
Apparecium: Revealing Data Flows in Android Applications

Dennis Titze, Julian Schütte
Fraunhofer AISEC

Garching near Munich
Email: {dennis.titze,julian.schuette}@aisec.fraunhofer.de

Abstract

With Android applications processing not only per-
sonal but also business-critical data, efficient and pre-
cise data flow analysis has become a major technique
to detect apps handling critical data in unwanted ways.
Although data flow analysis in general is a thoroughly
researched topic, the event-driven lifecycle model of
Android has its own challenges and practical appli-
cation requires for reliable and efficient analysis tech-
niques. In this paper we present Apparecium, a tool to
reveal data flows in Android applications. Apparecium
has conceptual differences to other techniques, and can
be used to find arbitrary data flows inside Android
applications. Details about the used techniques and
the differences to existing data flow analysis tools are
presented, as well as an evaluation against the data
flow analysis framework FlowDroid.

1. Introduction

The vast popularity of the Android operating system
with end users and developers has also increased the
interest in the platform for developers of malicious
software. Antagonizing this development, much re-
search is done into malware analysis and application
analysis in general. But not only plain malicious be-
haviour is unwanted by users, also benign applications
dealing with personal or business-critical data on the
device might handle this data in an undesired way.

Apps leaking private data of a user may break legal
requirements, impact the user’s privacy or threaten
critical business processes. At the same time, avoiding
data leaks in applications is not a trivial task. Even
experienced developers have currently no means of
thoroughly checking all possible data flows within an
application. The integration of third-party libraries into
Android apps leads to large portions of code which are
out of control of the actual app developer but still have
access to all data of the application. There is therefore

a need for reliable and efficient analysis mechanisms
to detect data leaks inside applications.

Such data flow analysis techniques can be classified
as either static or dynamic taint analysis.
Static data flows describe how data can flow through
the app along different execution paths from a source
to a sink function. Static data flow analysis detects
possible data flows through the app by inspecting its
code. This only states that there is a data flow which
could be executed at some point in time. Further,
static taint analysis is overapproximate, i.e. it considers
function calls which are possible in the app, but might
never occur at runtime, due to unsatisfiable conditions
or lack of instantiations. That is, static taint analysis
will highlight potential data flows, but if this data flows
are actually executed is not necessarily known.

Contrary to that, dynamic taint analysis tracks data
flows as they actually happen during execution of the
app. The major and unsolved problem is that dynamic
analysis relies in many cases on input from the outside
(e.g., user interaction) to trigger the execution of the
application. If the employed technique to provide such
input does not trigger the relevant call paths, no data
flow will be recorded.

So both analysis techniques have benefits and short-
comings. In this paper we describe Apparecium, a tool
for static data flow analysis of Android application.
Apparecium requires only the bytecode of an applica-
tion but no further information such as the application
entry points or its source code.

The contributions of this paper are:

• A thorough description of the basic data flow
principles on Android

• An efficient static taint analysis which directly
calculates flow paths between sources and sinks
without the need of an entry point analysis and
which is highly reliable for the analysis of real
world applications.

• Providing developers of new analysis techniques

with a basic data flow analysis tool1

The remainder of this paper is structured as follows:
Section 2 presents related work in the topic of data
flow analysis. Section 3 explains how to deal with
the challenge of source and sink creation, which is
essential for taint analysis. In Section 4 the techniques
used in Apparecium are described in detail. Section 5
briefly shows how a data flow can be visualized, and
Section 6 evaluates Apparecium against FlowDroid,
the prevalent static taint analysis tool, using a set of
real world application. In Section 7 limitations and
benefits are discussed before Section 8 concludes the
paper.

2. Related Work

The most prominent example for static taint analysis
on android is FlowDroid [1], an extensive data flow
analysis framework built on top of Soot [8]. Soot orig-
inated as a Java optimization framework and has been
extended to perform static taint analysis and to handle
Android apps. FlowDroid implements an extensive
taint propagation logic, covering different callbacks.
FlowDroid builds upon Soot and requires an time-
consuming upstream entry point analysis to gather all
event-triggered callbacks in a single entry method (c.f.
[1]). Differing from this approach, Apparecium follows
a more efficient approach as it does not rely on the
existence of a single entry point, since the analysis
starts directly at the sources and sinks. Not all tech-
niques used in FlowDroid are currently implemented
in Apparecium, but there are no conceptual hurdles
which would prevent the addition of these techniques.
Also differing from Apparecium, FlowDroid requires
the code of the app to be translated to one of Soot’s
internal representation, namely Jimple. This is done
using Dexpler [3].

