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ABSTRACT

The rapid expansion of the Android ecosystem is accompanied by

continuing diversification of platforms and devices, resulting in

increasing incompatibility issues which damage user experiences

and impede app development productivity. In this paper, we

conducted a large-scale, longitudinal study of compatibility issues

in 62,894 benign apps developed in the past eight years, to

understand the symptoms and causes of these issues. We further

investigated the incompatibilities that are actually exercised at

runtime through the system logs and execution traces of 15,045

apps. Our study revealed that, among others, (1) compatibility

issues were prevalent and persistent at both installation and run

time, with greater prevalence of run-time incompatibilities, (2)

there were no certain Android versions that consistently saw more

or less app incompatibilities than others, (3) installation-time

incompatibilities were strongly correlated with the minSdkVersion

specified in apps, while run-time incompatibilities were most

significantly correlated with the underlying platform’s API level,

and (4) installation-time incompatibilities were mostly due to apps’

use of architecture-incompatible native libraries, while run-time

incompatibilities were mostly due to API changes during SDK

evolution. We offered further insights into app incompatibilities, as

well as recommendations on dealing with the issues for bother

developers and end users of Android apps.
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1 INTRODUCTION

Due to the shift of personal computing to mobile platforms and the

predominance of Android [38], to most people today software

applications are mostly Android apps. Like software in other

application domains, mobile apps are subject to common issues

with various quality factors, including not only those related to

reliability and security [3, 8, 42] which have received wide

attention [4, 5, 12], but also compatibility issues which have not

been as much attended. In particular, incompatibilities lead to low

usability hence poor user experiences, harming the health of the

mobile software ecosystem. Since they compromise the production

and adoption of apps, compatibility issues also impede the

productivity of app developers. Intuitively, the larger the user base

of the ecosystem, the greater the (negative) impact of these issues.

As Android increasingly gains its momentum, compatibility

issues in Android also have been on the rise [30, 39, 43, 47, 48].

The open-source nature of Android has led to the diversification of

Android devices [34] and customized Android platforms (e.g., the

Android operating system kernel) [11]. The Android system itself

also constantly evolves, leading to continuous SDK/API

changes [35, 44]. While this facilitates the growth of Android on

mobile computing markets, it also has caused various

incompatibilities in Android apps. In consequence, apps developed

for mobile devices of one model and/or the Android system of a

particular version may not normally function, or cannot even be

installed to, devices of a different model or other versions of the

Android system. As people increasingly rely on Android apps for

their daily lives, it is crucial for app developers and end users to

understand application incompatibilities in Android, a first step

towards mitigating and even preventing relevant issues.

A few prior studies concerned compatibility issues in Android

apps, but considered only those due to a particular kind of causes

(e.g., fragmentation [27, 29, 44] and API evolution [33, 35]). Also,

these studies examined a relatively small set of app samples, without

considering the time factor of the samples or the issues. Latest

efforts [28, 32] focus more on detecting/predicting potential and

specific compatibility issues induced by API changes through static

code analysis (thus suffer false positives), and/or characterizing how

developers deal with compatibility issues in app’s code [28]. Other

relevant research investigated app bugs and crashes in general [10,

36], not necessarily due to compatibility issues.

As it stands, there has been no study that addresses (1) the

status quo of app incompatibilities in Android that are actually

observed both at a large scale and with an evolutionary

perspective and (2) varied symptoms of these issues occurring at
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different stages (i.e., installation and execution) of app use and

corresponding root causes. Such a study would shed light on a

comprehensive understanding of the compatibility issues in

Android apps and how they evolve, so as to offer insights on

mitigating and preventive strategies against those issues.

To fill this gap, in this paper, we conducted a comprehensive and

longitudinal study at a large scale of observed incompatibilities in

Android apps. We collected 62,894 benign apps from various sources

that were developed in eight different years (2010 through 2017),

and profiled 15,045 of these apps with random inputs each for five

minutes. We then investigated both installation-time and run-time

incompatibilities according to the corresponding APKs and their

execution traces, respectively, on all the 8 major Android versions

of a non-trivial market share (from API level 19 through 27) [16].

