
Automatically Detecting SSL Error-Handling Vulnerabilities
in Hybrid Mobile Web Apps

Chaoshun Zuo
Shandong University

cszuo2013@gmail.com

Jianliang Wu
Shandong University

lucuswu@gmail.com

Shanqing Guo
Shandong University

guoshanqing@sdu.edu.cn

ABSTRACT
Today, there are many hybrid apps in which both native An-
droid app UI and WebView UI are used. To protect the se-
curity and privacy of the communications, these hybrid apps
all use HTTPS by WebView, a key component in modern
web browser. In this paper, we show there is another type of
SSL vulnerability that stems from the error-handling code
in the hybrid mobile web apps. At a high level, this error-
handling code should have stopped the communication but it
still proceeds regardless of certificate errors, thereby leading
to the MITM attacks. To automatically identify these vul-
nerable apps, we present a hybrid approach that combines
both static analysis and dynamic analysis. We have imple-
mented our approach and evaluated with 13,820 real world
mobile web apps from a third party market, of which 645
are confirmed truly vulnerable, with an average overhead of
60.8 seconds per app.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

Keywords
Android Security, HTTPS, SSL, WebView

1. INTRODUCTION
Increasingly, there are hybrid apps that combine both na-

tive Android UI and WebView UI, because of the easier de-
velopment and lower maintaining complexity. Specifically,
mobile web apps use WebViews to present web pages and
communicate with web servers. Some web pages may trans-
fer sensitive information, like user name and password, to
a server, which causes that the communication should be
protected. For this reason, they all use HTTPS connections
instead of HTTP connections. Under normal circumstances,
the attackers couldn’t attack HTTPS connections even if

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14 - 17, 2015, Singapore, Singapore
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714583.

HTTPS

URL

proceed

Certificate

Verification

Error-

Handling

Pass Fail

Figure 1: The State Machine of error handling pro-
cess.

they sniffed the network traffic unless they have the cryp-
tographic keys. However, developers’ incorrect implementa-
tion of HTTPS in WebView can allow Android WebView to
present a web page with illegal certificate, which can thus
be attacked by Man-in-the-middle [1, 2] or phishing attacks.

Figure 1 shows how this vulnerability happened. When
an app opens an HTTPS web page with an illegal certifi-
cate, the app passes the HTTPS URL to Android to verify
the certificate. With an illegal certificate Android will get a
verification failure, then it will call error handling procedure
implemented by the developer. Often times this error han-
dler code just ignores the error and calls proceed to show
the HTTPS web page (even though the certificate is illegal).
This is a particular type of implementation vulnerability we
aim to find in this paper.

More specifically, it’s possible to analyze this vulnerabili-
ty manually for a particular app. However, it is impractical
to detect this vulnerability on a large scale, given the huge
amount of such apps in the market. Meanwhile, unlike na-
tive apps, mobile web apps bring new challenges because we
have to test not only the normal native app activities but
also the web pages. For static analysis, the existing tools
such as androguard [3] are not suitable to detect this vul-
nerability because they cannot track variables. In addition,
we can’t determine whether an app is vulnerable or not by
static analysis only (because it is often an over approxima-
tion, leading to false positives). Dynamic analysis is needed
to verify whether the WebView would eventually load an
HTTPS page and its error handling is vulnerable.

As such, we have designed a new system to automatically
identify these vulnerable apps. Our system consists of both
static analysis and dynamic analysis. In particular, we first
employ static analysis to determine whether these apps are

1

591

potential vulnerable or not. If so, the potential vulnerable
apps will be further analyzed through our dynamic analy-
sis, which is guided by the static analysis information to
drive the native Android UI as well as the WebView UI to
trigger the vulnerability. In summary, this paper makes the
following contributions:

- We have discovered a new type of SSL vulnerability
which could lead to insecure WebView HTTPS con-
nection.

- We have designed a hybrid Android web app test frame-
work using multi emulators. This framework contains
both static analysis and dynamic analysis. It can in-
stall and run a mobile web app automatically without
any user involvement. Besides, not only could the sys-
tem stimulate jumps between Activities but also it is
able to drive jumps between web pages within Web-
View.

