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ABSTRACT

An enormous number of applications have been developed for Android in recent years, making it one of the most popular
mobile operating systems. However, it is obvious that more vulnerabilities would appear along with the booming amounts
of applications. Poorly designed applications may contain security vulnerabilities that can dramatically undermine users’
security and privacy. In this paper, we studied a kind of recently reported application vulnerability named confused deputy
– a specific type of privilege escalation vulnerability, which can result in unauthorized operations, and so on. We proposed
a novel system with code-level static analysis to analyze the applications and automatically detect possible confused
deputy vulnerabilities. To tackle analysis challenges imposed by Android’s component-based programming paradigm, we
employed special control flow graph construction techniques to build call relations among components and function call
graph within components. We developed a prototype of this system named PaddyFrog and evaluated with 7190 real world
Android applications from two of the most popular markets in China. We found 1240 applications with confused deputy
vulnerability and proved to be exploitable. The median execution time of this system on an application is 14.4s, which is
fast enough to be used in volumes of applications testing scenarios. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A recent research from Nielsen� shows that Android now
owns 51.8% market share of smartphone users in the
US, which is pulling ahead of Apple iOS (34.3%) and
RIM Blackberry (8.1%) [1]. At the same time, Google
Play� is becoming the fastest growing mobile application
platform. According to a recent report released by mobile
security firm Lookout�, the Android Market is growing
at three times the rate of Apple store [2]. Unfortunately,
the increasing adoption of Android brings up the growing
prevalence of security issues [3].

The core security mechanisms in Android are applica-
tion sandboxing, application signing, and the permission
framework, which limits the access to the sensitive data
(e.g., SMS and contacts), resources (e.g., battery and

� http://www.nielsen.com/global/en.html.
� https://play.google.com/store.
� https://www.lookout.com/.

log files) and system interfaces (e.g., Internet connection
and GPS). Once granted by the (end) users, the assigned
permissions cannot be changed afterwards, and they are
checked by Android’s reference monitor at runtime. This
approach restricts the potential damage imposed by mali-
cious applications.

Although the Android’s security mechanisms fail most
attacks, however, there are flaws which impair the security
of Android within the permission framework. Confused
deputy [4] is a specific type of privilege escalation, which
allows a malicious application to acquire more permissions
indirectly through benign applications resulting in unau-
thorized read or write operations on sensitive resources.
It is possible to carry out this kind of attack [5] on
Android because of the serious defect of the Android secu-
rity framework that an application with less permissions
(a non-privileged caller) is not restricted to access compo-
nents of a more privileged application (a privileged callee).
Here, we propose a confused deputy vulnerability detect-
ing system to test whether an application is exploitable to
confused deputy attack.

Copyright © 2015 John Wiley & Sons, Ltd.
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A similar system has been presented in [6], however,
without code-level detecting, the system only checks the
AndroidManifest file that provides indispensable infor-
mation about the application, which leads to a higher
false positive ratio. Our contributions in this paper are as
follows: (1) we have designed and implemented a novel
code-level tool, PaddyFrog, to detect the confused deputy
vulnerability in Android applications. PaddyFrog detects
the confused deputy vulnerability based on the Android-
Manifest file and the Control Flow Graph (CFG), which
describes the invoking relationship among components and
function call flow within components, which overcomes
the limitations of [6]; (2) we ran PaddyFrog on 7190
applications downloaded from two of the most popular
alternative markets in China (HiApk [7] and Anzhi Market
[8]). PaddyFrog detected at least 1240 applications that
have this vulnerability; (3) we presented two case studies
to illustrate why our method can reach lower false positive
rate than past works.

The rest of the paper is organized as follows. In
Section 2, we give a brief overview of the fundamental
of the Android security framework and explain confused
deputy attack on Android. The solution we propose is cov-
ered in Section 3, and the evaluation results are presented
in Section 4. We discuss the limitations of our work in
Section 5. Finally, we summarize related work in Section 6
and draw our conclusions in Section 7.

2. PRELIMINARIES AND
CONFUSED DEPUTY ATTACK

2.1. Android architecture

Android [9] can be described as a software stack including
an operating system, middleware, and key applications.
The main part of Android is middleware, which runs on
the top of the Linux Kernel and the hardware drivers.
It comprises of libraries, runtime environment, and appli-
cation framework, which offers necessary components and
services to the applications. Lastly, at the top of the stack
are the applications, which access the underlying
functionality through the Application Program Inter-
faces (APIs) and communicate with one another via
its unique lightweight Inter-Process Communication
(IPC) mechanism.

