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Abstract—This work develops a static analysis to create a
model of the behavior of an Android application’s GUI. We pro-
pose the window transition graph (WTG), a model representing
the possible GUI window sequences and their associated events
and callbacks. A key component and contribution of our work is
the careful modeling of the stack of currently-active windows, the
changes to this stack, and the effects of callbacks related to these
changes. To the best of our knowledge, this is the first detailed
study of this important static analysis problem for Android. We
develop novel analysis algorithms for WTG construction and
traversal, based on this modeling of the window stack. We also
describe an application of the WTG for GUI test generation,
using path traversals. The evaluation of the proposed algorithms
indicates their effectiveness and practicality.

I. INTRODUCTION

The explosive growth in the number of deployed smart-
phones and tablets has significantly changed the computing
landscape. The correctness, security, and performance of such
devices is of paramount importance for many millions of users.
For software engineering researchers, this raises high expecta-
tions for developing a comprehensive toolset of algorithms for
understanding, testing, and verification of Android software.

Our focus is on a key component of such a toolset: a
static analysis to create a model of an application’s graphical
user interface (GUI). Such a model can be used for program
understanding, testing, and dynamic exploration [1]–[6]. It
could also potentially be a starting point for static data-flow
analyses, for example, for checking of security properties, leak
defects, and other correctness properties [7]–[24].

We propose a particular form of a GUI model for An-
droid: a window transition graph (WTG). Nodes in this graph
represent windows and edges represent transitions between
windows, triggered by callbacks executed in the UI thread.
To allow the development of client data-flow analyses based
on the WTG, graph edges are annotated with the sequences
of callback methods invoked by the Android platform. These
annotations capture event handling callbacks and window
lifecycle callbacks.

Technical challenges and insights. The representation and
analysis of these callback methods play a critical role in a
static analysis for WTG construction, and more generally,
control/data-flow analysis for Android. Transitions between
windows are triggered by such methods, and during these
transitions additional callbacks occur. The current state of
the art in static analysis for Android is inadequate when it
comes to represent such run-time behavior. For example, we
have seen various cases from real applications where an event
handler may force the closing of the current window and its

predecessor window, while at the same time opening a new
window; this leads to complicated interleavings of callbacks
for the three windows. As another example, we have seen many
cases where the return from a window does not come back to
the predecessor, but rather to another window displayed earlier.
In existing work, including our own prior work, there is no
conceptual clarity on these possible run-time behaviors and
how they can be analyzed in a static control-flow analysis.

We address this problem by clarifying the major elements
of such behaviors, with the help of the abstraction of a window
stack. The window stack generalizes the standard Android
notion of a “back stack” [25], which stores the currently-alive
activities. (Activities correspond to one category of windows.)
Our generalization (1) captures additional categories of win-
dows, and (2) models the changes to the window stack. An
important observation is that a single transition in the WTG can
have complex effects on the window stack: for example, it can
pop and/or push windows, all as part of the same WTG edge. A
major contribution of our work is the careful modeling of these
stack changes and their related callbacks—both the callbacks
that trigger the stack changes, and the callbacks triggered by
them. To the best of our knowledge, this is the first detailed
study of this important static analysis problem for Android.

The combined analysis of callbacks and the window stack
also provides a solution to an important related problem: which
sequences of window transitions are feasible? One cannot
consider all WTG paths, since some such paths are provably
infeasible. We can draw an analogy with the sequences of
calls/returns in ordinary programs: modeling the possible states
of the call stack is a key concern in static analysis of call/return
sequences (which, in turn, is an important component of inter-
procedural data-flow analysis). However, the behavior of the
window stack can be significantly more complicated. Our work
provides a systematic identification of valid WTG paths (and,
by trivial extension, valid call/return sequences), which is a
critical prerequisite for future developments in interprocedural
data-flow analysis for Android. As an exemplar client, we have
developed a test generation tool in which valid WTG paths
naturally correspond to test cases.

Contributions. The contributions of this work are: (1) defini-
tion of the window transition graph (WTG) as a GUI model
for understanding, testing, dynamic exploration, and static
checking of Android applications; (2) static analysis for WTG
construction, employing careful modeling of the interplay
between callbacks and the window stack; (3) algorithm to
identify valid paths in the WTG, based on modeling of window
stack changes; (4) test generation tool based on the WTG; and
(5) experimental evaluation of the proposed algorithms.
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II. ANDROID BEHAVIOR AND ITS WTG REPRESENTATION

A. Relevant Android Features

Figure 1 contains an example derived from the APV PDF
viewer [26]. For simplicity, the code and its description omit
a number of non-essential details. The example illustrates
windows (e.g., ChooseFileActivity), GUI widgets (e.g.,
fileListView), and event handlers (e.g., onItemClick).

Windows. Subclasses of android.app.Activity are used
to define activities, which are core application building blocks.
ChooseFileActivity, OpenFileActivity, Options, and
About from Figure 1 are such classes; execution starts from
an instance of ChooseFileActivity, which shows a file
list. An activity displays a window containing several GUI
widgets. A widget (also referred to as a “view”) is an instance
of a view class. In Figure 1, variables that refer to widgets
include fileListView (list of files), l (the same list), item
(individual list element), aboutItem, optionsItem (both are
elements of a menu, as described below), and btn (a button).

We also consider the two other common categories of
Android windows: menus and dialogs. Instances of menu
classes represent short-lived windows associated with activities
(“options” menus) and widgets (“context” menus). In Fig-
ure 1 OpenFileActitivy has an options menu, initialized by
onCreateOptionsMenu to contain menu items aboutItem
and optionsItem. A dialog is an instance of a subclass of
android.app.Dialog. Both menus and dialogs are used for
modal events that require users to take an action before they
can proceed [27].1 We will use Win to denote the set of all
run-time windows (activities, menus, and dialogs), and View
for the set of all run-time widgets in these windows.

A menu/dialog takes control temporarily for a simple
interaction with the user, and its lifetime is shorter than activity
lifetime. The last activity that was displayed before a menu or
a dialog was displayed is considered to be the owner activity of
this menu/dialog. In the running example, the options menu is
owned by OpenFileActivity. There are more general cases:
for example, in OpenFileActivity there exists a button (not
shown in Figure 1) for which a long-click event opens a context
menu m1, in which a menu item can be clicked to open a
dialog d1 asking for a page number in the PDF file; if an
incorrect number is entered, d1 shows another dialog d2 with
an error message. In this example OpenFileActivity is the
owner activity of m1, d1, and d2. The lifetime of a menu or
a dialog is contained within the lifetime of its owner activity.

Events. Each w ∈ Win can respond to several events. Widget
events are of the form e = [v,t] where v ∈ View is a
widget and t is an event type (e.g., v could be a button and
t could be “click”). We also consider five kinds of default
events. Event back corresponds to pressing the hardware
BACK button, which typically (but not always) returns to
the window that triggered the current window. Event rotate
shows that the user rotates the screen, which triggers various
GUI changes. For example, if the currently-active window is a
dialog, this dialog is destroyed, its underlying activity is also
destroyed, and the activity (but not the dialog) is recreated and
redisplayed. Event home abstracts a scenario there the user

1Such windows are common: for example, in our experiments, more than
half of window transitions involved menus and dialogs.

