e.g., Android

Intent messages and GUI events) to path information, which

will be used later by Analyzer to estimate the energy consump-

tion of the apps. DME accepts Android app package archives

(APK) files as input and extracts the dynamic model of each

app to reason about its energy-consumption behavior.
The dynamic model is defined as a set of paths, P =

{p1, p2, ..., pm}, where m is the number of test-cases gen-

erated during app execution. The path pi is represented as

a sequence of app-method and Android API invocations

〈m1〈a11...1k〉,m2〈a21...2k〉, ...,mn〈an1...nk
〉〉, where mi indi-

cates invocation of the ith method and ai1...ik denotes a

sequence of Android APIs, ai1 to aik , called within method

mi. In the example shown in Figure 3, DME generates

a set of two paths for each app. For example, the dy-

namic model for app1 is P1 = {p1, p2} and p1 =
〈A〈aA1〉, C〈aC1〉, D〈aD1〉, G〈aG1〉〉. Each method presented

in p1 invokes one system API; however, our approach takes

into account multiple APIs executed in a single method.
To extract a dynamic model, we utilize Monkey [5], an

Android test-case generation tool, to run apps on Android

devices. In each run, Monkey generates random sequences of

user/system events, which correspond to executed paths in the

dynamic model. To obtain dynamic path information, we have

implemented a profiler module based on Xposed [6], which

logs each method invoked by events generated by Monkey.

Fig. 3: Call graph and executed paths of two Android apps.

B. Static Model Extractor

To estimate energy consumption of an app, SME first

extracts the app’s call graph (CG), which is a graph capturing

the different possible invocation sequences within an app. We

utilize Soot [15], a program analysis framework for Java, to

statically analyze an Android app and extract its CG. EcoDroid

annotates each CG node n (i.e., method in an Android app)

with a node score sn, which represents the estimated amount

of energy consumed at each node. This score depends on the

energy consumption of specific Android APIs invoked in n and

the manner in which those APIs are invoked (e.g., whether an

API is invoked in a loop). The precise energy consumption

of individual APIs can be measured using hardware-based

power monitors, such as Monsoon [4]. Linares-Vásquez et

al. [14] have empirically studied and measured the energy

consumption of Android APIs. Their results are used by

EcoDroid to determine energy consumption of an Android

API. Consequently, EcoDroid takes a list of such Android API

energy measurements as input. SME calculates node score as

follows:

sn = rn ×
mn∑

i=0

êi (1)

where rn denotes the number of paths in the CG through

which node n is reachable; mn is the number of Android

APIs used in the implementation of the method that node

n represents; and êi represents the energy consumption of

an Android API i. We motivate and explain the two key

components of sn—rn and êi—in the remainder of this

section.

A naive assumption in energy cost estimation is to score

each method n independently of the paths through which

it may be invoked. This assumption is problematic because

methods reachable along more paths in a CG are more likely to

contribute in the energy cost of the app than methods reachable

along fewer paths. To account for the energy effects of the

number of paths through which a method can be invoked, sn
includes the component rn. As shown in Figure 3, four paths

can pass through node G in app2’s CG; thus, rG = 4.

SME must discriminate CG nodes according to the APIs

they invoke such that two nodes with distinct sets of API

10

invocations are likely to obtain different scores. This distinc-

tion is captured in the model: A node that invokes APIs with

higher energy consumption has a greater value for
mn∑
i=0

êi,

compared to another node which calls less energy-greedy

APIs. In addition, Representing recurring executions of APIs

in a single statement is important for precise energy estimation.

For example, APIs executed inside of loops are likely to

contribute more to energy cost of an app than APIs executed

outside of loops.