- We have implemented our framework and tested with
13,820 apps collected in July 2014. Experimental re-
sults show that our static analysis found 1,360 poten-
tial vulnerable apps and our dynamic analysis con-
firmed that 645 of them are vulnerable.

2. SYSTEM OVERVIEW

2.1 Problem Statement
For hybrid mobile web apps, when an HTTPS URL is

passed to WebView, it will first verify the certificate of the
HTTPS server: if passed WebView will show the page. If
verification failure occurs and the app has rewritten the er-
ror handling process, WebView will pass the error handling
process to the app and wait for the result. Once the error
handling passed to the app, it will handle the error in its
own way including ignoring the error and proceed and re-
turn the result to WebView. If error handling process has
not been rewritten, WebView would shield the page direct-
ly. However, programmers often rewrite the error handling
process. It’s obvious that this is a serious security prob-
lem, especially for apps that always use HTTPS to transfer
sensitive information such as the login information, user in-
formation, payment information, authorization information,
etc. With this vulnerability unfixed, attackers could easily
get all these information by MITM attack.

2.2 Challenges and Solutions

2.2.1 Is the potential vulnerable code reachable?
To identify the app is vulnerable or not, we have to make

sure it contains potential vulnerable code. We assume the
class inherits from WebViewClient which overrides the error
handling method (i.e. onReceivedSslError) and has the ig-
nore code is potential vulnerable. Any app without this kind
of code is invulnerable. It’s not easy to make sure if onRe-
ceivedSslError is reachable because it’s called by system
callbacks rather than called directly. We locate the method
call setWebViewClient and find out whether a potential vul-
nerable WebViewClient has been registered or not. If yes,
then we find the Activity that loads the WebView which reg-
isters this WebViewClient. So we consider this Activity as
a target Activity. This helps us to make sure this potential
vulnerable code is reachable when the Activity is reachable.

2.2.2 How to record Activity jump relations with trig-
ger events?

To confirm if potential app is vulnerable we need to jump
to the target Activity from launcher Activity by triggering
related events which have been recorded during static analy-
sis. To fulfill this we build an ACG[4] based on which a path
from launcher Activity to target Activity is found, which
could guide the dynamic test. ACG is a directed Activity
Call Graph of which vertexes represents Activities. And we
put information on the edge because we need to know what
event triggers the jump from one Activity to another.

Vertexes are not hard to find but edges (i.e. how to find
the view and event) are not easy to add. We take view and
the event triggered by the view that cause Activity jump
as an edge. Here goes how we find edges. First, we find
all the methods that could cause activity jump and locate
these functions in MCG (Method Call Graph). By traveling
within MCG we can find method that causes activity jump
and which activity jump to. Then we locate event method
(such as onClick) the method belongs to. This view which
owns the event method and the event would be the edge.
With ACG, we are able to find a path on which a series of
trigger events are recorded from launcher Activity to target
WebView.

2.2.3 How to simulate human operations to both na-
tive Android UI and WebView UI ?

Manual analysis is enough for a particular app, but for
large dataset, it’s impossible. We need to make it possi-
ble to detect automatically thus making large scale analysis
possible. Along the process from launcher Activity to load
an illegal page, human operations are needed. To make it
automatic, we need to simulate human operations. To miti-
gate this, we have made our own test system Android Tester
by modifying the Android framework and we use Robotium
developed a general test script app for the target apps .
With this framework, we could know which Activity is ac-
tive, which views are on this Activity, their IDs and how to
trigger one specific event all of which other test tools cannot
do. Once we jumped to the target Activity, how to jump to
the HTTPS page within WebView if the default page is not
an HTTPS page? Here in test script we adopt a strategy
like a crawler. We first load the default page and extract
all the links from the initial page and load every link and
extract links again until we have found an HTTPS link or
the crawl layer depth is up to 3.