2.2. Android application framework

Android’s application model [9] is highly flexible. An
application is composed of one or more components,
which may be invoked as a separate process or under an
existing process in the same application. Android defines
four types of components:

Activities provide user interfaces. Activities are started
via Intents, and they can return data to their invoking
components upon completion. All visible portions of appli-
cations are Activities.

Services run in the background and do not interact
with the user. Downloading a file and decompressing an
archive are examples of operations that may take place in
a Service. Other components can bind to a Service, which
lets the binder invoke methods that are declared in the
target Service’s interface. Intents are used to start and bind
to Services.

Broadcast Receivers receive Intents sent to multiple
applications. Receivers are triggered by the reception of
appropriate Intents and then run in the background to
handle the event. Receivers are typically short-lived and
often relay messages to Activities or Services. There
are three types of broadcast Intents: normal, sticky, and
ordered. Normal broadcasts are sent to all registered
Receivers at once, then they disappear. Ordered broadcasts
are delivered to one Receiver at a time and any Receiver
in the delivery chain of an ordered broadcast can stop its
propagation. Broadcast Receivers have the ability to set
their priority level for receiving ordered broadcasts. Sticky
broadcasts remain accessible after they have been delivered
and rebroadcastable to future Receivers.

Content Providers are databases addressable by their
application-defined uniform resource identifier (URIs).
They are used for both persistent internal data storage
and as a mechanism for sharing information between
applications.

Components within the same or from different appli-
cations can interact through the Binder IPC mechanism.
Intents provide a general pattern for components to interact
with one another.

2.3. Android security architecture

2.3.1. Sandboxing.

Sandboxing is a mechanism to isolate applications from
each other and system resources. Application isolation is
carried out by means of assigning a unique user identi-
fier to each application, while the underlying Linux kernel
enforces discretionary access control to resources (files and
devices) by user ownership. System resources are owned
by either system or root. Applications can only access their
own files or files of others that are explicitly declared as
world-wide readable.

2.3.2. Application signing.

Android enforces application signing, however, not cen-
trally, that is, developers themselves have to sign the
application with the self-certified key. Thus, application
signing does not provide protection against malware but
helps to establish trust relationships among applications
originating from the same developer. Applications signed
with the same key may request to share the same user
identifier, and they will be placed into the same sandbox.

2.3.3. Android permission framework.

Android permission framework is provided by the
middleware layer. It includes a reference monitor which
enforces Mandatory Access Control on inter-component
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communication (ICC) calls. Security sensitive APIs, here
referred to as interfaces, are protected by permissions.
These are security labels, which can either be required to
enforce access control or be granted to allow access.

Granted permissions are assigned to application sand-
boxes and inherited by all application components. Unlike
this, required permissions are assigned to application
components. Both required and granted permissions are
explicitly specified in an application’s AndroidManifest
file, which is included in application installation pack-
age. Granted permissions are approved at installation time
based on user confirmation. Once granted, permissions
cannot be modified. At runtime, the reference monitor
checks permission assignments.

2.4. Confused deputy and privilege
escalation attack on android

In this section, we give the details of the confused deputy
– a specific type of privilege escalation attack in Android.
The confused deputy problem could occur on several plat-
forms, Linux, Windows, as well as the web. The root cause
of it is that the software does not sufficiently preserve the
original source of the request before forwarding the request
to an external actor that is outside of the software’s con-
trol sphere [10]. Concentrating on Android, it’s a little
bit different from traditional platforms. On Android, the
fundamental of the confused deputy attack is the exposed
component, which performs the privileged task.

In the confused deputy’s scenario, the deputy defines
some exposed interfaces. A malicious requester lacks the
permission that the deputy has to perform a malicious
operation. The requester invokes the deputy’s exposed
interfaces, causing the deputy to invoke a privileged sys-
tem API call. The system API call will be executed because
the deputy has the requested permission to perform the
system API call. In this way, the requester succeeded to
invoke a privileged system API call indirectly without
appropriate permissions.

As the example shown in Figure 1, the requester does
not have the permission to send text messages while the

Figure 1. Confused deputy attack [5].

deputy does. The deputy also defines a Notify method to
invoke a privileged system API call to send text messages.
When the requester calls the deputy’s Notify method, the
system API will send text messages because the deputy has
the necessary permissions. As a result, the confused deputy
attack succeeds.