1 class ChooseFileActivity extends Activity
2 implements onItemClickListener {
3 ArrayList<FileListEntry> fileList;
4 ListView fileListView;
5 // === Lifecycle callbacks ===
6 void onCreate() { ...
7 fileListView.setOnItemClickListener(this); }
8 // Other lifecycle callbacks: onDestroy, onStart,
9 // onRestart, onStop, onResume, onPause
10 // === Widget event handler callback ===
11 void onItemClick(ListView l, View item, int p) {
12 FileListEntry entry = fileList.get(p);
13 File file = entry.getFile();
14 if (!file.exists()) return;
15 Intent in = new Intent(OpenFileActivity.class);
16 // initialize intent based on file
17 startActivity(in); } }
18 class OpenFileActivity extends Activity {
19 MenuItem aboutItem, optionsItem;
20 // === Lifecycle callbacks ===
21 // onCreate, onDestroy, etc.
22 void onCreateOptionsMenu(Menu menu) {
23 aboutItem = menu.add("Item");
24 optionsItem = menu.add("Options"); }
25 void onOptionsMenuClosed(Menu menu) { ... }
26 // === Widget event handler callback ===
27 void onOptionsItemSelected(MenuItem item) {
28 if (item == aboutItem)
29 startActivity(new Intent(About.class));
30 if (item == optionsItem) {
31 startActivity(new Intent(Options.class));
32 this.finish(); } }
33 class Options extends Activity
34 implements OnClickListener {
35 Button btn;
36 void onCreate() { btn.setOnClickListener(this); }
37 void onClick(View v) {
38 startActivity(new Intent(About.class));
39 this.finish(); } } }
40 class About extends Activity { ... }

Fig. 1. Example derived from the APV PDF reader [26].

switches to another application and then resumes the current
application (e.g., by pressing the hardware HOME button to
switch to the launcher, and then eventually returning to the
application.) Event power represents a scenario where the
device is put in low-power state by pressing the hardware
POWER button, followed by device reactivation. Event menu
shows the pressing of the hardware MENU button to display
an options menu (or a click to display the hidden parts
of an action bar). A default event will be represented as
e = [w,t] ∈ Win × {back , rotate, home, power ,menu}
where w is the currently-active window. We will use Event
to denote the set of all widget events and default events.

Callbacks. Each e ∈ Event triggers a sequence of call-
backs that can be abstracted as [o1,c1][o2,c2] . . . [ok,ck]. Here
ci is a callback method and oi is a run-time object on
which ci was triggered. We focus on two categories of
callbacks. Widget event handler callbacks respond to widget
events. Figure 1 shows three examples. Method onItemClick
handles click events for items of list fileListView. The
call at line 7 registers the activity with a listener for such
events. The list, the item being clicked, and its position in
the list are provided as parameters to the callback. Method
onOptionsItemSelected handles clicks for items in the
options menu, and takes the clicked item as a parameter.
Method onClick at lines 37–39 responds to clicks on btn.
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Lifecycle callbacks are used for lifetime management of
windows. These methods are of significant interest to de-
velopers (e.g., in order to avoid leaks [3], [20]–[22]). There
are seven kinds of lifecycle callbacks for activities, as indi-
cated in Figure 1. For example, creation callback onCreate
indicates the start of the activity’s lifetime, and termination
callback onDestroy indicated end of lifetime. Menus and
dialogs can also have create/terminate callbacks, for exam-
ple, onCreateOptionsMenu and onOptionsMenuClosed
in Figure 1.2 We will use abstract names create and
destroy to represent these create/terminate callbacks. Simi-
larly, start , . . . , pause will denote corresponding callbacks in
activities and (if applicable) in dialogs and menus. Let Cback
be the set of all lifecycle and widget event handler callbacks.

B. Motivation and Related Work

Section II-C describes the window transition graph (WTG),
our proposed static representation of window transitions and
callbacks. Each node corresponds to a window and each
edge represents a window transition, labeled with a callback
sequence. Figure 2 shows the WTG for the running example.

Why this static representation? A number of challenging
software engineering problems for Android can be addressed
with static analyses where the modeling of control flow plays
a critical role. A few examples include checking of security
properties (e.g., [7]–[15]), detection of energy defects (e.g.,
[17]–[19]), leak defects (e.g., [3], [20]–[22]), data races (e.g.,
[16]), and other correctness checking (e.g., [23], [24]). For
example, common battery-drain defects—“no-sleep” [17] and
“missing deactivation” [18], [19]—can be stated as properties
of callback sequences. These sequences could potentially be
derived from WTG paths. Prior work [17] defines a data-flow
analysis to identify relevant API calls (e.g., GPS is turned on)
and to search for no-sleep paths along which corresponding
turn-off/release calls are missing. For this work, the order of
callbacks is of critical importance, but their solution lacks
generality and precision, and may even involve manual efforts
by the user. Some dynamic analyses of energy defects [18],
[19] also consider paths in which a sensor (e.g., the GPS) is not
put to sleep appropriately, often because of mismanagement
of lifecycle callbacks. A static approach to identify such code
paths requires callback ordering information, and the WTG
can provide this information. Another example is static taint
analysis for Android. Representative algorithms such as [12]
do not model soundly all callback interleavings and do not
employ the control-flow validity constraints captured in our
work. Future work could investigate whether such analyses
benefit from the WTG representation. Yet another example is
static detection of resource leaks. Such leaks are often the
result of improper resource management under event/callback
sequences [3], [20]–[22], including events such as rotate,
home , and back . Developing static leak detectors requires
callback sequences, which could be obtained from the WTG.

In addition to defect detection, the WTG is directly appli-
cable for GUI model construction for program understanding,
testing [1]–[4], and dynamic exploration [5], [6], [28]. In
Section IV we describe a test generation tool we developed
based on the WTG, using traversals of valid WTG paths.

2There is a related callback onPrepareOptionsMenu; for simplicity, it
is not discussed here, but our implementation handles it.