Two types of repeated executions are key to accurate en-

ergy estimation: (1) iterations over a data structure, and (2)

services that continuously/periodically run, even if the app

is idle. While Java loop structures are used to implement

the former, Android provides services for scheduling repeated

tasks for the latter (e.g. the AlarmManager, LocationMan-

ager, and ScheduledExecutorService). For example, methods

of ScheduledExecutorService—which are used to create and

schedule a recurring task—have parameters that define inter-

vals between subsequent repeated executions. As shown in

Figure 4, an instance of ScheduledExecutorService is created

to execute a periodic action (i.e. receive updated weather data)

every 30 seconds.

To include repeated executions in the model, SME considers

an API i’s energy consumption as follows:

êi = ei × fi × c (2)

where ei is the pre-measured energy consumption of API i
given as an input; c denotes the number of times the API i is

expected to execute in a loop; and fi denotes the frequency

for which i is expected to execute when scheduled as part

of a repeated task. For c, SME extracts either (1) a constant

loop bound, if such a bound can be obtained statically, or (2)

if a loop bound cannot be determined statically, it assumes a

configurable number of iterations. fi is defined as fi =
ttce
T ,

where ttce is the average test-case execution time determined

by DME, and T is the time period between executions of i.
To calculate fi, EcoDroid first extracts the timing parameter

of the corresponding APIs. To that end, we consult Android

API documentation to specify the time-related parameters. For

instance, consider scheduleAtFixedRate(Runnable
command, long Delay, long period, TimeUnit
unit), the API method of ScheduledExecutorService in Fig-

ure 4. The third parameter, period, represents the duration

between successive executions for the associated service and

is used to determine the value of T . In Figure 4, ttce is

determined by DME to be 5 minutes and T is set to 30

seconds, resulting in fi = 10. Consequently, the energy cost

of all APIs called in the updateWeather method are multiplied

by a factor of 10, as they could be invoked at most 10 times

by ScheduledExecutorService during the 5-minute test-case

execution.

C. Analyzer

As depicted in Figure 2, Analyzer’s Score Calculator com-

putes (1) the dynamic cost, Dscore, from a set of executed

Fig. 4: Parts of the code corresponding to the call graph of

app 1 shown in Figure 3.

paths obtained from DME, and (2) the coverage score, Cscore,

from the annotated CG produced by SME. Due to the limited

coverage of state-of-the-practice automatic test-case genera-

tion tools for Android (e.g., Monkey), Analyzer normalizes

Dscore with a coverage score, Cscore, to equitably compute

estimated energy of apps for further comparison. For a set

of paths P , Score Calculator computes the dynamic cost as

follows:

Dscore =

ρ∑
i=0

αi∑
j=0

eij

ρ
(3)

where ρ denotes the number of paths; and αi denotes the

number of APIs invoked in path i. The eij parameter indicates

the amount of energy consumed by the jth API called in the

ith path.

Score Calculator also computes a hybrid coverage score,

Cscore, by combining static and dynamic models from SME

and DME. To that end, Score Calculator maps the executed

paths to the annotated CG and computes the Cscore as follows:

Cscore =

m∑
i=0

si

n∑
j=0

sj

(4)

where n is the total number of nodes in the annotated CG;

and m is the number of nodes that are covered in at least one

path.

Cscore aims to compensate for the potentially low coverage

of generated test-cases. To that end, the numerator considers

CG nodes covered by paths, and the denominator represents

all the nodes in the CG. As the number of nodes in the CG

covered by executed paths grows, Cscore increases (up to a

value of 1), thereby executed paths more thoroughly cover

the annotated CG, and Dscore more accurately represents the

typical energy consumption of the app under analysis.

Once Score Calculator produces Dscore and Cscore, Label
Generator computes an overall energy estimate eindex as

follows:

eindex = Dscore/Cscore (5)

Based on this overall estimate, Label Generator assigns

each app a label from A to E (recall Figure 2). Label A rep-

resents apps that are most energy efficient, while E designates

those that are most energy expensive. To generate labels, Label

11

Generator ranks apps based on their eindex, categorizes them

into 5 groups, and assigns labels to each group. By utilizing

an ordinal scale, end users can easily distinguish and compare

apps in terms of their energy consumption. Moreover, since

our goal in this work is to determine the proper energy labels

for similar apps, rather than determining the exact energy cost

of apps, our approach is resilient to inevitable small estimation

errors.