2.3 System Overview
We present the overview of our system in Figure 2. Our

system takes APK file as input, and outputs the app is vul-
nerable or not. First, our system carries out a static anal-
ysis to determine if apps are potential vulnerable. Second,
we need to dynamically run them and to confirm if it’s real-
ly vulnerable, which is requisite because of the difficulty of
validness verification of the self-implemented error handling
process and the uncertainty that if the WebView would load
an HTTPS page that cannot be solved during static analysis.
So we need to build the app’s ACG for dynamic analyzing.

Dynamic analysis starts with installing and running the
app on emulator. Then our system would find a path from
launcher Activity to target Activity. When the path is
found, the system triggers an event and jumps to next Ac-
tivity till the target Activity. After each jump, our system

2

592

Dynamic AnalysisStatic Analysis

APKS Disassembly

Vulnerability Detection

Building ACG Android Tester
Results

(log,pic...)

Fake HTTPS

Server

Internet
HTTP

HTTPS

Emulator

Modified Android

Framework

Emulator

Modified Android

Framework

Figure 2: System Overview

calculates the path again in order to avoid the situation that
the path found earlier is not applicable because of some ex-
tra conditions. During this process, we may not be able to
find efficacious path, because there are some views that need
conditions to appear (e.g. some app may have an advanced
panel that would appear only under advanced mode). Un-
der this condition we jump to target activity directly. At the
same time, we built an attack environment (shown in Fig-
ure 2) which could redirect HTTPS connections to our fake
server who has an illegal certificate. We modified Android
framework to print log once an illegal page are presented.
At last our system will generate log information and tell us
which app is vulnerable and what URL the app has visited.

3. DETAILED DESIGN

3.1 Static Analysis Module
Static Detection. We decompile APK into Smali file by

apktool[5]. The static analysis starts once the decompilation
process finished. We scan all the smali files to find if there
is any class inherits from the WebViewClient class. If not
found, then we consider the app is free from this vulnera-
bility. We collect all the classes inherit from WebViewClient

and check them one by one to determine whether they have
overridden the method onReceivedSslError which would
be called by system callback when HTTPS certificate veri-
fication failure occurs. The app could trust illegal pages by
overriding this method with a rather weak one. According
to our research, most app chooses to trust all certificate, and
some of them use a simple way to handle this error and the
others choose to abort the page.
We have identified three common operations that app

choose to perform in onReceivedSslError.First, They trust
all certificate and returns proceed signal. Obviously this is
vulnerable if it’s reachable. Second, They reject and return
cancel signal. It’s free from this vulnerability. Third, They
verify certificate by itself. Some of them check hostnames,
and some of them use complex algorithm, and some of them
even show a dialog for the user to make a choice. We can’t
determine if the app is vulnerable or not by static analysis,
so we need further detect by dynamic analysis.
Build MCG We have seen some apps with unreachable

code and most of them are for testing. So we have to make
sure the overridden method onReceivedSslError is reach-
able. We would build a Method Call Graph to fulfill this.
It is a directed graph representing the calling relationship
among methods. Each node in MCG represents one method
and an edge from Method A to Method Bmeans that Method
A could call Method B directly. We employed a conserva-

tive approach like[6] to handle virtual method and interfaces
while building MCG. A class hierarchy was maintained dur-
ing the analysis process and all possible assignable classes
would be considered when an ambiguous reference occurred.

Algorithm 1 Build Activity Call Graph

Input:
MCG : Method Call Graph
ms : Temporary storage of methods

Output: ACG : Activity Call Graph
function BuildACG(MCG,AndroidManifest.xml)

InitACGNodes(ACG,AndroidManifest.xml)
ms = getParents(MCG,”startActivity()”) ∪

getParents(MCG,”startActivityForResult()”);
for each method method in ms do

Eactivity = getTargetActivity(method)
IDs= FindMethodCallerViewId(MCG,method,ϕ)
for each view ID viewid in IDs do

Sactivity = findActivityByViewID(viewid)
ACG = ACG ∪ (Sactivity-Eactivity|viewid)

end for
end for

end function

function FindMethodCallerViewId(MCG,method,IDs)
if method is View Event Method then

IDs = IDs ∪ FindViewId(method,MCG)
else

ms = getParents(method,MCG);
for each method tmethod in ms do

FindMethodCallerViewId(MCG,tmethod,IDs)
end for

end if
return IDs

end function

In particular, our system builds MCG based on some prior
knowledge. Because there are some method calls in system
space where we can’t reach such as method Thread.start

and method Thread.run, they do not have any relationship
in user space, but from our knowledge Thread.Start will
invoke Thread.Run. So with this knowledge we added some
edges in MCG in advance.