Related work. Despite the critical importance of analyzing
statically the possible GUI behaviors of an Android appli-
cation, the current state of the art lacks a systematic and
comprehensive solution. For example, an activity transition
graph is constructed in [5] to guide run-time GUI exploration,
but the underlying static analysis [7], [29] uses conservative
assumptions about GUI-related control flow, and does not
model the changes to the window stack. Other work that
creates static GUI models (e.g., [10]) also lacks generality
and representations of the window stack. Our earlier work
[30] considers analysis of callbacks and determines ordering
constraints between them. However, it also does not provide a
comprehensive solution: (1) it considers only a limited subset
of lifecycle callbacks; (2) it does not represent the interleavings
of callbacks from multiple windows, as illustrated in Table I;
(3) it does not model the window stack (e.g., it assumes that
each back event will return to the previous window); (4) it does
not handle the owner-close operations described shortly; (5) it
does not consider rotate, home , and power events. Other work
that analyzes possible callbacks in Android (e.g., [12]–[16],
[31]) has similar or even more significant limitations. To the
best of our knowledge, the proposed static analysis is the first
comprehensive solution to the important problem of modeling
the possible window/callback sequences in an Android GUI.3

C. Modeling of Window Transitions

Opening and closing of windows. Each callback could open a
new window or close an existing one. Consider the following
scenario: when an “Exit” button in an activity a is clicked,
the corresponding event handler opens a new dialog d to ask
the user to confirm the exit. When the dialog’s “Yes” button
b is selected, its handler h closes both the dialog as well as
its owner activity a, and control returns back to some prior
activity a′. At each event, various callbacks occur. For exam-
ple, clicking b triggers [b,h] [d,destroy ] [a,pause] [a′,restart ]
[a′,start ] [a′,resume] [a,stop] [a,destroy ]. Our goal is to
model statically such behavior and the related changes to the
window stack.4 Note that we focus on the behavior of the main
thread (i.e., UI event thread) of the application; analysis of
multiple threads (e.g., as done in [16]) or of control flow across
applications is not being considered. Additional limitations of
the approach are discussed in Section III-D.

There are various API calls to open and close windows.
For example, a call to startActivity opens a new activity,
and a call to finish closes an existing one. Similarly, calls to
show and dismiss can create and destroy a dialog. These will
be represented with abstract operations open(w) and close(w),
where w is the window being created/destroyed. We have never
encountered an example of an execution of a callback method
c that opens more than one window, and thus we assume that
any path through c contains at most one open(w) operation.

Operations close(w) may also be triggered during an exe-
cution of c. The two common patterns are self-close and owner-
close. In a self-close, c is associated with a window w and c’s
execution issues close(w); an example is shown at line 39
of Figure 1. Another example is onOptionsItemSelected

3Since our approach is tightly coupled with Android-specific semantics, it
is unlikely that it will be relevant beyond Android code.

4The discussion assumes Android version 4.3; some earlier versions have
slight variations in certain sequences of callbacks.
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TABLE I. SOME WINDOW STACK CHANGES AND CORRESPONDING CALLBACK SEQUENCES.

Stack Event Handler Open/Close Stack changes Callback sequence

1 (. . . , a) [v,t] [v,h] none none [v,h]
2 (. . . , a) [v,t] [v,h] open(a′) push a′ [v,h][a,pause][a′,create][a′,start][a′,resume][a,stop]
3 (. . . , a′, a) [v,t] [v,h] close(a) pop a [v,h][a,pause][a′,restart][a′,start][a′,resume][a,stop][a,destroy]
4 (. . . , a) [v,t] [v,h] close(a), open(a′) pop a, push a′ [v,h][a,pause][a′,create][a′,start][a′,resume][a,stop][a,destroy]
5 (. . . , a′, a) [a,back ] implicit close(a) pop a [a,pause][a′,restart][a′,start][a′,resume][a,stop][a,destroy]
6 (. . . , a) [a,rotate] implicit close(a), open(a) pop a, push a [a,pause][a,stop][a,destroy][a,create][a,start][a,resume]
7 (. . . , a) [a,home] implicit none none [a,pause][a,stop][a,restart][a,start][a,resume]
8 (. . . , a) [a,power ] implicit none none [a,pause][a,stop][a,restart][a,start][a,resume]
9 (. . . , a) [a,menu] implicit open(m) push m [m,create]
10 (. . . , a) [v,t] [v,h] open(m) push m [v,h][m,create]
11 (. . . , a) [v,t] [v,h] open(d) push d [v,h][d,create]
12 (. . . , a, m) [v,t] [v,h] close(m) pop m [v,h][m,destroy]
13 (. . . , a, m) [v,t] [v,h] close(m), open(a′) pop m, push a′ [v,h][m,destroy][a,pause][a′,create][a′,start][a′,resume][a,stop]
14 (. . . , a′, a, m) [v,t] [v,h] close(m), close(a) pop m, pop a [v,h][m,destroy][a,pause][a′,restart][a′,start][a′,resume][a,stop][a,destroy]
15 (. . . , a, m) [v,t] [v,h] close(m&a), open(a′) pop m&a, push a′ [v,h][m,destroy][a,pause][a′,create][a′,start][a′,resume][a,stop][a,destroy]
16 (. . . , a, m) [m,back ] implicit close(m) pop m [m,destroy]
17 (. . . , a, m) [m,rotate] implicit close(m&a), pop m&a, [a,pause][m,destroy][a,stop][a,destroy][a,create][a,start][a,resume][m,create]

open(a&m) push a&m
18 (. . . , a, m) [m,home] implicit close(m) pop m [a,pause][m,destroy][a,stop][a,restart][a,start][a,resume]
19 (. . . , a, d) [v,t] [v,h] open(a′) push a′ [v,h][a,pause][a′,create][a′,start][a′,resume][a,stop]

associated with the options menu m: the semantics of menu-
item-click event handlers includes an implicit menu self-close
operation close(m) that does not appear in the code. In owner-
close operations, if c is associated with a menu m or a dialog d,
it may issue close(a) for the owner activity a. For example, the
path at lines 30–32 in Figure 1 has an open operation followed
by owner-close at line 32 and then an implicit self-close.

Note that the actual opening/closing of windows, as well as
the related lifecycle callbacks, happen only after the callback
issuing the open/close operations has completed. For example,
after lines 30–32 are executed and onOptionsItemSelected
completes, menu m and its owner a = OpenFileActivity
are closed, activity a′ = Options is opened, and the follow-
ing callbacks are observed: [m,destroy ] [a,pause] [a′,create]
[a′,start ] [a′,resume] [a,stop] [a,destroy ]. The ordering of
open and close operations in a callback’s execution path
typically does not affect the outcome of its execution.

Behavior of the window stack. The window stack represents
the set of currently-alive windows. The window that currently
interacts with the user is on top of the stack. Due to space lim-
itations, we describe the case where open and close operations
appear only in widget event handler callbacks. Our algorithms
and implementation also handle common cases where such
operations occasionally appear in lifecycle callbacks.

The window stack starts a single element: the starting
activity a. The creation of this initial state is associated with the
lifecycle callback sequence to initialize a: [create,a] [start ,a]
[resume,a]. At any moment of time, the window w ∈ Win at
the top of the stack determines the possible events that could
be triggered by the user. These include widget events [v,t]
where v ∈ View is a widget defined by w and t is the event
type, as well as default events such as [w, back ], etc. When
a widget event [v,t] is triggered, callback [v,h] is invoked.
Here h ∈ Cback is the corresponding event handling method,
invoked on that same widget v. If h triggers a self-close
operation, w is popped from the window stack. If, in addition,
h triggers an owner-close operation, the owner activity is also
popped from the top of the stack. 5 Finally, if h opens a new
window, this window is pushed on top of the stack.