We regarded an app as installation-time incompatible if it can be

successfully installed (as indicated by the return code/message

of the installation) to at least one (version of) Android platform

but cannot to another. Similarly, an app was regarded as run-time

incompatible if it can run for a specified time period successfully

(i.e., without producing any system error messages, exceptions, or

crashes) on at least one (version of) Android platform but cannot on

another. We differentiate these two classes of app incompatibilities

to enable an in-depth understanding of the extent and phases of

the corresponding compatibility issues.

Through these datasets and the two complementary experiments

(on the two types of compatibility issues, respectively), we aim to

assess the prevalence of both types of compatibility issues, as well

as their distribution with respect to various symptoms and causes.

We also intend to disclose key properties of apps (e.g., age) and those

of the Android platform (e.g., release time) that have a significant

impact on app incompatibilities. Finally, in a longitudinal view, we

attempt to reveal the evolutionary patterns of these characteristics

of app incompatibilities over time.

In particular, we explore the following research questions:

• RQ1: How prevalent are app compatibility issues in Android?

Previous relevant works have suggested the potential

existence of compatibility issues in Android apps due to

particular reasons (e.g., SDK evolution) [28, 32, 35, 44]. To

understand compatibility issues as exhibited due to any

possible reasons, we actually installed and ran each sample

app to characterize such issues in them as observed, and

differentiated the different stages (installation and run time)

in which such issues occur.

• RQ2: How are the compatibility issues in Android apps

distributed over major symptoms? App incompatibilities are

exhibited through observable symptoms (e.g., error logs

upon installation failures, and crash traces upon execution

failures, that are induced by compatibility issues) [10, 36].

Examining what contributed to incompatibilities with

respect to particular symptoms can help us understand the

root causes of those symptoms. Thus, we examined the

main symptoms (effects) of installation- and run-time

incompatibilities and looked into the distribution of

installation/execution failures over those symptoms.

• RQ3: What are the main factors that contributed to the

incompatibilities in Android apps? Current understanding

about Android app incompatibilities attributes them mainly

to the issues with the Android platform (e.g.,

fragmentation [44] and SDK evolution [28]). To

complement this understanding, we further study possible

properties of apps that are related to the compatibility

issues. We conducted statistical analyses to discover

possible correlations between installation/execution failures

and relevant app properties, including the age of apps and

their specification of minimal SDK version.

Guided by these questions, our study revealed, among others:

(1) Substantial portions (15% on average) of our benchmarks

from varied years suffered incompatibilities that failed their

installation to one or more of the eight Android platforms

we studied. These issues were strongly correlated to the

minSdkVersion specified in apps and its distance from the

API level of the platform the app was attempted to install to.

(2) 90% of the installation-time incompatibilities were due to

the apps using native library functionalities that are not

supported by the underlying hardware architecture. Among

other cases, the issues were mainly attributed to vendor

customizations of the Android system.

(3) Run-time compatibility issues were even more prevalent

(30ś50%) than the issues at installation time in our

benchmarks, on Android versions prior to API 24. Opposite

to apps’ minSdkVersion being the major contributor to

installation-time issues, primarily contributed to run-time

incompatibilities was the Android platform’s API level.

Android versions since API 24, however, did not see any

run-time compatibility issues.

(4) On older Android platforms (with API levels prior to 24),

run-time compatibility issues were exhibited mostly via

verify errors (50%) and native crashes (20%), both mainly

caused by API changes during Android SDK evolution.

Counter-intuitively, apps developed in years closer to a

platform’s release year tended to be more likely to be

run-time incompatible on that platform.

From these observations, we also distill lessons learned andmake

recommendations for developers and app users to deal with app

incompatibilities based on the lessons. We have released all of the

source code and datasets used in our study, found here.