Locate Target Activities Native Android app UI con-
sists of several Activities in some of which WebView em-
bedded. The system callbacks would call the methods in
the classes which inherit from WebViewClient which we de-
fine as self-defined-WebViewClient. To make sure onRe-

3

593

ceivedSslError is reachable code we would find the activity
whoseWebView uses vulnerable self-defined-WebViewClient.
Once the vulnerable self-defined-WebViewClient is found,

the system backtraces through MCG until the Activity which
sets the WebViewClient is found. The backtracing would
stop when it enters the system callback methods (current-
ly our system could only handle Activity.onCreate and
View.onClick) because there is no apparent method invok-
ing these methods. We call these entry methods. Once
the entry methods are found, it’s easy to determine target
Activity. If the entry methods are system callbacks of one
Activity, this Activity is the target Activity. The Activity
which owns the view is target Activity if the entry methods
are system callbacks of a view. For Android app only these
Activities that are declared in AndroidManifest.xml could
be presented. That’s why we check the target Activities set
and delete Activities which are undeclared in AndroidMan-

ifest.xml.
Build ACG Now, we have got target Activities. Our

purpose is to jump to target Activities from the launcher
Activity and trigger the vulnerability. We need to find a way
from launcher Activity to each target Activity with the help
of ACG which is introduced before. We use algorithm 1 to
build ACG. Each node in ACG represents one Activity that
is declared in AndroidManifest.xml. Native Android UI
jumps from one to another Activity because of View Event
(such as Button.onClick). So each edge in ACG represents
one View ID whose event method triggers native Android
UI jumps from edge start Activity to edge end Activity. To
our knowledge, there are two system calls to make activity
jump, they are startActivity and startActivityForRe-

sult. They both need an intent which sets the jump to
Activity as parameter. To build the edges, we backtrace the
parameters of these two system calls (startActivity and
startActivityForResult) to find the Activity (as A1) it s-
tarts. At the same time, we would find which View Event
calls the system calls directly or indirectly during the back-
tracing process. Then we could find out the View ID (as
ID1) and which Activity (as A2) owns this View. Then we
add this edge { A2 - A1 | ID1.event } to ACG. The jump-
to Activity sets in intent is not easy to find. There are
six constructors of intent[4] and two kinds of intent: ex-
plicit intent and implicit intent. Explicit intent needs target
Activity name which is recorded in AndroidManifest.xml as
parameter however implicit intent just needs an action name
which is also defined in AndroidManifest.xml. The Activ-
ity name of an explicit Intent could be tracked by method
backtracing and register backtracing. For implicit Intents,
we first scan the AndroidManifest.xml file and build the
correspondence of the Activities and Actions. Once we have
got the Action, jump-to Activity could be determined via
correspondence built before.

3.2 Dynamic Analysis Module
This module is the most important part of our system. In

this module our system automatically runs each app on an
emulator and triggering native Android UI to target activity
to check whether the app shows an illegal page. We use
algorithm 2 to drive UI to target activity.
Dynamic Test Environment. In order to improve the

efficiency of our system we apply multi-emulator to run the
test. During this phase we need to install and run the app,
and to make it automatically we need to simulate human op-

Algorithm 2 UI Drive

Input:
ACG : Activity Call Graph
tas, target activities
for each target activity act in tas do

start target APP
tACG = copy(ACG)
ca = getCurrentActivity()
while ca is from target APP and ca is NOT act do