Various other scientific publications use static static
taint tracking as part of their analysis:

Woodpecker [7] uses static taint analysis to detect
capability leaks in stock applications. It uses its own
data flow tracking implementation, which also relies on
entry points into the application, which is a conceptual
difference to our approach. CHEX [9] also use this
approach in their data flow tracking to detect potential
component hijacking vulnerabilities.

DroidChecker [4] uses static taint checking to iden-
tify data paths responsible for capability leaks, but
Chan et. al. do not explain in detail how their taint
tracking algorithm works.

1. Apparecium is available at github.com/titze/apparecium

AppCaulk [12] uses static static taint analysis to
generate relevant points inside an application which
will be instrumented with an appropriate tainting logic,
so that the application itself can perform a dynamic
taint analysis. AppCaulk uses Apparecium for its static
taint analysis.

A conceptually different approach is taken by Taint-
Droid [5], which employs dynamic taint tracking.
TaintDroid modifies the Android system image to track
data flows as they occur during the execution of the
application. To analyse an app, the modified Android
OS has to be installed on a real device or the Android
emulator, where the app can then be started. TaintDroid
keeps track of the taint status of variables and can
notify the user about leakages.

3. Sources and Sinks

An essential step for data flow analysis is the gener-
ation of sources and sinks. Since the data flow analysis
can only find flows between these, a thorough config-
uration of these locations is essential. Best results can
be expected if the sources and sinks are configured
exactly to the current need: missing entries will result
in false negatives, but having too many sources and
sinks can slow down the analysis considerably and
generate results which are not meaningful to the user.

For Apparecium, sources and sink are each
configured as a list of functions. A source is a
function where the data flow starts, e.g., the function
TelephonyManager.getLine1Number which
retrieves the phone number of the device. The return
value of a source function is automatically marked as
tainted. Similarly, a sink is a function which operates
on some input, e.g., Writer.write which can
write data to a file.

Defining sources and sinks in such a way already
poses the first problem: the context of the source
or sink function can not be configured. Consider
the example in Listing 1. Here data is written to a
Socket. If the sink should be the writing of data,
PrintWriter.print has to be configured as sink,
but this function does not state anything about the
type of the PrintWriter. This can result in findings to
arbitrary PrintWriters, not just such from a Socket, and
therefore introduces false positives.

So ck e t s o c k e t = new So ck e t (IP , PORT) ;
Ou tpu tS t r eam o u t s t r e a m = s o c k e t .

g e t O u t p u t S t r e a m () ;
P r i n t W r i t e r o u t = new P r i n t W r i t e r (o u t s t r e a m) ;
o u t . p r i n t (DATA) ;

Listing 1. Writing to a Socket

Backward
Slicing

Forward
Slicing

App
Preparation

Slice
Combination

Figure 1. Sequence of Required Analysis Steps
Performed by Apparecium

The second problem is even more critical: how is
this list of sources and sinks generated? Since a manual
configuration using a selection of all Android APIs
is hardly possible, automated tools are needed. The
most widely used tools for this task are SuSi [10] and
the permission maps generated by Stowaway [6] and
PScout [2]. SuSi was specifically designed to generate
a list of sources and sinks which can directly be used
for the data flow analysis.

Permission maps on the other hand were intended
to provide a mapping between Android APIs and
Android Permissions, which is not officially available.
But this mapping can also be used as list for sources
and sinks. This can be done by manually deciding
which permission should be regarded as source or
sink and then filling the source and sink definitions
with the generated API calls. E.g., the permission
READ_PHONE_STATE could be regarded as source
permission, and all APIs which need this permission
can then be treated as sources. But generating the list
solely using the permission maps will miss several
important APIs. In the example from Listing 1, ac-
cording to the permission maps, the instantiation of the
socket would require the permission INTERNET. But
the actual call to PrintWriter.print is not found
in the permission maps. Therefore if the permission
map would solely fill the list of sources and sinks, the
leak to the Internet would only be found if the ip or
the port used in the Socket instantiation would contain
tainted data.

As a compromise between practicability and com-
pleteness, these automated approaches can be taken
as starting points, but have to be enriched by manual
definitions.