2 BACKGROUND

In this section, we give brief descriptions of the basic concepts

and terms about the Android system and Android apps that are

necessary for readers to understand the remainder of this paper.

2.1 Android Platform and SDK

The middle layer between the Android operating system (OS) (a

customized Linux kernel) and its user applications constitutes the

Android framework. This framework provides the implementation

of application programming interface (API) methods through

which user apps can receive system services and invoke common

functionalities associated with mobile devices. The API is typically

part of the Android software development kit (i.e., SDK) which also

includes tools to support app development.
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Figure 1: Overview of the process flow of our app incompatibility study.

Under the framework-based development paradigm, Android

apps usually comprise building blocks called components of four

types: Activity forming the basis of user interface, Service

performing background tasks, Broadcast Receiver (or just Receiver

in short) responding to system-wide broadcasts, and Content

Provider offering database capabilities.

2.2 Incompatibilities in the Android Ecosystem

As it stands, the same version of Android system may run on

devices with different hardware configurations (e.g., varied

processor models and screen sizes, with/without certain kinds of

sensors). Meanwhile, different vendors may customize the Android

system in various ways to help promote their mobile device

products. These variations constitute a phenomena in Android,

called fragmentation [27]. Due to the fragmentation problem, it is

difficult to develop an app that functions normally on any device

with any Android version, resulting in fragmentation-induced

compatibility issues [44].

To accommodate its marketing demands, Android provides a

large variety of operating system and SDK versions that both evolve

constantly, with faster evolution seen by the SDK (especially the

API) [16]. For instance, during the past eight years, Android has

released over 20 API versions (each corresponding to an API level).

Due to the API evolution, an app developed with one API level

might not be installable or runnable with Android of different API

levels. Thus, API evolution constitutes another important cause of

incompatibilities in Android apps [35].

There are two types of compatibility in Android: device

compatibility and app compatibility [14]. Device compatibility

concerns whether a mobile device is Android compatible (i.e., able

to run apps written for the Android runtime). Only

Android-compatible devices include Google Play Store. Also, the

regular avenue for users to install apps is from Google Play Store.

Thus, device compatibility is often not an issue for app developers.

App compatibility is a primary concern of app developers, which is

thus the focus of our study. An app can have incompatibilities with

the device configurations, the Android system (mainly the

framework/API), or both.

2.3 Compatibility Attempts in Android Apps

When an app is built, the developer can choose which API level

the app targets and the minimum API level required for the app to

function [48]. These numbers on API levels may be recorded in the

manifest file of the app package (i.e., APK), as minSdkVersion (i.e.,

the minimum API level) and targetSdkVersion (i.e., the targeted API

level). It is specified in the official Android developer guide

(OADG) [17] that an app should always declare minSdkVersion (or

it will be defaulted to 1) [25]. Since API level 4, apps can also

declare targetSdkVersion, which is optional thoughÐwhen

unspecified, it would be defaulted to minSdkVersion. It is allowed

(also since API level 4) yet not recommended to declare another

API level number in the manifest: maxSdkVersion, which gives the

maximal SDK version that the app can run with. According to the

OADG, an Android system does not allow an app to be installed if

the API level used by the system is lower than the app’s

minSdkVersion or higher than its maxSdkVersion.1 However,

Android promises backward compatibility [22]: an Android

platform with an API level higher than an app’s minSdkVersion

allows the app to be installed and function as expected; if the

platform API level is higher than the app’s targetSdkVersion, the

system also enables compatibility behaviors allowing the app to

work as expected [25]. Nevertheless, between API level 4 and API

level 6, the check with respect to maxSdkVersion is enforced: the

installation will fail if the app specifies a maxSdkVersion that is

smaller than the platform’s API level.

3 METHODOLOGY

This section gives an overview of our study process, and describes

the dataset and tools used. We then define main metrics and

measures used for quantifying incompatibilities hence answering

our research questions.