V iewID = FindNextEdge(tACG,ca,act)
if V iewID is NOT NULL then

perform(ViewID)
else

perform(return)
end if
WaitForJumpOrTimeOut()
ca = getCurrentActivity()

end while
if ca is act then

TryToOpenHTTPSWebPage()
end if
stop target APP

end for

function FindNextEdge(ACG,ca,ta)
path = findPath(ACG,ca,ta)
if path is ϕ then

return NULL
else

edg = first edge of path
ACG = ACG - edg
return edg

end if
end function

erations on testing app. To meet our needs, the dynamic test
environment should have the following features: Being able
to understand the UI states, such as which activity is shown
on screen, the position and ID of each View, the screen is
showing a dialog or not; Being able to get UI objects, such
as get the object of the button that is displayed on screen;
Being able to perform actions, such as performing click ac-
tion on a button by specified button id; Being able to get
return value, such as whether a click action is successful or
not.

In order to achieve these features, we have modified An-
droid system tool instrumentation[7] by bypassing the sig-
nature verification phase, which allow us to test other apps
with our own test script app (APK) though they have differ-
ent signatures. With modified instrumentation, we don’t
need to re-sign the target app which may cause app crash.
We developed a general test script app of which the config-
uration file was obtained from static analysis. With these
features, we could run the test automatically. The configura-
tion file would be generated automatically from information
(e.g. ACG, target activities) obtained during static analysis
phase. Then the app would be installed and tested according
to the script app automatically.

After the app was installed, our system would drive the
app to jump to the target Activities and further to trigger
the vulnerability once the test script started by simulating a
series of human operations. This driving procedure is divid-

4

594

Table 1: Results of Static Analysis
Potential Vulnerable Apps # 1360 9.8%
Free from such Vulnerability # 12203 88.3%

Decompilation Failure # 257 1.9%
Total Apps # 13820

Table 2: Results of Dynamic Analysis
Vulnerability Confirmed # 645 47.4%

Vulnerability Free # 715 52.6%
Potential Vulnerable Apps # 1360

ed into two parts: native Android UI driving and WebView
UI driving. Native Android UI driving drives the UI to tar-
get Activity and WebView driving drives WebView to load
an HTTPS web page.
We take a target Activity and calculate the path from

current Activity to it based on ACG. If the path exists,
we get the first edge in path which represents a View ID
and a View event, trigger the View event for this View and
delete this edge from ACG to avoid infinite loop. If the path
doesn’t exist, which means there is no way from current
activity to target activity, we return to system or roll back
to the previous activity. Once jumped to the next Activity,
we do the same thing, calculating paths, triggering events
and deleting edges until jump to the target Activity. For
the condition that some view is visible on some conditions
(i.e. click other button first), we directly jump to the target
Activity. Once we have jumped to the target Activity with
the WebView, To trigger the potential vulnerable code we
have built an attack environment that could redirect to our
illegal page when the app tries to load an HTTPS page. But
there are some apps which load a static local page or HTTP
page first with several links on it. Here we adopt a strategy
like a crawler to find the HTTPS link and load it. We first
extract all the links from the initial page and load every link
and extract links again until we have found an HTTPS link
or the craw layer depth is up to 3. It’s worthy to note that
we don’t need to find all HTTPS links because all HTTPS
links share the same error handling process.
Confirm vulnerability. While the WebView loads an

HTTPS page, it will show a blank page if the WebView
rejects the illegal certificate, otherwise it will show the illegal
web page. So we check the WebView if it’s a blank page or
not which determines if this app is vulnerability or not.
With all detailed running information it’s easy for us to

figure out why this app is vulnerable and what is the function
of the HTTPS web page. More over this information helps
us analyze the result statistically and more general.