4. Static Taint Analysis

This Section describes the algorithms used by
Apparecium to perform static taint tracking from the

p0 := @this

sget v0, Landroid/os/Build$VERSION;->SDK_INT:I
const/16 v1, 0xd
if-lt v0, v1, :cond_9

invoke-static {v0}, LTest;->test(I)V;

new-instance v1, LTest2;
invoke-direct {v1, v0}, LTest2;-><init>(I)V
return-object v0

Figure 2. Basic Blocks of a Simple Function

defined sources to the sinks.

The analysis is composed of the following steps,
which are described in detail.

• App preparation
• Backward slicing
• Forward slicing
• Slice combination

4.1. App Preparation

In the first step, the app is disassembled using
baksmali, which transforms the binary bytecode into
its textual representation called smali. Parsing smali
code allows the analysis to work directly with an app
without the need for source code. Differing to other
approaches, Apparecium does not translate smali to
any higher language to increase efficiency and avoid
semantic deviations.

As a next step, the basic blocks for each function are
generated. A basic block is a sequence of instructions
which is executed without any branches. For example,
as soon as there is a branching statement in the
function, it marks the end of the basic block and the
two successors of that statement (the true and the false
branch) are the first statements of two further basic
blocks. Figure 2 shows a simple function split into its
basic blocks.

In the app preparation step, a class hierarchy is also
constructed from the smali code, which is subsequently
needed to determine the callers of functions.

4.2. Backward Slicing

After the preparation step, backward slicing analyses
the prepared bytecode and generates for each line of
code a list of variables which can reach a sink. That
is, if variable v0 is in this list, there exists a data flow
were the data from v0 reaches a sink.

The analysis starts at all sinks and adds these
locations to a worklist. The algorithm runs as long
as there are entries in the worklist. An entry consists
of a pointer to the function, a pointer to the location
inside the function (i.e., the program counter), and a
call stack.

During the backwards analysis, the algorithm may
encounter a function call and therefore needs to jump
to that function to determine if the taint status is
propagated or not. In such a case, the call stack records
the current function and program counter. This is the
location where the analysis will continue once the
called function is analysed. Since this function itself
can contain new function calls, the call stack can record
multiple function locations.

If the function to be examined exists in the current
app (i.e., it is part of the application’s code base), the
analysis simply continues at this function. If the func-
tion is out of the scope of the application’s code base
(e.g., for framework functions or native functions),
Apparecium overapproximates the taint propagation
and assumes that the function propagates the taint
status.

In each iteration, the backward slicing algorithm
takes an element from the worklist and determines
if the current instruction propagates the taint status.
If at least one of the parameters of the instruction
is currently tainted, it has to be decided if any input
parameter will also be tainted. Consider the instruction
move v1, v2 which moves the content of variable
v2 into variable v1. If variable v2 is tainted in
this location, the input variable v1 will be tainted
before this location. How the tainting is propagated
can be easily configured and has to be done accurately
for each Dalvik instruction. An instruction can also
untaint a variable, e.g., overwriting it with a constant
value (i.e., const v0, 0). If the backward analysis
encounters such an instruction, it removes the variable
from the currently tainted parameters.

If any input variable is tainted (there could be
multiple new variables tainted), the previous location
needs to be determined. There exist three possibilities
for previous locations:

• the previous instruction,
• the previous basic block, or
• the caller of the current function.

If the current location is not the beginning of a basic
block, the previous location is simply the previous
line of code. If the analysis reaches the beginning
of a basic block, the predecessors of the basic block
need to be determined. If the current basic block is
not the first basic block of the function, the analysis
continues at the last instruction of predecessors of the
current basic block. If the current basic block is the
first basic block of the function, no precessing block
exists. The analysis will therefore either continue at
the top element of the call stack, if available, or at
all locations inside the application where the current
function is called. Therefore all locations which can
call the current function are added to the worklist.
Currently direct function calls and function calls using
any assignable class are considered. Considering all
assignable classes is an overapproximation, but does
not add any false negatives.

In the last step, the algorithm checks if the tainted
variables in the previous locations already contain the
newly tainted variables. If no, these variables are added
to the locations and the previous locations are added to
the worklist. If the previous location already contains
all currently possible tainted variables, it has been
already added to the worklist at some point. In such a
case, the locations are not added to the worklist again.