3.1 Process Overview

Figure 1 depicts the process of our study. We used the APKs of

benign apps as benchmarks. To enable an evolutionary viewpoint

in examining app incompatibilities, our datasets included samples

developed in different years (2010ś2017). We considered all the 8

Android versions (API level 19 through 27), except for API 20

which is dedicated for wearable devices. These versions combined

constitute 96.5% of the entire Android market share (by late

2018 [16]). We dismissed other versions concerning their old age

(released in 2012 or earlier) and tiny market share (1.5% or lower).

We concern both installation- and run-time incompatibilities of

apps. To characterize the former, we attempted to install the original

APK of each app to an Android device for each of studied Android

versions. We collected the installation logs, and then analyzed these

logs to recognize the installation as a success or failure. The logs

also give information for us to understand the effects of installation

failures. We treated uninstallation success as part of installation

success. Thus, for each app installation test, we uninstalled the app

after successfully installing it.

To characterize run-time incompatibilities, we need to examine

app executions. We performed lightweight instrumentation and

profiling to facilitate differentiating two classes of run-time

incompatibilities: (1) incompatible launch, with which an app

cannot even be launched successfully, and (2) incompatible running,

with which a launch-compatible app exhibits incompatibilities

after successfully running for a while. To that end, we first

1The check against maxSdkVersion has been abolished by Android since its version
2.0.1 [25] (which corresponds to API level 6 [21]).
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Table 1: Subject apps used in our study

Data use
number of samples from each year within 2010-2017

Total2010 2011 2012 2013 2014 2015 2016 2017

Installation-time incompatibility study 16,835 9,977 10,991 9,688 5,300 5,406 2,431 2,266 62,894

Run-time incompatibility study 1,531 2,020 2,054 1,750 1,335 3,127 1,548 1,680 15,045

instrumented each app for tracing (all) method calls, with the

support of an underlying framework Soot [31] for Dalvik bytecode

manipulation. We then ran the instrumented app for five minutes

on an Android device, for each of the 8 Android versions, to gather

the app trace as well as the system log on the app’s execution. In

this way, differentiating the two run-time incompatibility

situations was enabled by simply checking the trace: if the trace

contains valid records of calls, we can exclude the app from the

incompatible launch category. We identified the effects of run-time

incompatibilities by further checking the system log.

The outputs of our study pipeline are the characterization results

on both types of incompatibilities. Next, we elaborated on key

elements of our study design.

3.2 Subject Apps

A summary of subjects (62,894 benign apps) used in our study is

listed in Table 1. These apps were developed in different years from

2010 through 2017. The 2,266 apps of 2017were downloaded directly

from Google Play [24]. All other benign apps were obtained from

AndroZoo [2], a diverse collection of apps from various sources.

All samples were confirmed as benign via VirusTotal [1].

The year of each app was obtained according to the dex date

retrieved from the app’s APK, which is the last modification date

of the app bytecode (as stored in classes.dex). During our data

collection, we discarded corrupted APKs which either cannot be

unzipped or are missing resource files. These corrupted apps are

not installable, but they are not relevant to app incompatibilities.

Eventually, we used 62,894 apps for the installation-time

compatibility study. For our study, we needed the minSdkVersion

for each app. Thus, we defaulted it as 1 (as Android does [25]) for

apps that did not specify minSdkVersion.2

We limited the number of samples to be used for our run-time

compatibility study concerning the overheads (i.e., of executing

each app for five minutes for each of the 8 Android versions). We

started with the apps used in the installation-time compatibility

study from each year. After finding out that many of the apps cannot

be successfully installed (to one or more of the 8 Android versions),

we continued to select more apps from respective sources, until we

had at least 1,000 installable apps for each year. In total, we used

15,045 apps for the run-time compatibility study.

3.3 Experimental Setup and Procedure

For the scalability of our study pipeline and control of study

overheads, we used 8 Android virtual devices (AVDs), all Nexus

One with 2G RAM and 1G SD but with varied API levels (i.e., 19,

21, 22, 23, 24, 25, 26, and 27). We ran these AVDs via the Android

emulator [18] shipped with each corresponding Android version.