With a good understanding of the confused deputy
attack on Android, it is easy to draw a conclusion that the
two preconditions of successfully conducting a confused
deputy attack on Android are (1) an exposed component;
and (2) this component performs a privileged task, from
which we could design our detecting system.

3. SYSTEM DESIGN
3.1. Overview

There are two main features of the applications to be
chosen as confused deputies that our system is based on.
First, an application with confused deputy vulnerability has
some exposed components, which can be invoked by other
applications that are in control of attackers. Because it is
a prerequisite to conduct a confused deputy attack that the
deputy must have exposed interfaces for public use and
does not check if the caller has the appropriate permis-
sions. In addition, the applications chosen to be deputies
have privileged operations (this is the purpose to conduct
confused deputy attack, to perform privileged operations),
like voice flow interception, and so on, which are acces-
sible from exposed interfaces. All these features make us
solve the following two problems in sequence to check
whether a confused deputy vulnerability exists in an appli-
cation: (1) to detect whether exported components exist or
not in an application; (2) to check whether these exported
components have privileged operations.

To solve these problems, we have designed a system
shown in Figure 2. The AndroidManifest Analyzer first
parses the AndroidManifest file and obtains the prelimi-
nary exported components. As this kind of detecting pro-
cess only depends on the AndroidManifest file, it is a kind
of coarse-grained detecting and also inaccurate to make a
decision whether the application is exploitable to confused
deputy attacks or not. In order to remedy this defect, we
have further designed two modules: Binary Analyzer and
Detector. Binary Analyzer constructs CFG, and Detector
inspects whether an application is exploitable to the con-
fused deputy attacks based on the constructed CFG in
code level.

3.2. Coarse-grained insecure-components
discovery

AndroidManifest file specifies the kinds of operations sup-
ported by components [11]. Therefore, the component
must be declared in the AndroidManifest file using the
exported flag or Intent Filters if it is able to receive Intents,
which makes PaddyFrog possible to obtain the insecure
exported components by analyzing AndroidManifest file.
In PaddyFrog, the AndroidManifest analyzing process is

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
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Figure 2. System overview.

Figure 3. Androidmanifest checking process.

divided into two stages: exported components discovery
stage and insecure components checking stage.

In the exported components discovery stage, PaddyFrog
uses a set of heuristics for inferring whether a component
has exposed public interfaces for other applications. These
rules’ definitions are based on whether the component has
exported attribute, whether it is protected with signature
permission, and whether it has eligible Intent-filters [12].

To check whether the exported component is insecure,
we have proposed some heuristics to filter the insecure
components from the exported components in Figure 3. If
a component is protected with android:permission which
declares the permissions that other applications must pos-
sess to interact with this component, it means that we can
infer whether the component is secure by analyzing the
value of android:permission. Otherwise, PaddyFrog fur-

ther deduces some components’ security by checking the
exported attributes and the related Intent filters following
the procedures described in Figure 3. What’s more, the
term, Intent-filter security insensitive in Figure 3, means
that the Intent action is not harmful to the security and pri-
vacy of the system, and we define this Intent action with
a whitelist.

The follow-up checking of insecure service components
is similar to that of Activity components except that it does
not consider whether the Intent filters are security sensitive
or not because there is no standard Intent action defined by
Android for service components. To the provider compo-
nent, its exported attributes’ default values change before
and after that android:targetSdkVersion is 16, which makes
PaddyFrog add an additional checking point to check
its security.

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
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3.3. Fine-grained insecure-components
identification

In this section, we describe how we detect the confused
deputy attack in the code level. The core idea of our
approach is first to build a CFG and then inspect whether
there exists a path from the entries of the exported com-
ponents to the security sensitive functions on this graph.
If paths were found, then we walk through the paths to
determine whether dynamic permission checking applied
or not. As Android application is a kind of component-
based program, the communication between components
depends on ICC. This event-trigger mechanism of Android
makes the CFG construction become more complicated
than the traditional applications on Windows or Linux. In
this paper, we divide the CFG construction into two parts:
intra-component CFG construction and inter-component
CFG construction.

3.3.1. Intra-component control flow graph

construction.

We build the CFG for a component from smali files
[13], which contain some instructions similar with Dalvik
bytecode instructions and most of the techniques used for
constructing CFG are quite standard [14]: PaddyFrog finds
all the JUMP-like instructions, divides the methods into
basic blocks (A basic block is a straight-line sequence
of code with only one entry point and only one exit)
and generates CFG edges between blocks that contain
JUMP-like instructions and blocks that contain JUMP-like
instructions’ targets.