4. EVALUATION
We run experiments on two machines with Ubuntu OS,

one for test and another for attack environment. We have
downloaded 13,820 apps by its download rank from 360 mar-
ket as dataset in July 2014.
Static analysis takes 13.5 hours to finish, 3.5 seconds per

app which is fast enough to deal with large scale analysis.
For decompilation, there are 257 apps can’t be decompiled.
The result of static analysis is shown in Table 1. From this
table, there are 1,360 apps are potential vulnerable from a
total number of 13,820. The apps that have its own SS-

Table 3: Top 3 Categories of Vulnerable Activities
Categories Count Percentage
Payment 209 25.0%

Authenticate 280 33.5%
Login&Register 73 8.7%

Table 4: Vulnerable Apps in Ranking Interval
Ranking interval Count Percentage

1-1000 136 21.1%
1001-2000 94 14.6%
2001-3000 70 10.9%
3001-4000 50 7.7%
4001-5000 37 5.7%

L/TLS certificate verification error handling account for 9.8
percent which are potential vulnerable and need to be fur-
ther detected in dynamic analysis to confirm if they are truly
vulnerable or not. For the rest 12,203 apps checked as free
of this vulnerability during static analysis, they either don’t
have their own WebViewClient or the code unreachable or
the code reject the page with illegal certificate.

In dynamic analyzing process, we have been employing
4 emulators with Android 4.2 to run the test apps and it
takes 23 hours to run all 1,360 potential vulnerable apps
and the average time for each app is 60.8 seconds. The
result of dynamic analysis is listed in Table 2 from which we
can see that nearly half (645) of the 1360 tested apps are
confirmed vulnerable accounted 47.4 percent, which means
nearly half of the certificate verification error handlings are
not well designed or implemented. Also there are 715 apps
are detected potential vulnerable in static analyzing process
and confirmed not vulnerable in dynamic analysis because
of the effectiveness of their own error handling.

Top 5 categories of vulnerable apps are shown in table 5.
According to this table finance and social contain more vul-
nerable app than other categories and many of these apps
employed third party SDK like Tecent Weibo, Sina Weibo
and Alipay to fulfill some of their purpose. However, these
three SDK are vulnerable themselves which makes all the
apps employed these SDKs vulnerable. According vulner-
able apps’s download rank from the market in table 4, we
found that the most popular apps (ranking interval from
1 to 1,000) have the highest vulnerable rate. Besides, the
vulnerable rate decreased along with the popularity of the
apps, which demonstrates the severity of this vulnerability.
However, with the decline in ranking the vulnerable rate al-
so fell, does not mean the apps with lower ranks are more
secure. With further study we found that the apps with low
rank are less likely to use HTTPS, which means they are
more easily to be attacked.

Table 5: Top 5 Categories of Vulnerable Apps
Categories Count Percentage
Finance 56 8.7%
Social 56 8.7%

Lifestyle 51 7.9%
Entertainment 44 6.8%
Travel & Local 38 5.9%

5

595

We also defined category for each vulnerable activity by
their name and function. We show those vulnerable activi-
ties in Table 3. The top two kinds are Payment and Authen-
ticate Activity which weighted more than half of the total
vulnerable Activities. The reason why so many Activities
are these two categories is that, many apps are integrated
with Tecent Weibo, Sina Weibo and Alipay SDKs and Ten-
cent Weibo and Sina Weibo SDKs are social SSO SDKs and
related to authentication and Alipay is a payment SDK. It’s
noteworthy that many vulnerable apps share a same vulner-
able Activity. We have found a same vulnerable Activity in
128 different apps because of the integration of Alipay SDK.

5. RELATED WORK
Zheng et al. in [4] presented a system called SmartDroid

which could lead native Android UI to the exposure of sen-
sitive behaviors. But SmartDroid can’t deal with web UI.
Bhoraskar et al. in [8] presented an app automation tool
called Brahmastra to test thirdparty components in mobile
apps. Brahmastra is powerful enough to do that, but it can’t
test WebView UI which is necessary in our work.
Recently, a number of efforts have been made to reveal and