To trace apps for studying run-time incompatibilities, we need

to feed the apps with run-time inputs. We used the Monkey

20.32ś1.12% of the apps in our yearly datasets did not specify minSdkVersion.

tool [20] shipped with the Android SDK to generate random inputs

for app exercising. Both the app call traces and system logs were

serialized using the Logcat tool [19], also part of the SDK. For app

instrumentation and method-call tracing, we used our Android

characterization toolkit [7] and dynamic analysis utilities [6]. We

used apktool [45] to retrieve the manifest data of an app, including

the minSdkVersion, targetSdkVersion, and maxSdkVersion of the app.

We utilized the adb tool [15] for app installation and uninstallation.

With these study facilities, we now define key notions/terms we

referred to earlier but only intuitively. An app installation

(uninstallation) to a device A is regarded as successful only if

running the install (uninstall) command of adb on the app to

A returns a code explicitly indicating the success. Then, an app is

installation-time compatible with A if the app can be installed to

and then uninstalled from A, both successfully; otherwise, the app

is installation-time incompatible with A. For a given app, failure in

installing the app to a device could be due to reasons other than

(installation-time) compatibility issues. We regarded the failure as

caused by compatibility issues with one device if the app can be

successfully installed to at least one different device (i.e., with a

different Android version in our study). In addition, Android does

not allow apps with minSdkVersion higher than the underlying

platform’s API level to be installed to that platform [25]. Thus, we

did not treat installation failures of such apps on those platforms as

induced by (installation-time) compatibility issues. With Android

versions of API level 4, 5, and 6, app with maxSdkVersion lower

than the underlying platform’s API level is not allowed to install

either. However, since our study only experimented with Android

versions of API level 19 or higher, the check policies against

maxSdkVersion did not affect our results.3

Similarly, for a given app, failure in executing the app on a

device A, as indicated by execution error messages (in the system

log for the app’s execution), exceptions, and crashes, could be

ascribed to reasons other than (run-time) compatibility issues (e.g.,

bugs in the app or invalid user operations). To exclude failures

induced by non-compatibility issues with one device, we ran the

app on various devices of different Android versions (all for five

minutes with Monkey inputs). If the app can run on at least one

different device without exhibiting any of the execution failure

symptoms, yet it exhibited failures during the execution on A ( also

for five minutes and with the same sequence of Monkey inputs as

used in the successful run), then we regarded the app as run-time

incompatible with A. Then, accordingly, the error messages,

exceptions, and crashes exhibited in the failing execution on A

were regarded as run-time incompatibility symptoms.

Thus, one challenge to our study was to exclude irrelevant

(non-compatibility induced) failures during app installation and

executions, as it was time-consuming to find the successful

3Our initial datasets of year 2010 to 2017 had 1.06%, 0.83%, 0.98%, 0.52%, 1.03%, 2.89%,
3.51%, and 6.1% of the apps with maxSdkVersion specified, and 0, 1, 0, 0, 0, 3, 1, 2 apps
with minSdkVersion higher than 19, respectively.
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Figure 2: Installation incompatibilities in terms of IIR (y axis) in benign apps of varied years (x axis).

installation/execution. The cost was particularly high for finding

the successful execution, because of the great overhead of the

dynamic analysis (e.g., exercising each app for five minutes, and

checking the traces and system logs for failure symptoms).

Fortunately, we installed and ran each sample on the 8 different

Android versions, so we excluded irrelevant failures for each

version by referring to the results with all other 7 versions. We

would only have needed to try additional devices if the

installation/execution of an app failed on all the 8 versions, which

fortunately did not happen for any samples in our study.