EcoDroid avoids a bias in analysis caused by execution

of paths that consume an extremely low or high amount of

energy. This is achieved through the normalization of Dscore

by Cscore. Specifically, for executed paths with particularly

high energy consumption—and thus a high Dscore—in the

annotated CG, the value of Cscore is also high. This results

in an eindex that is not severely affected by the particularly

high energy consumption of the executed paths. A similar

phenomenon occurs for executed paths with particularly low

energy consumption.

To illustrate, consider the example in Figure 3. Taking

only the energy cost of executed paths into account, app1
purportedly consumes more energy than app2. That is, exe-

cuted paths in app1 hit more energy-greedy nodes, nodes in

colored green, compared to app2. However, this conclusion is

inaccurate since the CG of app2 contains energy-greedy nodes

that although are not covered by current paths, but may highly

contribute to actual energy cost of the app. Thus, to reduce

the bias of purely dynamic estimation on energy cost, Dscore,

we normalize it with Cscore, to equitably compute estimated

energy cost of an app.

IV. IMPLEMENTATION PROTOTYPE

This section describes some of the key implementation

choices underlying EcoDroid’s prototype. The DME compo-

nent takes the APK file of an app as input and uses Monkey

to interact with apps and generate random test-cases. While

running Monkey on a mobile device, a rooted Nexus 5 with

a Qualcomm Snapdragon chipset, a module implemented

using the Xposed [6] framework records the invocation of

methods and system APIs in a log file. The log file is later

processed to extract information about the executed paths in

each app. Xposed instruments the root Android process (called

Zygote), rather than instrumenting an app’s implementation.

Thus, EcoDroid does not modify an app’s APK file. The

major advantages of using run-time process instrumentation

over modifying individual apps are scalability and framework

generalization. An Xposed module pinpoints methods and

system APIs for any app installed on an Android device,

precluding the need to instrument and modify every single

app under study. Additionally, instrumentation of APK files

changes the signature of apps, which might prevent their

proper execution.

SME uses Dexpler [7] to translate an app’s Android Dalvik

bytecode into Soot’s intermediate representation language.

The Android platform is event-driven and leverages implicit
invocations, i.e., method invocations performed by the Android

platform in response to an event. Soot does not extract implicit

TABLE I: Ranking of subject apps based on energy cost mea-

sured/estimated by Trepn, EcoDroid, and dynamic approach.

Apps Trepn EcoDroid Dynamic
Rank Rank Rank

com.amaltus.rt 1 1 3
an.FilipTranslate 2 2 2
com.cnasoft.dictek 3 3 6
com.appdjinnis.android.thesaurus 4 5 1
org.smartdict 5 4 5
com.merriamwebster 6 6 4

invocations. To support such invocations, SME extends the

default call-graph generator of Soot so that the resulting call

graph includes them. To generate a call graph that takes

implicit invocation into account, we need to include callbacks

of an app. These are Android APIs that no other part of the

app explicitly invokes. To that end, we traverse the nodes of

the corresponding control-flow graph in a depth-first manner,

and connect all nodes that make implicit invocations with

the corresponding callback nodes. SME then traverses the

generated call graph to calculate node score sn for each node

of the call graph and annotates the nodes with these scores.

V. EVALUATION

We have conducted a preliminary evaluation of EcoDroid

to assess its overall accuracy in ranking apps from a given

category according to their energy costs. This section first

describes our experiment setup, followed by the results.

Apps are categorized under 26 classes on Google Play.