5Since the lifetime of a menu/dialog is contained within the lifetime of its
owner, closing an owner implies that all owned windows have been closed.

Some of these scenarios are summarized in Table I. The
first column describes the stack state, with the currently-visible
window on top. We use a and a′ to denote activities, m
to denote an options menu, and d denote a dialog. Only a
representative sample of cases are described; additional details
on the scenarios captured by our algorithm are presented
elsewhere [32]. In several rows the event handler is listed
as “implicit”, because it is defined by the Android platform
semantics and not by the application code. Column “Open/
Close” shows the window open/close operations triggered by
the event handler. The corresponding changes to the window
stack are shown in the next column. After these changes are
applied, the new stack top becomes the visible window.

The first four rows represent an event for a widget v in an
activity a. If the window stack changes (rows 2–4), the callback
sequences interleave lifecycle callbacks for a and the activity
a′ which becomes the new stack top. The implicit handlers
for default events also may trigger stack changes: for example,
rotating the screen destroys a and then recreates it on top of
the stack (row 6). Rows 12–18 present scenarios for an options
menu m, owned by an activity a. The widget events [v,t]
are of the form [menu_item,click ] with handlers h illustrated
by onOptionsItemSelected in the running example. The
implicit close(m) operation in h is explicitly represented in
the table. Row 13 corresponds to lines 28–29 in the running
example, and row 15 represents the effects of lines 30–32.

Window transition graph. The WTG is defined as G =
(Win, E, ε, δ, σ) with nodes w ∈ Win and edges e ∈ E ⊆
Win×Win. Here we use Win and View to denote sets of
static abstractions of run-time windows and widgets (while
previously these sets denoted the actual run-time entities).
There are various ways to define such static abstractions. We
use the approach from [33], [34], which creates a separate
a ∈ Win for each activity class, together with appropriate
m, d ∈ Win for its menus and dialogs, and abstractions
v ∈ View for their widgets (i.e., defined in layout XML files),
and then propagates them similarly to interprocedural points-to
analysis, but with special handling of Android API calls.

Labels ε : E → Event indicate that the window transition
represented by an edge could be triggered due to a particular
event. Labels δ : E → ({push, pop} × Win)∗ annotate an
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a1:ChooseFileActivity
e1:item,

click

a2:OpenFileActivity

e2:item,
click

e3:back

m:OptionsMenu(a2)

e4:menu e5:back e6:home

a3:About
e7:aboutItem,click

a4:Options

e9:optionsItem,click

e12:back

e8:back  e10:back

 e11:btn,click 

(a) Window transition graph

e δ(e) σ(e) e δ(e) σ(e)

e1 − 1 e7 pop m, push a3 13
e2 push a2 2 e8 pop a3 5
e3 pop a2 5 e9 pop m, pop a2, push a4 15
e4 push m 9 e10 pop a4 5
e5 pop m 16 e11 pop a4, push a3 4
e6 pop m 18 e12 pop a3 5

(b) Edge labels

Fig. 2. WTG for the running example.

edge with a sequence of window stack operations push(w)
and pop(w). Finally, σ : E → ((Win ∪ View) × Cback)∗
shows the sequence of callbacks for the transition.

The meaning of an edge e = w1 → w2 is as follows:
suppose that the currently-visible window is w1 (i.e., it is on
top of the window stack). If event ε(e) is issued by the GUI
user, the processing of this event may trigger the stack changes
described by δ(e), resulting in a new stack top element w2.
During these changes, the callback sequence σ(e) is observed.

Example. Figure 2 shows the WTG for the running example.
To simplify the figure, edges w → w for rotate and home
events are not shown. Since edges for power are very similar to
the ones for home, they are not shown either. The back -event
edge from the starting activity a1, which returns control back
to the Android platform, is also not shown. Each ei is labeled
with its triggering event ε(ei). Edge e1 represents the case
when the PDF file does not exist (line 14 in onItemClick)
and the event handler returns without opening a new window.
The table shows the associated stack changes as well as row
numbers from Table I describing the callback sequences σ(e).

Two acyclic paths reach a3: p = e2, e4, e7 and p′ =
e2, e4, e9, e11, where p produces a window stack (a1, a2, a3)
and p′ produces (a1, a3). Edges e8 and e12 correspond to
possible next edges along p and p′, respectively. Note that if
e8 is appended to p′, the path is invalid: it represents a stack
(a1), but the end node of the path is a2, which violates the
property that the current window is on top of the window stack.
Similarly, e12 cannot be appended to p. Our graph construction
creates both e8 and e12, while our subsequent path traversal
avoids the infeasible paths p′, e8 and p, e12.

Algorithm 1: ConstructInitialEdges
1 foreach w ∈Win do
2 foreach widget event [v,t] with callback [v,h] for w do
3 if MayOpenNone([v,h]) then
4 ADDEDGE(w, w, [v,t])

5 foreach open(w′) ∈ Open([v,h]) do
6 ADDEDGE(w, w′, [v,t])

7 if w is an activity a with options menu m then
8 ADDEDGE(a, m, [a,menu])

9 ADDEDGE(w, w, [w,back ])

10 foreach menu and dialog w ∈Win do
11 FINDOWNER(w)

12 if w is an activity a then
13 ADDEDGE(a, a, [a,rotate])
14 ADDEDGE(a, a, [a,home])
15 ADDEDGE(a, a, [a,power ])

16 if w is an options menu m with owner a then
17 ADDEDGE(m, m, [m,rotate])
18 ADDEDGE(m, a, [m,home])
19 ADDEDGE(m, a, [m,power ])

20 if w is a context menu m with owner a then
21 . . .

22 if w is a dialog d with owner a then
23 . . .

III. WTG CONSTRUCTION ALGORITHM

The static analysis algorithm to construct the WTG takes
as input all w ∈ Win, v ∈ View, and, for each w, the
possible widget events [v,t] and their corresponding event
handler callbacks [v,h]. This information is computed by an
existing static analysis described in [33], [34]. Given this input,
the algorithm proceeds in three stages. In the first stage, initial
edges e are constructed and annotated with trigger-event labels
ε(e). This stage requires analysis of open(w) operations in
event handlers, as well as modeling of default events rotate,
home , power , and menu . Since close(w) operations are not
accounted for in this stage, some of the resulting edges have
incorrect target nodes. In the second stage, the initial edges
are extended to include push/pop sequences δ(e) and callback
sequences σ(e). This requires analysis of self-close and owner-
close operations. In the third stage, backward traversal of
the graph is used to analyze the push/pop sequences along
traversed paths, in order to determine the correct target nodes
of edges that could not be resolved earlier.

A. Stage 1: Open-Window Operations and Default Events

In Stage 1, helper function ADDEDGE(w1, w2, ev) repre-
sents the addition to the WTG of an edge from window w1 to
window w2. The edge is labeled with event ev : a widget event
[v,t], where v is an widget in w1, or a default event [w1,t].