3.4 Measurements

To answer our research questions, we computed a set of measures

for the two classes of app incompatibilities. For installation-time

incompatibilities, we measured the installation-time incompatible

rate (IIR) for each app set (apps of a particular year) against an API

level as the percentage of apps that cannot be successfully installed

to the AVD with that API level. We also computed the distribution

of IIR over major installation-time incompatibility effects. For

run-time incompatibilities, we computed run-time incompatible

rate (RIR), but separately for the two subclasses: incompatible

launch and incompatible running. We then looked into the

distribution of RIR over major run-time incompatibility effects.

In addition, we conducted a series of statistical analysis to

discover correlations between app incompatibilities and several

properties of the Android platform itself and its apps. Specifically,

in this study we were concerned about compatibility-related

platform properties (release year and API level) as studied by prior

works [28, 32]; more importantly, we also looked at multiple app

properties that are potentially relevant to app incompatibilities:

minSdkVersion, app (creation) year, app lapse, and API lapse4. We

retrieved the SDK release years per the Android history [21].

We introduce and study the two derivative properties (app lapse,

API lapse) because intuitively they can be used to examine the

length of Android’s forward and backward compatibility with

apps [32]. To measure the correlations of interest, we computed

the Spearman’s correlation coefficients [37] for relevant variables.

We chose this method because it is a non-parametric correlation

statistics that makes no normality assumption about underlying

data points. We refer to [46] in discerning correlation strengths

based on the range of the coefficient’s absolute value: [0.0, 0.19]:

very weak, [0.2, 0.39]: weak, [0.4, 0.59]: moderate, [0.6, 0.79]:

strong, and [0.8, 1.0]: very strong.

4In particular, we define app lapse as (SDK release year ś app year), and API lapse as
(platform’s SDK API level ś app minSdkVersion).

Next, we present the results of our empirical studies on

installation-time and run-time incompatibilities in Android apps.

We investigate the prevalence, contributing factors, distribution,

and security relevance of these incompatibilities, all with an

evolutionary perspective. For better clarity, we focus on

installation- and run-time incompatibilities in two separate studies,

Study I (Section 4) and Study II (Section 5), respectively. We

address the three research questions in both studies and discuss

major findings around these questions.

4 STUDY I: INSTALLATION-TIME
INCOMPATIBILITIES

As we mentioned earlier, an app is regarded as installation-time

compatible if its installation and uninstallation are both successful.

Intuitively, if an app is installable to a device, it should be

uninstallable from the same device as well. Our study results

confirmed this assumption: all of our subject apps that were

installed successfully were all uninstalled successfully too.

4.1 RQ1: Prevalence of App Incompatibilities

Figure 2 delineates the overall IIR of benign apps from each of the

eight years, and that of all benign apps considered in this study as

a whole, despite the varied symptoms of installation failures. A

high-level observation is that, within each yearly dataset, the

failure rate was quite close across the eight Android versions,

indicating largely negligible impact of the platform’s API level. In

fact, the aggregate result for all the benign apps put together as

one amalgamated dataset (benign-all) confirmed the same

observation. On the other hand, across the eight years, IIR of the

benign apps experienced a steady growth until 2014, followed by a

slowly decreasing trend. This evolution pattern potentially reflects

the gradual (albeit still not complete) compatibility adaptation

between apps and the rapidly evolving platform in the Android

ecosystemÐinitially the IIR grew as API lapse increased (as

indicated by the strong positive correlation between IIR and API

lapse as we found; see Table 2), and then the ecosystem took a few

(4, as per Figure 4) years to iron out the compatibility issues.

Concerning quantitative measures, the numbers show the IIR

ranging from 7% to almost 23% for individual app years and

Android versions, and that the aggregate IIR was about 15%. There

is no clear/consistent association between dataset sizes and IIR,

suggesting no substantial impact of the large size variations of our

datasets on these general observations.