Although constructing CFG is a well-known topic,
the Android-specific aspects make this task complicated.
During building the CFG for a component, inheritance
and dynamic binding make it impossible to unambigu-
ously determine what concrete a class reference represents,
which blurs the target of the indirect call instruction. In
our current prototype, we take a conservative approach like
[15]. When analyzing an application’s smali code, our sys-
tem maintains a comprehensive class hierarchy, and when
an ambiguous reference is encountered, we consider all
possible assignable classes.

Additionally, the component-based model of the
Android framework determines that there are several
entries in a single application, which result in that CFG
is not correctly built if we just take one method as the
entry. In PaddyFrog, we take all the methods as the begin-
ning entries, while it will be checked if this block has

been linked before linking two blocks, which prevents
generating duplicate edges.

3.3.2. Inter-component control flow graph

construction.

The Android platform uses Intents to communicate with
components in an application or with other applications.
So, we can build the component switching relationships by
tracing the Intent parameters of Start-Another-Component
Functions found from Android APIs [16] listed in Table I.

As described in [17], there are two different ways to
define an Intent, explicit and implicit. An explicit Intent
can specify its particular recipient component by name,
whereas an implicit Intent just specifies an action to the
system and the actual recipient is determined by system
according to the AndroidManifest.xml. In the Android-
Manifest.xml, all components (i.e., Activity, Service and
Receiver) in this application are specified what Intents they
can receive and the specific actions they can perform. For
these two kinds of Intents, we adapt different trace-back
methods to recognize its target.

For an explicit Intent, its target name can be assigned
via the constructors of Intent or three methods, setClass,
setCLassName, and setComponent, one of whose param-
eters is the explicit component name in Android API.
Obviously, it is easy to know its target component by back
tracing the component name parameter of related invoked
functions. Therefore the invoked component is determined.

For an implicit Intent, however, it behaves in a dif-
ferent way. The invoked component of the Intent is
assigned in the implicit way, and the Android system
will search the global AndroidManifest table to find the
components to start whose action field of the Intent-filter
matches with that assigned in the Intent [17]. Hence,
we back trace the Action, data, and so on field of the
Intent set by the functions it calls. Then find the com-
ponents declared in the AndroidManifest that match with
this Intent. As a result, the implicit invocation target
is determined.

We devised the following algorithm to obtain all the
switching relationships among components, and the whole
algorithm is described in Algorithm1.

In Algorithm 1, the function FindTarget(r) takes the
object reference storing the Intent as input which is
a parameter in the ”start-another-component-functions”
and the set of the target components as output.
In SIPSF(r)(SIPSF is short for SearchIntentParameter-

Table I. Start-Another-Component functions.

Starts another Activity Starts another Service Starts another Receiver

startActivity bindService sendBroadcast
startActivityForResult startService sendOrderedBroadcast
startNextMatchingActivity stopService sendStickyBroadcast
startActivityIfNeeded sendStickyOrderedBroadcast
startActivityFromChild
startActivityFromFragment

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
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Algorithm 1 Inter-Components Call Graph Construction

Require: s is the set of functions invoked by the Intent r; r
is the register which keeps the reference of Intent; u is
the set of Action; b is the block that the Intent belongs
to; n is the component name parameter of the functions
which set the component name to the Intent; p is the
Action parameter of the functions which set the Action
field of the Intent

Ensure: t is the set of the target component
1:

2: function FINDTARGET(r)
3: t �;
4: u �;
5: s SIPSF(r);
6: if s contains constructors of Intent or functions that

set a specific component to the Intent then / �
handlingexplicitIntents � /

7: TraceParameterValue(n, t, b);
8: else / � handlingimplicitIntents � /
9: TraceParameterValue (p, u, b);

10: FindMatchComponent(u, t);
11: end if
12: return t
13: end function
14: function SIPSF(r)
15: s �;
16: for each instruction i do
17: if i is INVOKE then
18: if i is invoked by r then
19: s s [ i;
20: end if
21: end if
22: end for
23: return s
24: end function
25: function TRACEPARAMETERVALUE(r, t, b)
26: for each instruction i in block b do
27: if i is Move-op r, n then / � r n � /
28: TraceParameterValue(n, t, b);
29: else if i is const-op r, C then / � r C � /
30: t t [ C;
31: return
32: else
33: for each block link to b do
34: TraceParameterValue(r, t, block);
35: end for
36: end if
37: end for
38: end function
39: function FINDMATCHCOMPONENT(u, t)
40: for each action act in u do
41: for each component com in AndroidAndroid-