The first stage of the analysis applies Algorithm 1. For
each window w, in addition to w’s widget events [v,t] and
their callbacks [v,h], the algorithm requires two additional
properties. The first is a map Open , mapping each callback
[v,h] to the set of open(w′) operations that could be triggered
by paths in the callback’s execution. The second is a map
MayOpenNone from [v,h] to a boolean value: true if the
callback’s execution could complete without triggering any
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Fig. 3. WTG after Stage 1.

open(w′) (i.e., there is an execution path without window-
open operations), and false otherwise. Both of these maps
can be computed using an approach from [30], in which
interprocedural control-flow traversal of h (and its transitive
callees) is performed to find calls such as startActivity.

Algorithm 1 considers each event and its callback. If [v,h]
could be executed without opening a new window, an edge
w → w is created. Edge e1 in Figure 2 illustrates this case;
the edge is created because there is a path in onItemClick
(through line 14 in Figure 1) for which no windows are created.
We will refer to such edges as no-open edges. Next, each
possibly-opened window w′ is considered. At line 6, an edge
from w to w′ is created for event [v,t]. Line 8 handles default
event menu for activities. The edges created at lines 6 and 8
push a new window on top of the window stack, and will be
referred to as window-open edges.

At line 9, initial edges for back -button events are created.
The targets of these edges (as well as their callback se-
quences) will not be known until Stage 3. Next, for each menu
and dialog w, its owner activity is determined by traversing
backward the newly-created window-open edges, using helper
function FINDOWNER.6 Finally, default events rotate, home,
and power are handled. This handling is consistent with the
description in Table I. The cases for context menus and dialogs
are not shown, but they are similar to those for options menus.

Example. Figure 3 shows the WTG for the running example
after Stage 1 has completed. The edge numbering is the same
as in the final WTG from Figure 2. Similarly to that earlier
figure, certain rotate, home, and power edges are not shown
for simplicity. Edge e1 is created because MayOpenNone is
true for the corresponding event handler, while e2 shows that
this handler could open a2. The owner of m is a2, and the
home edge for m reflects that. The back -event edges have
incorrect targets that will be fixed later. The back -event edge
for a3 is labeled as e8, e12 since eventually it will lead to the
creation of two separate edges e8 and e12.

6In general, w could have multiple owners, e.g., due to subclassing of
activities; the necessary algorithmic generalizations are straightforward.

B. Stage 2: Close-Window Operations

In this stage the analysis first considers each edge e for a
widget event [v,t] and handler [v,h]. Using the interprocedural
control-flow reachability analysis from [30], h under calling
context v is analyzed for self-close operations (e.g., calls to
finish) and e is classified in one of three disjoint categories:
must-not-self-close, may-self-close, and must-self-close. If h
under context v does not contain a path reaching a self-close
operation, e is in the first category. If some but not all paths
reach a self-close, the second category applies. If every path
reaches a self-close, the edge is must-self-close.

In a similar manner, classification is performed for owner-
close operations. The analysis considers each menu and dialog
w and w’s owner activity a. For an edge e = w → . . . for a
widget event [v,t], we can classify e as must-not-close-owner,
may-close-owner, and must-close-owner.

Example. In Figure 3, e7 and e9 are must-self-close due to
the implicit close(m) in onOptionsItemSelected. Edge
e11 is also must-self-close due to the call to finish at line
39 in the running example. (If, hypothetically, this call were
guarded by a conditional, the classification would have been
may-self-close.) The other two widget event edges e1 and e2

are must-not-self-close. For owner-close operations, e7 is must-
not-close-owner, while e9 is must-close-owner, since under
widget context optionsItem the handler definitely closes the
owner activity a2 (line 32 in the running example).

This classification is used to create push/pop labels δ(e) for
the analyzed edges. For example, e9 opens a4 while definitely
closing m and its owner a2; thus, δ(e9) = pop m, pop a2,
push a4. Algorithm 2 provides some details on this process.
One important observations is that a single edge created by
Stage 1 may be expanded into several edges, with different
δ(e) labels. For example, if (hypothetically) e11 were may-
self-close, it would expand to two edges from a4 to a3, one
labeled with push a3 (line 7 in the algorithm) and the other
with pop a4, push a3 (line 5 in the algorithm). Helper function
EXPANDEDGE(e, d) takes an edge e created by Stage 1 and
constructs an “expanded” version of it with δ(e) = d. After
Stage 2, the edges from Stage 1 are discarded.

Some details of the processing are elided due to space
limitations. For example, the handling of dialogs is similar to
that of menus, but with the additional possibility that a self-
close operation is not executed. The handling of rotate, home ,
and power events is consistent with the push/pop sequences
listed in Table I, and is not shown in Algorithm 2. After the
algorithm completes, all edges have labels δ(e). The labels
created for the running example are shown in Figure 2b. At
this point, there is still a single back -event edge for a3 (labeled
with pop a3); Stage 3 creates two separate edges from it.

Certain edges have incorrect targets and have to be pro-
cessed by Stage 3. These edges do not open new windows, but
close existing ones: namely, (1) edges for back events, and (2)
no-open edges that contain close operations. In both cases, the
top of the stack after executing the edge is some (yet) unknown
previously-opened window. The rest of the edges have correct
target nodes and their callback sequences σ(e) can be deter-
mined at this time, using the Android semantic specification
illustrated by Table I. For edges e1, e2, e4, e6, e7, e9, e11 from
Figure 3, the callback sequences computed by Stage 2 are
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Algorithm 2: ExpandEdgesWithLabels

1 foreach w ∈Win do
2 if w is an activity a then
3 foreach window-open edge e = a → w′ do
4 if e is may/must-self-close then
5 EXPANDEDGE(e, [pop a, push w′])
6 if e is not must-self-close then
7 EXPANDEDGE(e, [push w′])

8 foreach no-open edge e = a → a do
9 if e is may/must-self-close then

10 EXPANDEDGE(e, [pop a])

11 if e is not must-self-close then
12 EXPANDEDGE(e, [ ])

13 if exists e = a → m for default event [w,menu] then
14 EXPANDEDGE(e, [push m])

15 if w is a menu m with owner a then
16 foreach window-open edge e = m → w′ do
17 if e is may/must-owner-close then
18 EXPANDEDGE(e, [pop m, pop a, push w′])
19 if e is not must-owner-close then
20 EXPANDEDGE(e, [pop m, push w′])

21 foreach no-open edge e = m → m do
22 if e is may/must-owner-close then
23 EXPANDEDGE(e, [pop m, pop a])

24 if e is not must-owner-close then
25 EXPANDEDGE(e, [pop m])

26 if w is a dialog d with owner a then
27 . . .

28 foreach edge w → w for default event [w,back ] do
29 EXPANDEDGE(e, [pop w])

listed in Figure 2b. The rest of the edges in Figure 3 have
incorrect target nodes, and since σ(e) depends on the target of
e, their callback sequences cannot yet be determined.