However, we divide each of the pre-defined categories in

Google Play into sub-categories, such that apps in the new

categories have similar set of features. To categorize apps, we

manually defined sub-categories (e.g., Dictionary, Calendar,

and Calculator). We then used a modified version of Google

Play Crawler [2] to start from one app in the defined sub-

categories and find its closely related apps. Crawling for each

subcategory continues until a pre-specified number of apps are

found or no new apps are added.

For our preliminary experiment described in this paper, we

chose 6 apps from the Dictionary category, which are among

the top dictionary apps on Google Play. The reason behind

selecting dictionary apps is that they have simple and limited

use-case scenarios that can be explored and executed in a

reasonable time, allowing us to obtain accurate ground-truth

estimates.

To obtain the ground-truth estimates, we defined use-cases

and ran each app several times with different settings. Example

use-cases include looking up, adding, and deleting words in a

dictionary. Apps from other categories may require specialized

domain knowledge to identify typical use-case scenarios. For

future work, we intend to conduct a comprehensive user study

to reliably and accurately obtain typical usage for apps from

such categories. We then used Trepn [8], a profiler tool that

measures actual energy consumption of Android apps, to

obtain ground-truth energy costs of apps. Trepn is designed

to measure an app’s effect on power, data, and CPU. It

helps developers to observe how programming choices affect

12

power consumption in order to write power-aware apps. Trepn

uses a series of sensors embedded on Qualcomm Snapdragon

chipsets to monitor power consumption.

Since the majority of prior energy estimation approaches

are based on dynamic analysis techniques, and one of the

key contributions of EcoDroid is its hybrid static and dynamic

analysis approach to energy estimation, we also compared

EcoDroid against a purely dynamic solution. The Dynamic
solution we used in our experiments computes the Dscore to

estimate the energy consumption of an app (recall Section III)

Table I shows the ranking of subject apps according to en-

ergy values computed by the three approaches: Trepn (ground-

truth), EcoDroid, and the dynamic approach. The similarity

of the rankings are measured using Spearman’s rank corre-

lation coefficient, which can take values from −1 to +1. A

coefficient of +1 indicates a perfect association of ranks; a

coefficient of 0 indicates no association between ranks; and

a coefficient of −1 represents perfect negative association of

ranks. We calculated Spearman’s coefficient between Trepn

and EcoDroid, as well as Trepn and the dynamic approach.

The coefficient of Trepn’s and EcoDroid’s rankings is 0.943;

the coefficient of Trepn’s and the dynamic approach’s rankings

is 0.371. Thus, EcoDroid’s ranking very closely resemble the

ground-truth ranking, while the dynamic approach’s ranking

is nowhere close to the ground-truth ranking.

Figure 5 visualizes the relative energy ranks produced by the

three approaches for the six studied apps. A relative energy

rank is defined as rapp =
scoreapp

maxScore , where scoreapp is the

energy score for an app computed by one of the approaches

and maxScore is the largest score obtained among apps that

are to be ranked. rapp normalizes the energy cost of each

app by the energy cost of the app with the greatest energy

score. Consequently, for each of the three approaches, each

app obtains a score relative to each other. As shown in Figure

5, the ranks of 6 studied apps provided by EcoDroid are very

similar to that obtained by Trepn. On the contrary, the ranks

produced by the purely Dynamic solution are very different

from that of Trepn.

Our experiments, thus, corroborate the benefits of a hybrid

static and dynamic analysis approach for energy ranking, as

EcoDroid is able to produce a more accurate ranking compared

to the purely dynamic approach that has been widely used in

profiling the energy cost of mobile apps.

VI. RELATED WORK

There is a large body of work on energy consumption

of Android apps. Prior related studies can be categorized in

two ways: power modeling and power measurement. Research

in power modeling suggests estimating the energy usage of

mobile devices or apps in the absence of hardware power

monitors [10], [13]. These software-based approaches build

models and capture model parameters from programs using

static-analysis techniques. Compared to our approach, most of

these techniques do not utilize power-measurement devices,

or do not consider the hardware platform. These approaches

Fig. 5: Visualization of rankings provided by Trepn, EcoDroid,

and dynamic approach.

over-approximate energy estimation and cannot be used for a

fair comparison among different apps.