Manifest do
42: if act match with the intent-filter of com

then
43: t t [ com;
44: end if
45: end for
46: end for
47: end function

SettingFunctions), the algorithm searches every possible
branch backwards to find the most "close" function which
sets the attributes of the Intent (i.e., the constructors , set-
Class(), setClassName(), setComponent(), and setAction()
invoked by the Intent). If the invoked function set contains
the constructor which needs a specific component name as
a parameter or setClass() or setClassName() or setCom-
ponent(), it means the target component is invoked in the
explicit way, and we use TraceParameterValue (r, t, b) to
back trace the component name. In TraceParameterValue
(r, t, b), the algorithm scans each instruction in the block.
If it’s move-op r, n, invoke TraceParameterValue(n, t, b)
recursively; if it’s const-op r,C, add C to the set t and
return; if cannot determine the value of the register in the
block, run TraceParameterValue() on each of the blocks
that invokes this block. There are also limitations of Tra-
ceParameterValue() that we cannot obtain the right result
if component’s name is not constant, which will be solved
in the future. If the set is empty which means there are
no functions that assign the specific component name to
the Intent in the set, it implies that the target component is
invoked in implicit way, and the Action field must be set.
We back trace the parameter of the constructor which needs
Action as a parameter or setActon() function to obtain the
value of the Action field of the Intent by TraceRegister-
Value(). After Actions are found, FindMatchComponent()
is called to find the matched components.

3.3.3. Permission check identification.

We have searched all the functions that need extra
permissions throughout Android APIs and found 73 func-
tions that are able to acquire users’ privacy information
(e.g., system log and Mandatory Access Control address)
and 10 functions that are able to perform some danger-
ous actions (e.g., send a test message, make a call). We
labeled these functions as "sensitive" functions and formed
Table II. The constructed CFG includes a tremendous num-
ber of function invoking paths. Among all these possible
paths, not all of them mean a confused deputy vulnera-
bility for the following reasons: (1) There is no sensitive
(privileged) functions like the functions in the Table II
invoked on the possible paths; (2) Some permission check-
ing functions (i.e., Context.checkCallingPermission() and
Context.checkPermission()) may appear on the possible
paths, which ensure that the application caller has the
required permissions. However, we cannot obtain this
information by solely analyzing the AndroidManifest file.

Hence, we designed the following CFG-based check-
ing algorithm to reduce the false positive(or negative) ratio
caused by relying solely on the AndroidManifest file.

Before running the algorithm, we scan the whole smali
code to locate all the sensitive function invocations. We
search backwards in the CFG from the blocks that con-
tain sensitive function invocations to determine if there
is a path between this block and the exported insecure
components. We define the APK as secure if there is
no path found. If there is a path, we check whether the
16 permission-check functions (i.e., checkCallingPermis-

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
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Table II. Different sensitive function categories.

Sensitive function categories Function number Descriptions

Telephony identifiers 23 IMEI, IMSI, MCC, MNC, LAC, CID, etc.
Account information 19 account name, account password, etc.
GPS coordination 4 current GPS Geo location
Web browser information 11 browser history
WIFI connection information 14 WiFi credentials, MAC address, etc.
Audio video flow 2 call recording, video capture, etc.

Telephony services abuse 3 premium SMS sending, phone call composition...
Arbitrary code execution 7 native code...

IMEI, International Mobile Equipment Identity; IMSI, international mobile subscriber identity; MCC, mobile country code; MNC,

mobile network codes; LAC, location area code; CID, Customer identity; MAC, mandatory access control.

Algorithm 2 Checking Algorithm

Require: b is the block which contains sensitive function
invocation; s is the set of possible paths

Ensure: whether this sensitive function is exploitable
1: function ISVULNERABLE(b)
2: s �

3: p �

4: PathSearch(b, s)
5: for each path p in s do
6: if NOT HasPermissionCheck(p) then
7: return true
8: end if
9: end for

10: return false
11: end function
12: function HASPERMISSIONCHECK(p)
13: for each node n in p do
14: if n invokes permission-check functions then
15: if the permission checked matches with the

permission required then
16: return true
17: end if
18: end if
19: end for
20: return false
21: end function

sion and checkCallingUriPermission) are invoked on the
path. If one of them is called, we inspect that whether
the checked permission is what the privileged function
requires, which determines if it is secure or not; otherwise,
we define the application as vulnerable.