C. Stage 3: Backward Analysis of the Window Stack

Edges with incorrect targets require further processing.
They are of the form e = w → w, with labels δ(e) containing
no push but at least one pop. To identify the correct target of
e, Stage 3 performs a backward traversal from w, using correct
edges finalized in Stage 2, to examine all paths ending at w.
This traversal is parameterized by a value k, which defines the
largest number of edges along any path being considered.7

For each such path e1, e2, . . . , en, where n ≤ k and the
target node of en is w, we need to consider the sequence of
push/pop operations δ(e1), δ(e2), . . . , δ(en), δ(e) and to decide
(1) whether this sequence represents valid run-time behavior,
and (2) what could be the top of the window stack after the
sequence is executed.

Example. Suppose that k =2 and we consider e5 = m → m
in Figure 3, labeled with pop m. Two paths ending at m need
to be examined: e2, e4 and e6, e4. The edge labels for the
first path (including e5’s label) are push a2, push m, pop m.
This is a feasible sequence whose execution is guaranteed to
leave a2 as the top of the stack. Thus, e5 should have a2

7An alternative would be to traverse all acyclic paths, without a length limit.

as a target, and the analysis creates this corrected edge. For
the second path, the edge labels (including e5) are pop m,
push m, pop m. Although this is a feasible sequence, it does
not provide enough information to decide what would be the
top of the stack after executing these operations, and the
analysis does not create any edges due to this path.

As another example, consider edge e10 = a4 → a4. For k=
4, the relevant path is e0, e2, e4, e9. Here e0 is an implicit edge
entering a1, labeled with push a1; this edge represents the
triggering of the start activity a1 by the Android platform. The
sequence for e0, e2, e4, e9, e10 is push a1, push a2, push m,
pop m, pop a2, push a4, pop a4. This sequence leaves a1 as
the top of the stack. Thus, e10 should be redirected to a1 (as
shown in the graph in Figure 2).

As a final example, consider back -event edge a3 → a3.
Path e2, e4, e7, with this edge appended, has the sequence
push a2, push m, pop m, push a3, pop a3. Thus, this back -
event edge should have a2 as target. In the final graph from
Figure 2, e8 is this redirected edge. Another relevant path is
e0, e2, e4, e9, e11; the sequence along the path, appended with
the back -event edge, is push a1, push a2, push m, pop m,
pop a2, push a4, pop a4, push a3, pop a3, which leaves a1

as the top of the stack. In this case an edge from a3 to a1

needs to be introduced (e12 from Figure 2).

Stage 3 analyzes an edge e = w → w as follows. A stack
containing push and pop operations is maintained. The stack
is initialized with the reverse of δ(e); for all examples from
above, this is an operation pop w. Backward traversal from w
is performed, limiting path length to at most k edges. When an
edge ei is encountered during the traversal, the reverse of its
δ(ei) sequence is used to update the stack. If pop w′ is seen,
it is just added on top of the stack. If push w′ is encountered
and the stack is not empty, the top of the stack must be pop w′
(otherwise the path is infeasible and is ignored) and pop w′ is
removed from the stack. If push w′ is observed when the stack
is empty, the traversal stops and w′ is identifies as a possible
target, leading to a new edge w → w′.

Example. Consider edge e10 = a4 → a4. Starting from a stack
containing pop a4, edges e9, e4, e2, e0 are visited to produce
the following sequence: push a4, pop a2, pop m, push m,
push a2, push a1. Operations push a4 and push a2 empty
the stack. Since push a1 occurs for an empty stack, edge e10

becomes a4 → a1.

D. Limitations

The algorithm and its implementation have several lim-
itations. As discussed earlier, control flow due to multiple
threads or across multiple applications is not modeled. The
modeling of GUI widgets and event handlers [33] captures
many commonly-used Android widgets, but is not fully com-
prehensive. Furthermore, custom window/widget systems can-
not be handled. Asynchronous transitions (e.g., due to timers
and sensor events) are not represented in the WTG. The
interprocedural intent analysis used to resolve open(w) calls
[30] considers only explicit intents, as they are designed for use
inside the same application [35]. More general intent analyses
(e.g., [11], [29], [36]) could be used instead. Our analysis also
does not model the different launch modes for activities [25].
Due to these limitations, some window transitions are missing:
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for example, for the 20 apps used in our evaluation, on average
13% of the WTG nodes have no incoming edges. While most
of these limitations are orthogonal to the contributions of this
paper, they emphasize the need to advance the state of the art in
static analysis for Android, and in particular the comprehensive
modeling of Android-specific control flow and data flow.

E. Path Validity

The analysis outlined in the previous sections does not
ensure that each path represents a feasible run-time execution.
Consider again the final WTG (after Stage 3) shown in
Figure 2. Paths p = e0, e2, e4, e7 and p′ = e0, e2, e4, e9, e11

both reach node a3. However, p cannot be extended with edge
e12 because the corresponding edge labels would be push a1,
push a2, push m, pop m, push a3, pop a3. This leaves a2 as
the top of the window stack, while the target node of e12 is
a1. Similarly, if p′ were extended with e8, the top of the stack
would be a1 while the target of e8 is a2.

The WTG can be augmented with a path validity check,
which “simulates” the window stack along a given path of
interest, and decides whether the path is valid. This is similar in
spirit to classical interprocedural analyses, where the sequence
of calls and returns along a path is used to simulate the call
stack, in order to decide path validity [37]. A WTG edge may
correspond to several push/pop operations, but the validity of
these operations is still based on the same style of push/pop
matching as in traditional analyses. As discussed in the next
section, one use of this validity check is during test generation,
to avoid the creation of unexecutable test cases. Path validity
checks may also be needed for static checking of correctness
properties, in order to avoid analyzing infeasible paths that
lead to false positives.

IV. TEST GENERATION

One possible application of the WTG is for model-based
test generation (e.g., [1]–[4], [19]). To illustrate this use of the
WTG, we developed a prototype test generation tool. The tool
traverses certain WTG paths and for each path creates a test
case implemented with the Robotium testing framework [38].
For a path p = e1, e2, . . ., the event label ε(ei) is translated to
corresponding Robotium API calls to trigger the event. Some
events may require additional input from the tester—e.g., to
decide which item in a list to click. Since the static analysis
solution is conservative, it is possible that event ε(ei) may
not be feasible at run time, or even if it is feasible, the target
window of ei after the run-time event is not as expected. Each
test case includes run-time checks to detect such scenarios and
report the test case as infeasible.

One can consider various test generation schemes (e.g.,
leak testing in [3] considers neutral-effect cycles in a manually-
constructed model). In our proof-of-concept tool, we use a
simple path-based approach. Starting from the implicit edge
e0 showing the invocation of the start activity, we append m
distinct edges to create a path p = e0, e1, . . . , em. A naive
approach is to simply explore all such paths. A more precise
approach is to apply the validity check from Section III-E each
time the path is extended with a new edge. The next section
shows that this validity check, which is based on our proposed
tracking the push/pop sequences, can reduce substantially the
number of test cases being generated.