A look into the results for the benign-2017 dataset revealed an

outlier with the newest version studied (API 27), with which the IIR

220



ISSTA ’19, July 15–19, 2019, Beijing, China Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% NO MESSAGE
INSTALL_PARSE_FAILED_UNEXPECTED_EXCEPTION
INSTALL_PARSE_FAILED_NO_CERTIFICATES
INSTALL_PARSE_FAILED_MANIFEST_MALFORMED
INSTALL_PARSE_FAILED_BAD_SHARED_USER_ID
INSTALL_PARSE_FAILED_BAD_PACKAGE_NAME
INSTALL_PARSE_FAILED_BAD_MANIFEST
INSTALL_FAILED_VERSION_DOWNGRADE
INSTALL_FAILED_OLDER_SDK
INSTALL_FAILED_NO_MATCHING_ABIS
INSTALL_FAILED_MISSING_SHARED_LIBRARY
INSTALL_FAILED_INVALID_APK
INSTALL_FAILED_INTERNAL_ERROR
INSTALL_FAILED_INSUFFICIENT_STORAGE
INSTALL_FAILED_DUPLICATE_PERMISSION

Figure 3: Percentage distribution of installation-time incom-

patible apps over the varied symptoms exhibited.

of this dataset was higher than any other datasets on any Android

versions. API 27 (Android 8.1) was released at the end of 2017 [21],

when almost all of the studied benign-2017 apps had already been

created. Thus, Android 8.1 had the worst backward compatibility

with themost recent prior apps. Another outlier of the general trend,

API 25 and API 26 saw IIR rising again. An implication of these

contrasts is that newer/older Android versions did not necessarily

had better/worse compatibility with recent past/future apps.

Finding 1: Over the eight years studied, installation-time

app incompatibilities persisted with varying (7% to 23% IIR)

yet substantial presence (15% IIR on overall average), largely

independent of the underlying Android versions used.

4.2 RQ2: Distribution of App Incompatibility
Symptoms

Figure 3 depicts the percentage distribution of apps with

installation failures due to compatibility issues over the 15 failure

effects (shown in the legend) we observed in this study. Of these

effects, 14 were error codes (e.g., INSTALL_FAILED_INVALID_APK)

produced by adb as we observed at installation time. The last one

(NO_MESSAGE) was what we used to indicate the situation in which

the installation simply failed without resulting in any error

message/code. While we also computed such a distribution for

each Android version separately, given the very-high similarity of

these distributions across those versions, here we only present and

discuss the aggregate distribution: installation failure effects were

amalgamated over all the versions for each of the eight app years.

Despite this great variety of symptoms and the noticeable

percentage (5%) of NO_MESSAGE cases, the top two dominating

symptoms were INSTALL_FAILED_NO_MATCHING_ABIS and

INSTALL_FAILED_MISSING_SHARED_LIBRARY. As highlighted via

pattern fill (opposed to solid fill for the minor symptoms), for most

app years, over 90% of the apps that failed to be installed

encountered the INSTALL_FAILED_NO_MATCHING_ABIS error5,

meaning these apps use native libraries that are not compatible

with the hardware (CPU) architecture. For the last two app years

(2016 and 2017), a substantial percentage (15%) of apps failed at

installation because they use a library that does not exist in the

underlying Android framework (mostly due to the removal of

those libraries during vendor customizations), as indicated by the

INSTALL_FAILED_MISSING_SHARED_LIBRARY error.

5As per our approach to excluding non-compatibility-induced installation failures
(§ 3.3), we validated that these apps ran normally (did not crash nor encounter such
errors) on at least one different device, a core part of our experimental methodology.

Table 2: Spearman correlation (moderate or stronger coeffi-

cients in boldface) between IIR and contributing factors

app lapse API lapse minSdkVersion SDK API level app year

overall 0.046 0.680 -0.709 -0.047 -0.061

ABI -0.033 0.651 -0.695 -0.133 -0.015

LIB -0.081 0.418 -0.437 -0.056 0.078

Finding 2: Installation failures in apps were predominantly

(over 90%) due to their reliance on architecture-incompatible

native libraries, and others also (up to 15%) due to their use of

libraries missing in vendor-customized Android frameworks.