The backward slicing will terminate once no element
remains in the worklist. Since there exist only a finite
amount of lines of code with a finite amount of
variables, the algorithm will terminate.

4.3. Forward Slicing

The forward slicing performs a similar analysis than
the backward slicing, by generating a list of variables
which can contain data from a source. The algorithm
works in the opposite direction of the backward slicing:
starting at all sources, an analysis is conducted to find
all paths originating in one of these sources which
propagate the taint status. To do so, the sources are
added to a worklist. The worklist contains entries
consisting of the current function, the current program
counter and the call stack. The call stack serves the
same purpose as in the backward analysis: it is used
to store the caller of a function to know where to return
to at the end of a function.

In each iteration of the forward slicing algorithm,
an element is taken from the worklist and it is deter-
mined if the taint status is propagated from the input
parameter to the output parameter of the instruction.
Considering the easy example move v1, v2 again,
the taint status from v1 is propagated to the variable
v2. As in the backward slicing, if the instruction

untaints the variable, it is removed from the currently
tainted variables.

If at least one variable is in the currently tainted
variables in the current line, the next instruction has to
be determined. The next location can be either:

• the beginning of a function if the current instruc-
tion is a function call,

• the next instruction inside the current basic block,
• the next basic blocks, or
• the return address of the function.
If the current instruction is a function call, the

algorithm has to determine if the function propagates
the taint status of an input variable of the function to
an output variable of the function (e.g., for the function
a = sqrt(b), b would be an input variable, a would be
an output variable). Therefore the algorithm adds the
beginning of the function to the entries in the worklist,
with the input variables tainted.

If the next location is an instruction inside the
current basic block, the algorithm simply copies the list
of currently marked variables to the next instruction,
adds the instruction to the worklist and continues.

If the current location is the end of a basic block, the
next basic blocks have to be determined. This can e.g.,
be the two basic blocks following an if statement, or
an additional catch block for exception handling. The
algorithm again copies the currently tainted variables
to the start of these basic blocks and continues.

If the current location is the return statement of the
function, and the call stack is not empty, the algorithm
propagates the status of the returned variable to the
caller. The returned taint status can either be the status
of the actual returned variable, or the current instance
of the class, if the class itself is tainted (i.e., the
this-variable inside the function was tainted). If no
entry exists in the call stack, the algorithm has to take
all possible callers of the function into consideration.
Analogous to the backward slicing, possible callers
are direct function calls and function calls using any
assignable class.

The forward slicing algorithm terminates once the
worklist is empty. As with the backward slicing, the
forward slicing will terminate since there exist only a
finite amount of lines of code with a finite amount of
variables.

4.4. Extending the Call Graph

To perform accurate data flow analysis the call graph
has to be as exact as possible, since both backward
and the forward slicing follow the paths in the call
graph extensively. A missing path in the call graph

Figure 3. External data flows

can therefore lead to undetected data flows. For this
reason, several paths need to be examined which are
not part of the call graph. The call graph is therefore
extended by several new edges and becomes a Data
Flow Graph (DFG).
c l a s s A {

p u b l i c s t a t i c i n t STATICVAR ;
p u b l i c vo id a () {

STATICVAR = s o u r c e () ;
}
p u b l i c vo id b () {

s i n k (STATICVAR) ;
}

}

Listing 2. Data Leak through a Static Variable

Consider the example in Listing 2. If Apparecium
would only look at the default call graph, the backward
analysis would start in function b(), but since there
is no caller of b(), the analysis would simply stop.
But an app can contain this snippet and have some
user interaction capabilities, where at some point in
time function a() is triggered, and at some other time
function b(). This would result in an undetected data
leak. To solve this problem, an edge from all writing
locations of static (or instance) variables to all reading
locations is added to the DFG. If the backward analysis
therefore encounters the reading of such a variable, it
can determine all writing locations and continue its
analysis there.

New paths can be easily added to the DFG in Ap-
parecium. To do so, the reading and writing locations
have to be linked, e.g., the reading with the writing of
files. Callbacks which are used extensively in Android
can be added in the same fashion.

Figure 4. Data Flow Visualization on Function
Level

Figure 5. Data Flow Visualization on Class Level

Figure 4.4 shows the external call paths currently
included in Apparecium.