mitigate SSL security problems. Fahl et al. [9] found An-
droid SSL MITM vulnerability and developed a tool called
Mallodroid to detect it. But they couldn’t confirm the vul-
nerability automatically for large dataset. Sounthiraraj et
al. in [1] developed a tool called SMV-Hunter to detect the
SSL MITM vulnerability which is able to detect automati-
cally for large scale dataset. Our work is directly inspired by
SMV-Hunter. However, our system is very different from it,
which is designed for different vulnerabilities with different
techniques. SMV-Hunter focuses on app built-in SSL veri-
fication weakness, whereas our system focuses on the weak-
ness in HTTPS verification error handling process. Mean-
while, the SSL usage is also different. In SMV-Hunter, it
aims to find the apps that use SSL for the backend net-
work communication. In our work, the use of the SSL is
UI-based, namely, the web page will show up until that the
WebView is show up. This means we have to manage to do
more to jump to the target activity and open the HTTP-
S web page. Tendulkar et al. discussed the same problem
(onReceivedSslError) in [10], and we almost work on it at
the same time. They just showed the problem without fur-
ther study in [10], and we systematically studied on it and
developed this tool to detect this problem automatically.

6. FUTURE WORK
There are several limitations of our approach. In static

analysis, because of the object-oriented programming dia-
gram there are some virtual method call which is only de-
termined at run time. In dynamic analysis, some activities
are reachable on specific conditions. For example, if we want
to jump to checkout activity on some shopping apps we have
to login and put some goods in the shopping cart. We would
get an error if we jump to the activity directly. And some UI
elements are visible on particular conditions. For example,
a logout button is not visible until you have logged in.

7. CONCLUSION
In this paper, we discovered a new type vulnerability for

hybrid Android apps, which could affect Android WebView
HTTPS connection making secure connection vulnerable.

We have designed a new detection system that uses both
static analysis and dynamic analysis to detect this type of
vulnerability automatically on a large dataset of apps. Our
static analysis discerns potential vulnerable apps and gen-
erates essential information to guide the dynamic analysis,
which is used to confirm whether the app is vulnerable or
not by automatically triggering the vulnerability facilitated
for both native Android UI and WebView UI . We have ap-
plied our system to test 13,820 apps, and in total we found
645 of them truly vulnerable.

Acknowledgements
This work is partially supported by National Natural Science
Foundation of China (61173068, 61173139), Program for
New Century Excellent Talents in University of the Ministry
of Education, the Key Science Technology Project of Shan-
dong Province (2014GGD01063), the Independent Innova-
tion Foundation of Shandong Province (2014CGZH1106) and
the Shandong Provincial Natural Science Foundation (ZR20-
14FM020).

8. REFERENCES
[1] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and

L. Khan, “Smv-hunter: Large scale, automated
detection of ssl/tls man-in-the-middle vulnerabilities
in android apps,” in Proceedings of the 19th Network
and Distributed System Security Symposium. San
Diego, California, USA, 2014.

[2] J. Clark and P. C. van Oorschot, “Sok: Ssl and https:
Revisiting past challenges and evaluating certificate
trust model enhancements,” in Proceedings of the
Security and Privacy. IEEE, 2013.

[3] https://code.google.com/p/androguard/.

[4] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou, “Smartdroid: an automatic system for
revealing ui-based trigger conditions in android
applications,” in Proceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices. ACM, 2012, pp. 93–104.

[5] https://code.google.com/p/android apktool/.

[6] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang,
“Systematic detection of capability leaks in stock
android smartphones.” in Proceedings of the 19th
Annual Symposium on Network and Distributed
System Security, 2012.

[7] https://developer.android.com/reference/android/
app/Instrumentation.html.

[8] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen,
J. Jung, S. Nath, R. Wang, D. Wetherall,
D. Langenegger et al., “Brahmastra: Driving apps to
test the security of third-party components.” in
Proceedings of the 23rd USENIX conference on
Security Symposium, 2014.

[9] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith, “Why eve and mallory
love android: An analysis of android ssl (in) security,”
in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012.

[10] V. Tendulkar and W. Enck, “An application package
configuration approach to mitigating android ssl
vulnerabilities,” in Proceedings of the 2014 Mobile
Security Technologies Conference, 2014.

6

596