Studies in power measurement make use of specialized

hardware, such as Monsoon, and map the sampled mea-

surements to execution traces to determine an app’s energy

consumption at various granularities. Our approach leverages

the power measurements of Linares-Vásquez et al. [14] to

obtain energy-consumption estimates for Android APIs.

To the best of our knowledge, EcoDroid is the first work

that has attempted to rank Android apps according to their

energy consumption using a hybrid static and dynamic analysis

approach. Closely related to our approach are vLens [13],

eLens [10], and the work by Li et al. [12]. vLens provides

fine-grained estimates of energy consumption at the code level

by combining program analysis and per-instruction energy

modeling. vLens can be used by developers for estimating

the energy consumption of their apps. Unlike EcoDroid, vLens

assumes the input workload of the approach is provided by

developers who are aware of an app’s behavior. Although the

test-cases provided by developers is the best way to interact

with apps, many apps from app repositories do not come with

test-cases. In addition, for the purpose of energy estimation,

the test-cases provided by developers might be biased, and

may not represent the typical usage of apps.

eLens is an extension of vLens, which is able to calcu-

late source line-level energy consumption information. eLens

combines hardware-based power measurements with program

analysis and statistical modeling. Similar to vLens, eLens

assumes that the test-cases are provided by developers. eLens

and vLens are orthogonal to EcoDroid, as they calculate energy

consumption of mobile apps at different levels of granularity.

EcoDroid uses the pre-measured energy consumption of An-

droid APIs as an input to the approach. This list of APIs and

measured values can be replaced by the measurements ob-

tained from other similar approaches (e.g., eLens and vLens).

Li et al. [12] conducted an empirical study to discover

quantitative and objective information about the energy behav-

ior of apps that can be used by developers. To interact with

an app, the authors utilize Monkey for test generation and

vLens to estimate the energy cost of an app. Although they

excluded test-cases with less than 50% statement coverage, our

preliminary evaluation demonstrates that statement coverage

suffers from limitations as a criterion for test-case quality

13

measurement in the context of app energy consumption. In

addition, EcoDroid estimates the energy cost by considering

information from program statements that are not covered by

generated tests. Our preliminary results show that EcoDroid’s

approach for estimating energy cost is more accurate compared

to relying only on executed paths.

VII. LIMITATIONS OF ECODROID

Our approach aims to generate an accurate energy ranking

for Android apps. As a result, it does not intend to estimate

the exact energy consumption of apps. Therefore, estimates

produced by EcoDroid can tolerate a certain level of inaccuracy

as long as the ranking remains the same. We have attempted to

address the major sources of inaccuracy. However, we also had

to strike a balance by making certain assumptions to improve

EcoDroid’s scalability and ease of applicability, which may

impact the accuracy of its estimates.

EcoDroid is a lightweight approach that helps repository

maintainers and developers to understand energy behavior

of apps from the same category by assigning energy labels

to them. It does not require developers to use specialized

hardware, or instrument the apps, which may cause run-time

failure. EcoDroid takes the pre-measured energy consumption

of APIs (or lines of code) as an input and estimates the energy

cost according to these values. Therefore, the accuracy of

estimation depends on the precision of these pre-measured

values. We use the outcome of a published study [14] that

measures the energy consumption of APIs observed in diverse

apps from Google Play.

In order to calculate sn in Equation 1, we assumed that

all the APIs used in the implementation of node n would

be reachable. However, it is possible that APIs are invoked

through branches, where only a portion of them are invoked

through node n. One naive assumption is to consider the same

probability for each branch to be taken and compute sn as

sn = rn ×
mn∑
i=0

êi × pi, where pi is the probability that ei is

invoked through the node. However, the probability of different

branches are different and calculating precise probability is a

challenge in its own right. Therefore, EcoDroid simply assumes

that all the APIs within the implementation of a method will

be called through its invocation.