4. EVALUATION AND RESULTS

The whole system is written in Java with more than 8600
lines of code. APKtool is needed to decompile applica-
tions from APK format to smali files which is the format of
PaddyFrog’s input before processed by PaddyFrog. There
are several versions of APKtool, and here we choose
the newest version at this time, 1.4.1. With experimen-
tal computer equipped with an Intel Core i5-3320 CPU

Table III. Result 1 of PaddyFrog’s analysis.

Total apps# 7018

Apps with public exported interfaces# 1 1929
Potential2 vulnerable apps# 1250
Vulnerable3 apps# 1240

1 This is the result by only Androidmanifest analysis.
2 "Potential" means applications with exported interfaces and

sensitive function invocations. What’s more, there are paths

detected from exported interfaces to sensitive functions.
3 "Vulnerable" means applications with exported interfaces,

sensitive function invocations and there are paths from

exported interfaces to sensitive functions WITHOUT any

dynamic permission check on the paths.

of 2.6GHz and 4GB of RAM, we carried out an in-
depth evaluation on PaddyFrog in terms of its effectiveness
and performance.

4.1. Dataset preparation

We have crawled 7190 real-world applications from two of
the most popular markets in China, HiApk [7] and Anzhi
market [8](5400 from HiApk and 1790 from Anzhi mar-
ket) from 1 to 15 October 2012 to make our evaluation
more "real". Over 7000 real-world applications are enough
to perform a test on PaddyFrog in all aspects for what
we do is to evaluate our system and make our results as
typical as possible at the same time rather than to take a sur-
vey of markets applications. Besides, the applications we
have downloaded are all top 100 downloads of their types,
which makes our results more typical. These applications
are from different categories including SMS applications,
web browsers, office applications and games. The over-
all experiments are conducted on these 7190 applications
stated before. In these 7190 applications, 172 applica-
tions cannot be disassembled, for the limitations of APK-
tool. Therefore, we tested our system on the remaining
7018 applications.

4.2. Results and analysis

We have evaluated our methods on the downloaded 7018
applications. The results are listed in Table III.

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
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Table IV. Result 2 of PaddyFrog’s analysis.

Apps with public exported interfaces# 1929

Apps with public exported interfaces 679
but no sensitive function invocations# 1

Apps with public exported interfaces & 1250
sensitive function invocations# 2

1 "No sensitive function invocations" means that there is no

path found from exported interfaces to sensitive functions.
2 There are paths found from exported interfaces to sensitive

functions.

Table V. Result 3 of PaddyFrog’s analysis.

Apps with public exported interfaces & 1250
sensitive function invocations#

10
dynamic permission check#
Vulnerable apps# 1240

From Table III, we know that 1929 applications with
public exported interfaces were discovered from the 7018
applications, and their percentage is about 27.4% when
we only make use of the AndroidManifest file analysis. In
these 1929 applications, 1250 are detected with exported
interfaces and sensitive function invocations from these
interfaces. However, there are only 1240 applications that
are really vulnerable, which accounts for less than 18% of
the overall applications detected by PaddyFrog.

Table IV tells us that there are 679 applications that
do not call any sensitive functions listed in Table II from
exported interfaces, which cannot endanger our mobiles
but reported as vulnerable in [6] in these 1929 applications
with exported interfaces. The other 1250 applications have
public exported interfaces and invoke sensitive functions
from these interfaces, which may endanger our phones.
However, not all of them are vulnerable to confused
deputy attack.

For the remaining 1250 applications, they have pub-
lic exported interfaces and sensitive function invocations.
Will all these applications be exploitable for the con-
fused deputy attack? Table V shows us that in these 1250
applications, only 1240 applications are really vulnera-
ble. As to the other 10 applications, they are integrated
with some dynamic permission-checking functions in code
level, which can prevent them from being invoked ille-
gally. It’s noteworthy that there are 9 applications, which
adapt the dynamic permission-checking functions in some
vulnerable paths but not in all paths, so they are still not
able to prevent confused deputy attack. We also checked
the 10 applications with permission-checking functions
manually. And we have found that one application is still
exploitable even with permission-checking functions. As
we dig deeper, we have figured out the scenario that the
author of the application do checks the permission before
this privileged operation, but he leaves the result of check-
ing alone and continue to perform the operation. That is,
the operation will be performed no matter whether the per-

Table VI. Accuracy of PaddyFrog.