V. EXPERIMENTAL EVALUATION

The WTG was constructed for the 20 open-source appli-
cations used in our prior work [30], [33]. The first goal of the
evaluation is to characterize the effects of different stages of
the algorithm, as well as its overall cost. The second goal is to
evaluate precision, relative to a manually-constructed model.
The third goal is to evaluate precision for the test generation
from Section IV. The implementation is available as part of
our public analysis toolkit [39].

A. Algorithm for Building the WTG

Table II provides measurements of the number of WTG
nodes and edges. Column “Stage 1” shows the number of
edges before considering any close-window operations (Algo-
rithm 1). After Stage 2, the edges are expanded with push/pop
sequences, based on analysis of close-window effects. Column
Δ1,2 shows the increase due to this expansion. One can observe
that an edge from Stage 1 can often have several possible
push/pop sequences. This indicates that an event handler may
exhibit a variety of behaviors. Our analysis discovers such vari-
ations and represents them with separate edges (Algorithm 2).
We are not aware of any existing work that performs such
detailed analysis of Android event handlers.

The large number of edges for FBReader and XBMC is
caused by a known limitation of our prior analyses [30], [33]:
both analyses use a context-insensitive call graph based on
class hierarchy analysis. For example, in FBReader, two utility
methods are responsible for over 96% of the WTG edges.
Both methods take parameters of an interface type which is
implemented by 130 classes. Class hierarchy resolution for
calls on these parameters is highly imprecise. More precise
call graph construction is likely to solve this problem.

Recall that some of the Stage 2 edges have incorrect target
nodes. Column “Stage 3” shows the number of edges after
the correct targets have been determined. This is achieved
with backward path analysis, based on a parameter k for
path length; the column contains measurements for k = 4.
Column Δ2,3 shows the size of the difference (number of edges
removed and added) between the edge sets from Stage 2 and
Stage 3. The backward path traversal, combined with tracking
of feasible push/pop sequences along the path (Section III-C),
results in significant changes to the graph. The next four
columns show the effects of increasing the path length limit
k. In general, newly-created edges require backward traversals
of non-trivial length. Thus, one cannot consider just the edges
entering a node w to determine the targets of Stage 3 edges
w → . . .; rather, paths of length k reaching w must be exam-
ined. To the best of our knowledge, ours is the first approach to
perform such static modeling of possible transitions in Android
GUIs. For most programs, the graph stabilizes at k=4; for the
rest, slightly larger values of k (not shown here) are needed.

The last column shows the running time of the analysis in
seconds. This measurement includes the time for the event
handler analysis from [30], which is invoked on-demand
inside our analysis. Overall, the running times are suitable for
practical use, even though we have not made any significant
effort to optimize the implementation. However, as indicated
by the results for FBReader, scalability limitations could be
encountered for large WTGs.
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TABLE II. WTG CONSTRUCTION ALGORITHM: NUMBER OF NODES/EDGES AND ANALYSIS COST.

Application SLOC Nodes Edges k Time

Stage 1 Stage 2 Δ1,2 Stage 3 Δ2,3 k=1 k=2 k=3 k=4 (sec)

APV 3832 14 77 101 24 105 58 75 95 104 105 5
Astrid 24487 93 594 740 146 838 236 675 836 838 838 18
BarcodeScanner 6549 20 90 121 31 128 65 98 118 128 128 6
Beem 12962 24 99 125 26 132 65 100 118 132 132 6
ConnectBot 32638 37 185 233 48 237 112 182 211 234 237 8
FBReader 45510 45 286 17774 17488 41942 26326 29473 39820 41941 41942 2086
K9 52240 55 258 411 153 516 221 433 486 509 516 25
KeePassDroid 27457 41 272 468 196 643 389 399 598 640 643 9
Mileage 9881 75 409 562 153 676 268 485 636 676 676 7
MyTracks 23389 61 212 314 102 391 197 294 363 391 391 7
NotePad 4986 22 122 191 69 213 110 162 195 213 213 6
NPR 12118 32 344 502 158 590 106 525 590 590 590 6
OpenManager 2562 18 95 116 21 116 64 84 113 116 116 5
OpenSudoku 6079 35 173 232 59 237 125 180 208 237 237 6
SipDroid 24533 31 176 305 129 406 331 226 364 396 406 12
SuperGenPass 2119 9 49 63 14 64 39 45 58 64 64 5
TippyTipper 1739 10 54 63 9 65 16 56 61 65 65 5
VLC 10670 26 117 130 13 131 45 112 131 131 131 6
VuDroid 2380 7 30 44 14 47 23 34 41 47 47 4
XBMC 23295 67 1080 3819 2739 4279 722 3690 4241 4278 4279 16

TABLE III. FEASIBILITY OF WTG EDGES.

Application WTG Manual Infeasible

APV 105 105 0
BarcodeScanner 128 106 22
OpenManager 116 109 7
SuperGenPass 64 64 0
TippyTipper 65 65 0
VuDroid 47 45 2

B. Manual Examination of WTGs

For in-depth evaluation of analysis precision, we examined
the WTG (k = 4) for APV, BarcodeScanner, OpenManager,
SuperGenPass, TippyTipper, and VuDroid. These applica-
tions had the smallest numbers of WTG nodes, and thus could
be examined manually with reasonable effort.

Column “WTG” in Table III replicates the Stage 3 mea-
surements from Table II. Column “Manual” shows the number
of WTG edges that were manually confirmed to be feasible
using run-time test cases. The last column contains the number
of infeasible WTG edges. The infeasibility was asserted by
examining the source code. In general, the number of infeasible
edges is small (around 6% across the six applications). We
determined the root causes of all infeasible edges. In all cases,
the infeasibility was due to deficiencies in the earlier work on
window/widget modeling [33], [34] and event handler analysis
[30]. If these existing static analyses were to be improved, the
WTG would achieve perfect precision. These results highlights
the need for continued advances in static analysis of GUI
structure and behavior for Android applications. Still, the small
number of infeasible edges is a positive indicator that highly-
precise static GUI models can be constructed automatically.

C. Test Generation

Recall that our prototype test generator considers paths p =
e0, e1, . . . , em (all ei are distinct) and generates test cases from
them. Here e0 represents the invocation of the start activity by
the Android platform. The numbers of paths for m = 2 and
m = 3 are shown in Table IV. Columns “All” contain the
number of all paths, while columns Δ show the reduction (in
percent) when the path validity check from Section III-E is

applied. For FBReader the number of paths with m=3 was
too large enumerate in reasonable time.

For several applications the path validity check reduces the
number of test cases. For example, for m=3 (i.e., test cases
containing three GUI events), 10 applications show reductions
of 26% or more. Such reductions indicate that statically we
can eliminate significant numbers of infeasible test cases.