EcoDroid calculates êi using Equation 2. If a loop bound

can be obtained from the source code (recall Section III-D),

EcoDroid leverages this value for estimating êi. Otherwise, it

assumes a constant number of iterations for the loop, which

can be configured by the user. The second method may impact

the accuracy of the approach. However, from exploring several

open-source apps from F-Droid [1], we discovered that loops

in such apps mostly iterate over data structures where the

bound can be obtained statically.

VIII. CONCLUSION AND FUTURE WORK

Energy is a critical resource for mobile devices. Optimizing

the energy efficiency of mobile apps can greatly increase user

satisfaction. While users often have a choice of numerous apps

providing similar functionality, app repositories currently do

not provide users with the energy information that would allow

them to make informed decisions.

To address this issue, we presented EcoDroid, a hybrid static

and dynamic analysis technique that estimates the energy cost

of apps from a given category and ranks them accordingly.

Our preliminary evaluation of EcoDroid on six real-world

apps shows that EcoDroid accurately ranks apps according to

their energy consumption. Since our goal in this work is to

determine the proper energy labels for similar apps, rather

than determining the exact energy cost of apps, our approach is

resilient to inevitable small estimation errors. App repository

maintainers can utilize EcoDroid’s rankings to aid end users

in deciding which apps in a category (e.g., weather or news

reader) meets their energy-consumption needs. App developers

can utilize EcoDroid energy score to evaluate and improve the

efficiency of their apps

IX. ACKNOWLEDGMENT

This work was supported in part by awards D11AP00282

from the US Defense Advanced Research Projects Agency,

H98230-14-C-0140 from the US National Security Agency,

HSHQDC-14-C-B0040 from the US Department of Homeland

Security, and CCF-1252644 from the US National Science

Foundation.

REFERENCES

[1] “F-droid,” https://f-droid.org.
[2] “Google play crawler,” http://goo.gl/BFc51M.
[3] “Google play market,” http://play.google.com/store/apps.
[4] “Monsoon,” http://goo.gl/8G7Xgf.
[5] “UI/Application Excersizer Monkey,” http://goo.gl/6EN2gi.
[6] “Xposed Framework,” http://goo.gl/9UKa0Z.
[7] A. Bartel, J. Klein, Y. LeTraon, and M. Monperrus, “Dexpler: Converting

android dalvik bytecode to jimple for static analysis with soot,” in The
Intl. Workshop on State of the Art in Java Program analysis, 2012.

[8] L. Ben-Zur, “Developer Tool Spotlight - Using Trepn Profiler for Power-
Efficient Apps,” http://goo.gl/ESxXzi.

[9] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating android
applications’ cpu energy usage via bytecode profiling,” in The Intl.
Workshop on Green and Sustainable Software, 2012, pp. 1–7.

[10] ——, “Estimating mobile application energy consumption using pro-
gram analysis,” in The Intl. Conf. on Software Engineering, 2013.

[11] M. V. Heikkinen, J. K. Nurminen, T. Smura, and H. Hämmäinen,
“Energy efficiency of mobile handsets: Measuring user attitudes and
behavior,” The Telematics and Informatics, 2012.

[12] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of
the energy consumption of android applications,” in The Intl. Conf. on
Software Maintenance and Evolution, 2014.

[13] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in The Intl.
Symposium on Software Testing and Analysis, 2013, pp. 78–89.

[14] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in The Working Conf. on
Mining Software Repositories, 2014.

[15] R. Valle é-Rai, P. Co, E. Gagnon, L. Hendren, and V. Lam, P.and Sun-
daresan, “Soot-a java bytecode optimization framework,” in The Conf.
of the Centre for Advanced Studies on Collaborative research, 1999.

[16] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in The Internation Conf. on Green Computing and Communi-
cations, 2013.

14