Vulnerable apps detected by PaddyFrog# 1240
Apps checked manually# 124
Vulnerability detected apps# 124

mission is met or not. Thus, PaddyFrog cannot prevent
false negative.

We define an application as vulnerable only if there is
a path that exists from the public exported interfaces to
the privileged operations and no dynamic permission check
functions called on the path, which means that the callers
with less permissions can perform privileged operations
and is proved to be effective. Under this definition, the
1240 applications are vulnerable, and there is no false pos-
itive for that we have found at least one vulnerable path for
each of the applications, and we have proved that (actually,
we have verified part of them).

4.3. Effectiveness and performance

We have selected 10% percent (namely 124) of the appli-
cations detected vulnerable by PaddyFrog randomly to be
checked manually due to the large amount of detected
applications to evaluate the effectiveness of PaddyFrog,
and the result is shown in Table VI. It’s shown that all of
the selected 124 applications are proved vulnerable, and
there is no false positive. Actually we do not "exploit" the
applications during the manual checking process. We write
little simple applications to invoke the vulnerable com-
ponents detected by PaddyFrog to verify whether these
simple applications could perform privileged operations
without related permissions. It is worthy to note that being
able to perform unauthorized operations is also a kind of
exploit. Although there is no false positive, PaddyFrog can-
not prevent false negative because of code obfuscation as
stated before.

In regard to performance, we instrumented PaddyFrog
to measure its execution time while it detects all the
applications. The median total processing time for an
application is 14.4s, with median processing time for
AndroidManifest 1.5s, disassembling 8.3s and smali anal-
ysis 4.6s, which suggests that PaddyFrog can quickly
inspect a large amount of applications for confused
deputy vulnerability.

4.4. Case study

To understand the nature of our tool, we talk about two
scenarios in depth with examples. These scenarios were
selected to illustrate some of the patterns we encountered
in practice, as well as how our system was able to handle
them.

4.4.1. UC Browser.

The simplest scenario, which would be assumed as vul-
nerable by [6], is that there are public exported interfaces in
the application, while these interfaces do NOT invoke any
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Figure 4. UC Browser.

sensitive functions directly or indirectly. Actually, these
components can do little harm to our phones. In Pad-
dyFrog, it first searches for all methods F() invoked by the
public exported interfaces directly or indirectly in the smali
files. After all invoked methods are found, examines each
method F() to determine if it is a sensitive function or not.
The application is defined as secure if all the methods F()
are not sensitive functions.

Take the APK UC Browser-7.9.4 as an example. The
component, com.uc.browser.ActivityUpdate is inspected
exported by manifest analysis. The call graph inside the
component is described in Figure 4.

According to the graph, all the functions invoked from
the exported component, com.uc.browser.ActivityUpdate
are common functions which requires no extra per-
missions. No privileged functions found invoked by
the exported component means this component is not
exploitable to confused deputy attack although it could be
used as a confused deputy. Thus, it can do little harm to the
phone although it is exported.

4.4.2. LBE Privacy Guard.

We define the APK as secure if there is a permis-
sion check before the invocation of the sensitive func-
tions although there is a path between the sensitive
functions and the exported interfaces. Take the APK
LBE-Privacy-Guard-4.0.1894 as an example. The exported
interface acquired by the AndroidManifest analysis is
com.lbe.security.service.battery.NightM odeReceiver. The

path between the sensitive function Ljava/lang/Runtime;-
>exec() and the exported interface is showed in Figure 5.

As showed in the graph, the sensitive function
Ljava/lang/Runtime;->exec() could be invoked indirectly
from the exported interface com.lbe.security.service
.battery.NightMode- Receiver. However, before
the sensitive function is invoked, the application
called the check-permission function via the path,
com.lbe.security.service.b.e.a(), com.lbe.security.servic-
e.b.a.a(), com.lbe.security.service.b.a.<init>(). Therefore,
the permission is checked before the sensitive function
is invoked, which can prevent confused deputy attack.
The same as the case in Section 4.4.1, it’s detected as
vulnerable according to [6], however, the attack could
be prevented by the permission-checking process. Thus,
our tool could reduce the false positive rate introduced
by [6].

5. DISCUSSION

Our evaluation results show that our prototype can effec-
tively detect confused deputy vulnerabilities. In this
section, we further talk about possible limitations in our
system and explore ways for future improvements.