Adding flows for file read and writes to the DFG
may discover more actual data leaks, but it will also
increase the false positives rate. For instance, if data
is written to a file and read at another location in
the app, an actual data flow occurs only if at both
location the same file content is accessed, i.e. if it
is the same file and it has not been modified in the
meanwhile. Tracking these conditions is only possible
at runtime, since access to files may happen outside
of the analysed application scope. One optimization
would be to heuristically determine the instance of the
file handler, which could reduce the number of false
positives.

4.5. Slice Combination

After generating both the backward and forward
slice, these can be combined to show the complete data
flow from sources to sinks. The combination simply
iterates over all locations and adds a variable to the
final result if it is contained in both the forward slice
and the backward slice.

Since the backward slice contains list of variables
for each location which can reach the sink, and the
forward slice contains the list of variables which can
contain data from a source, this final result contains all
locations with variables which can be part of the data
flow.

FlowDroid

Average Runtime 815 Seconds
Total Runtime 1359 Minutes

Findings 103

Out of Memory Errors 50
Other Errors/Exceptions 30

Timeout after 1 hour 5

Apparecium

Average Runtime 1175 Seconds
Total Runtime 1959 Minutes

Findings 68
Out of Memory Errors 0

Errors 1
Timeout after 1 hour 17

Table 1. Statistics of the Evaluation

5. Visualization

The data flows generated by Apparecium can be
visualized for further examination by the user. This is
done by transforming the textual output of Apparecium
into a D32 graph.

The visualization displays the data flow on different
levels of detail. Figure 4 shows a data flow on the high-
est level of detail: each node represents one function
through which the data flows from a source on the left
side of the figure to a sink on the right side. If there
are many data flows the visualization on function level
will contain too many nodes to provide any benefit. For
this reason, the level of detail can be reduced, so that
each node only represents a class participating in the
data flow. The sources and sinks are still displayed as
functions, to be able to see the actual function. Figure 5
displays a data flow on this lower detail level.

6. Evaluation

While different tools for static taint analysis of
Android apps exist, our goal was the implementation
of an approach which is highly practical and applicable
to real world applications. We therefore collected 100
random apps among the most popular ones from the
Google Play Store and evaluated the effectiveness and
efficiency of Apparecium, compared to FlowDroid,
which is currently the prevalent and most mature static

2. http://d3js.org/
3. FlowDroid was able to finish some apps even though there were

Exceptions. The 10 findings therefore were not necessarily in apps
which did not contain any errors.

FlowDroid Apparecium
10−1

101

103
Ti

m
e

in
Se

c
(l

og
)

Figure 6. Runtimes of Apparecium and FlowDroid5

taint analysis tool for Android. The app selection
includes a range of different apps, ranging from a very
small flashlight app, to complex apps like Facebook
and WhatsApp. FlowDroid is used in the configuration
from [1], and both tools are executed sequentially on
the same PC (Intel Core i7-3520M) with 4GB of RAM
assigned to them.

To reflect the usage of both tools in a productive
environment such as an in-app security check or a
testing tool, a timeout of one hour was set for both.
The lists for sources and sinks were filled with the
same inputs, namely the default sources and sinks from
FlowDroid.

Basic details of the evaluation are shown in Table 5,
details about the run times are shown in the box plot
in Figure 6 and the details about the determined data
flows in Figure 7.

In total, Apparecium needed 1959 minutes to com-
plete the analysis compared to 1359 minutes of Flow-
Droid. But the total runtime cannot be used as a criteria
of quality, since more than half of the applications
could not be analyzed by FlowDroid due to the mem-
ory constraint.

Comparing the results of the findings (c.f. Figure 7)
shows that 10 apps with data leaks were detected by
both Apparecium and FlowDroid. A comparison of the
apps which contained a data flow showed, that all 10
apps which were found by FlowDroid were also found
by Apparecium. For 58 of the apps, a data flow was
only found with Apparecium. This is on the one hand
due to the fact, that many applications could not be
analysed completely using only 4 GB of RAM and
the one hour time limit. On the other hand Flow-
Droid already performs optimizations for truncating
false positives, which are currently not included in
Apparecium.

Table 5 shows that the high accuracy of FlowDroid

5. The comparison of runtimes has only limited significance, since
FlowDroid was not able to analyse more than half of the apps due
to memory constraints.