Of course, even if a path satisfies the static validity condi-
tion, it could still result in an infeasible test case. As indicated
earlier, due to deficiencies in prior static analyses, some WTG
edges (and thus paths) may be infeasible. To understand better
this infeasibility, for the six applications studied in Section V-B
we generated test cases from the statically-feasible paths for
m = 2. Although the sequences of events (implemented
through Robotium [38] API calls) are generated automatically,
some test cases still require manual effort: for example, for
BarcodeScanner, we need to manually set up a variety of
actual barcode images to drive the different test cases. Due to
this manual effort, we did not consider larger values of m.

The number of test cases (with path validity) is shown in
column “Static” in Table V. We set up and executed all 1581
test cases indicated in this column. The next column “Feasible”
shows the number of these test cases that were feasible at run
time—that is, they could match the event sequence and target
windows of the static path. In BarcodeScanner, the event
handler analysis from [30] leads to infeasible edges that make
most of the test cases infeasible. As described in [30], the
application processes eleven types of barcodes, and the GUI
behavior (subset of visible widgets and subset of handler ef-
fects) differs based on the barcode type. This variability cannot
easily be modeled statically. In OpenManager, the 6.5% of
infeasible test cases are due to inter-application interactions.
When the main activity is invoked by another application
(rather than by the user), that activity computes information
about a file, returns it to the invoking application, and closes
itself. Our analysis does not model the interactions between
multiple applications and does not recognize that the activity-
close operation happens under these conditions. Overall, with
the exception of one application, the vast majority of statically-
generated test cases are feasible at run time.
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TABLE IV. NUMBER OF PATHS FOR TEST GENERATION.

Application m=2 m=3

All Δ (%) All Δ (%)

APV 116 24.1 1416 37.7
Astrid 232 62.1 1822 75.3
BarcodeScanner 526 1.9 7675 4.6
Beem 138 26.1 929 38.6
ConnectBot 287 26.1 3384 40.3
FBReader 33404638 84.9 N/A N/A
K9 12393 19.8 443647 27.0
KeePassDroid 20 0.0 48 0.0
Mileage 16 0.0 45 0.0
MyTracks 1331 9.4 35212 20.5
NotePad 217 17.5 2625 26.0
NPR 4171 21.0 251251 30.5
OpenManager 392 0.8 5803 1.5
OpenSudoku 111 23.4 980 33.3
SipDroid 905 32.9 13604 51.6
SuperGenPass 195 0.0 2110 0.0
TippyTipper 341 0.0 5405 0.0
VLC 42 0.0 131 0.0
VuDroid 52 0.0 276 0.0
XBMC 5728 62.3 1330605 71.0

TABLE V. RUN-TIME FEASIBILITY OF GENERATED TEST CASES.

Application Static Feasible

APV 88 88
BarcodeScanner 516 88
OpenManager 389 364
SuperGenPass 195 195
TippyTipper 341 341
VuDroid 52 52

Summary. Columns Δ1,2 and Δ2,3 of Table II indicate that
event handlers can have complex behaviors and their tran-
sitions depend on non-trivial sequences of preceding events.
Our analysis is the first to model these features, leading to
improved static GUI models and test case generation. For
six applications, manual comparison with run-time behavior
indicates that the analysis achieves good precision.

VI. RELATED WORK

Control-flow analysis for Android. The control/data flow of
Android applications is driven by the GUI and static analysis
of this flow is an important problem. One of the first related
efforts is the SCanDroid analysis tool [7], [29] which employs
control-flow analysis and intent analysis in the context of a
security analysis. Later work on related security problems [8],
[9], [11] also uses intent analysis and control-flow analysis.
These techniques do not attempt detailed analysis of GUI-
related control/data flow due to widgets and event handlers.

An activity transition graph, used for run-time GUI ex-
ploration [5] and based on [7], [29], has some similarities to
our WTG. This representation does not capture menus/dialogs,
does not consider the general GUI effects of event handlers
(e.g., window-close) and the triggered callbacks, and does not
model the window stack and its state changes. A similar model
of activity transitions is used in an analysis of security-sensitive
behaviors [10]. This approach is much less comprehensive than
ours, in terms of both the model and the analysis algorithm.

The taint analysis in FlowDroid [12] models the effects
of callbacks by creating an artificial main method. The flow
of control in this method encodes possible sequences of
callbacks, but does not account for the general GUI effects of

event handlers, and does not represent control flow that spans
multiple activities. This approach cannot capture the callback
sequences described in Table I. Control flow involving dialogs,
menus, and window termination is also not captured. A more
comprehensive solution is available from our prior work [30],
where ordering constraints between callbacks are represented
by a callback control-flow graph. This work provides event
handler analysis for our WTG analysis (to detect window
open/close effects of callbacks). However, this earlier approach
does not represent the window stack, the push/pop sequences at
transitions, or the path feasibility based on these sequences. It
also ignores several categories of lifecycle callbacks, cannot
represent correctly the callback interleavings from Table I,
does not handle operations that close the owner, and does not
represent the effects of rotate, home, and power .

An existing operational semantics for activities [40] cap-
tures aspects of Android control flow, including callbacks and
the activity stack, but does not define GUI static models or
analysis algorithms. Various other static analyses aim to model
the sequences of callbacks in Android, in the context of se-
curity analysis (e.g., [13]–[15], [31]), GUI model construction
(e.g., [28]), race detection (e.g., [16]), leak analysis (e.g., [17],
[22]), and static checking (e.g., [23], [24]). None of these
techniques provide comprehensive behavior definition/analysis
for the key aspects of GUI behavior: widgets, event handlers,
callback sequences, and window stack changes. We develop
a more general approach for static analysis and representation
of Android GUI behavior, which provides a promising starting
point for generalizing existing (and future) static analyses.

GUI models for understanding and testing. Reverse engi-
neering of GUI models is well developed in prior work (e.g.,
[41]–[43]) and has more recently been used for Android (e.g.,
[5], [6], [28], [44], [45]). The models are usually constructed
through dynamic exploration. As results from [30] indicate, a
static approach could produce more comprehensive models—
of course, at the expense of potential infeasibility. For the
purposes of program understanding, hybrid static/dynamic
techniques are the most promising. Existing examples of such
techniques [5], [28] may benefit from our static GUI models,
including the path validity check which could be beneficial
for dynamic GUI crawling. Finite state machines and similar
models for GUI testing have been used widely (e.g., [1]–
[4], [42], [46]–[49]), and various test generation schemes can
be employed (e.g., [47]). Techniques have been proposed to
improve the generated test cases (e.g., [50]–[52]) and it may
be possible to integrate them with WTG-based test generation.

VII. CONCLUSIONS

A representation of window/callback sequences is a foun-
dation for static analyses for Android. One can draw an
analogy with the interprocedural control-flow graph [37], a
key representation for traditional static analysis. We propose
the WTG as a similarly-important static model for Android,
and develop algorithms for its construction and traversal. In
the future, it is important to generalize this work to handle
more comprehensive control flow in Android applications.
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