Firstly, the checking results depend on the sensitive
function set (as shown in Table II) and the checking-caller-
permission functions. If they are incomplete, it will take
great bad affects to the results. However, PaddyFrog is
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Figure 5. LBE Privacy Guard.

only a testing prototype and when needed, we can add
additional relevant functions into PaddyFrog to improve its
performance.

Secondly, PaddyFrog could perform unpredictably
when it comes to code obfuscation, which is also a very big
challenge faced by static analysis. We will apply dynamic
analysis techniques to detecting in the future work due to
the shortcoming of static analysis. Besides, dynamically
determining which component to start at runtime can also
fool PaddyFrog.

Thirdly, we consider ICC channels as the only mech-
anism available in Android to establish communications
between applications. However, in some cases applications
may communicate by other methods rather than ICC. For
example, applications may establish communication chan-
nels via Internet socket, file system, and so on, which
completely bypass Android’s middleware layer but can
be used to implement confused deputy attack. To take
these mechanisms into consideration, we can extend the
construction of CFG.

Lastly, Java language has the possibility to load classes
dynamically, and if there are some sensitive functions
existed in the loaded classes, it is possible to be used to
implement confused deputy attack. However, the charac-
teristics of dynamic loading makes static analysis impossi-
ble because the loaded classes are only known at runtime.

Up to now, PaddyFrog cannot deal with it, but in the
future, we try to solve them by analyzing the parameters of
functions loadClass.

6. RELATED WORK

Researchers have analyzed the security model of Android’s
permission system [18], assessed the framework of
Android [19], surveyed attack formats in Android [20],
developed analysis tools for Android applications [21,22],
and proposed new protection mechanisms (e.g., [23,24]).
PaddyFrog is different from these efforts with its unique
focus on a flaw in the Android’s permission system, which
makes application exploitable for the confused deputy
attack.

Several works have pointed out flaws of the current
Android permission system. One weakness is the lack
of global properties: Android’s permission system does
not prevent privilege escalation. Davi et al. [25] and
Felt et al. [5] have studied privilege-escalation attacks in
detail. ComDroid [26] uncovers possible unintended con-
sequences of exposing certain application components. At
the same time, some researchers investigated different mit-
igation mechanisms. Bugiel et al. [27] developed a system
that monitors interactions between applications at runtime
and has the capacity to mitigate a wide range of privilege
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escalation attacks. Quire [28] similarly addresses the per-
mission delegation problem by proposing an IPC call chain
tracking mechanism to identify the provenance of these
IPC requests and enforce certain policy. Dietz et al. [28]
proposed a framework for provenance tracking to mitigate
the confused deputy problem. Bugiel et al. [6] assigned
trust levels to applications, allowing applications to com-
municate only if they are at the same level. All of these
works focus on implementation mechanism of privilege
escalation attack or how to prevent this kind of attack.
However, our work focuses on how to use static program
analysis method to detect the existence of the privilege
escalation vulnerability in an application.

From another perspective, these works have a relation
with the privacy leakage and several works have identified
the problem of privacy leaks in Android [29,30]. Projects
such as TaintDroid [29], ScanDroid [31] and PiOS [32]
aim to automatically detect and prevent dangerous private
information leaks in Android. PiOS [32] develops a static
analysis tool to spot possible information leaks in iOS
applications. In our work, we only learn how to define the
privacy information from these works.

To the best of our knowledge, the closest work to ours is
Chan et al. [6]. They all proposed a vulnerability checking
system to detect benign applications, which fail to enforce
the additional checks on permissions granted. However,
Chan [6] et al. looks into the AndroidManifest file only,
but our works use the missing information at the code level
and overcome many limitations described by Chan et al.
[6]. Hence, their tool is more coarse-grained and produces
more false positives.

7. CONCLUSIONS

In this research, we first designed a static analyzer, Pad-
dyFrog, to detect the confused deputy vulnerability in
code level. In doing this, we introduced how to find the
public exposed interfaces based on the AndroidManifest
file, build the CFG inside and outside of the compo-
nents, and detect confused deputy vulnerability based on
the CFG. PaddyFrog prototype was implemented based on
the disassembler APKtool and was evaluated with 7190
real-world applications. The empirical experiment demon-
strated a satisfactory scalability and performance of our
analysis method, as well as we provided two insight cases
to illustrate why this method is more precise effective.
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