0 25 50

Apparecium

FlowDroid

FindingsFindings in both Findings only in this tool

Figure 7. Data Flows found in Apparecium and
FlowDroid

comes at a cost: half of the 100 apps could not be
analysed with only 4 GB of RAM by FlowDroid.
This suggests that FlowDroid soon exceeds practical
resource limits when applied to applications of real
world size and complexity. In contrast Apparecium
is able to cope with a significantly larger number of
applications and identifies many more data flows. It
must however be considered that the higher number
of findings is not only due to the higher reliability of
Apparecium but also due to its higher false positive
rate.

7. Discussion

In its current implementation, Apparecium is miss-
ing some optimizations, e.g., the addition of more
callbacks to the DFG (as described in Section 4.4),
or the identification of the instances responsible for
the external path which would reduce the number of
false positives. But these limitations do not impose
a conceptual limitation in the proposed static taint
analysis.

A different problem – which is currently not solved
in other tools as well – is caused by dynamic code
loading. Since such loading can occur at arbitrary
locations in the code, dynamically loaded code is not
available in an offline static analysis. To tackle this
problem, different approaches have been proposed,
e.g., the concolic execution of the app [11]. The same
is true for native methods, which are not included in
the analysis.

The third limitation arises from the fact that Ap-
parecium overapproximates at several points, e.g., by
adding all function calls of assignable classes, and
including external call paths. Although this increases
the potential false positives, it also allows us to find
more data flows which might be missed otherwise.

Overapproximation also implies that finding a data
flow inside an app does not necessarily mean that this
data flow will be actually executed. Since Apparecium
does not perform its taint analysis using entry points
into the app, identified data flows can for example take

place in dead code or require instantiation of objects
which do not occur at runtime. Nevertheless, finding
such flows is relevant, since the app can use different
techniques to execute such code, e.g., via reflection.

8. Conclusion

In this paper we presented Apparecium, a tool to
statically detect data flows in Android applications
from arbitrary data sources to sinks. The aim of
Apparecium is to provide efficient and highly
practical static taint analysis to discover data leaks
in Android applications. Unlike other approaches,
Apparecium does not rely on an expensive entry point
analysis, and performs its static taint analysis directly
from sources to sinks, thereby achieving a high level
of efficiency. By means of an evaluation against 100
of the most popular applications from the Google
Play Store we have shown that Apparecium is in fact
able to successfully analyse more applications than
current static data flow tools.

In addition, we discussed general challenges in static
taint analysis for Android, such as a highly precise
context-based definition of sources and sinks which is
currently not possible and motivates further work on
the topic.

References

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’14, pages 259–269, New York, NY, USA, 2014.
ACM.

[2] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:
Analyzing the android permission specification. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 217–
228, New York, NY, USA, 2012. ACM.

[3] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus.
Dexpler: converting android dalvik bytecode to jimple
for static analysis with soot. In Proceedings of the ACM

SIGPLAN International Workshop on State of the Art in
Java Program analysis, SOAP ’12, pages 27–38, New
York, NY, USA, 2012. ACM.

[4] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker:
Analyzing android applications for capability leak. In
Proceedings of the Fifth ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WISEC
’12, pages 125–136, New York, NY, USA, 2012. ACM.

[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In 9th USENIX conference
on Operating systems design and implementation, 2010.

[6] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of
the 18th ACM conference on Computer and communi-
cations security, CCS ’11, pages 627–638, New York,
NY, USA, 2011. ACM.

[7] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Sys-
tematic detection of capability leaks in stock android
smartphones. In NDSS, 2012.

[8] P. Lam, E. Bodden, O. Lhotak, and L. Hendren. The
soot framework for java program analysis: a retrospec-
tive. In CETUS Users and Compiler Infrastructure
Workshop, Oct. 2011.

[9] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
Statically vetting android apps for component hijacking
vulnerabilities. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security,
CCS ’12, pages 229–240, New York, NY, USA, 2012.
ACM.

[10] S. Rasthofer, S. Arzt, and E. Bodden. A machine-
learning approach for classifying and categorizing an-
droid sources and sinks. In 2014 Network and Dis-
tributed System Security Symposium (NDSS), 2014.

[11] J. Schütte, R. Fedler, and D. Titze. Condroid: Targeted
dynamic analysis of android applications. In (in re-
view), 2014.

[12] J. Schütte, D. Titze, and J. M. d. Fuentes. Appcaulk:
Data leak prevention by injecting targeted taint tracking
into android apps. In Proceedings of the International
Conference on Trust, Security and Privacy in Comput-
ing and Communications, TrustCom, 2014.