4.3 RQ3: Contributing Factors of App
Incompatibilities

To further understand the causes of installation-time

incompatibilities hence distill insights for dealing those issues, we

examined the distribution of IIRs over app lapse and API lapse.

This distribution is depicted by the heatmap of Figure 4, including

the overall distribution (regardless of symptoms) and the

distribution for the top two dominating symptoms separately. Each

data point (square) in the plot represents the IIR (with the square’s

color) of all the benign apps with a specific app lapse and a specific

API lapse, regardless of their creation years.

The overall distribution (left) suggest that the IIRs were very

low with apps of an API lapse in [−10, 10], and high mainly with

apps of high API lapse (>10), especially with those of >15 API

lapse. App lapses, on the other hand, were of no considerable

impact on IIRs: apps with the same API lapses have very close IIRs

despite their varying app lapses. This general observation still held

in the separate distributions associated with the two dominating

symptoms: out of the [−10, 10] range, higher API lapses were

associated with high IIRs, and app lapses had no major impact.

Comparing the IIR distribution between the symptoms reveals that

apps with very high IIRs (and associated very large API lapses)

failed more often due to vendor customizations of the Android

framework (missing libraries) than device hardware

incompatibilities (architecture-incompatible native libraries).

As shown in Table 2, our Spearman correlation coefficients

between IIR and various possible contributing factors (including

API lapse, and the three individual app/platform properties

mentioned in Section 3.4) confirmed the strong correlation (0.68)

of IIR with API lapse, rather than with the app years. This level of

correlation strength was observed similarly for the top two

symptoms. The strength was greater for apps failing in installation

due to INSTALL_FAILED_NO_MATCHING_ABIS (ABI) than those due

to INSTALL_FAILED_MISSING_SHARED_LIBRARY (LIB). This is

because the former has much greater dominance in the overall

distribution of IIRs (see Figure 3). Apps’ minSdkVersion was similar

to their API lapses in terms of the correlation with IIR, indicating

that minSdkVersion was the main contributor to the correlation

strength that API lapse had with IIR. The fact that, like app lapse,

app year and SDK API level, had no/negligible correlation with IIR

implies that the impact of app year on IIR seen in Figure 2 can be

further explained by the underlying varying minSdkVersions

specified in apps developed in varying years.
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Figure 4: Distribution of IIR (encoded by square color) over app lapse and API lapse, for all symptoms (leftmost) and the two

dominating ones: INSTALL_FAILED_NO_MATCHING_ABIS (middle) and INSTALL_FAILED_MISSING_SHARED_LIBRARY (right).

0%

20%

40%

60%

80%

R
u
n

‐t
im

e
 

In
co
m
p
a
ti
b
le

 R
a
te

 
(R
IR
)

API 19 API 21 API 22 API 23 API 24 API 25 API 26 API 27

Figure 5: Run-time incompatibilities in terms of RIR (y axis) in benign apps of varied years (x axis).

Finding 3: Apps of greater API lapses (especially out of

[−10, 10]), mainly due to their minSdkVersions being further

away from the underlying platform’s API level, had higher

IIRs. Vendor customization of Android contributed more than

hardware incompatibilities to very-high IIRs.

5 STUDY II: RUN-TIME INCOMPATIBILITIES

We present our empirical results on run-time app incompatibilities

following the same structure of the first study. We originally

intended to study two categories of run-time incompatibilities:

incompatible launch and incompatible running. However, our

results revealed that in our datasets there were no apps found to be

associated with the incompatible launch issues. Thus, in the rest of

this section, we only look at the first category of run-time

incompatibilitiesÐincompatible running.

5.1 RQ1: Prevalence of App Incompatibilities

In the same format as Figure 2, Figure 5 illustrates the overall RIR

of our benchmarks per yearly dataset and that of all benchmarks

amalgamated as a whole (benign-all). Notably, none of the four

newer Android versions (API levels 24, 25, 26, and 27) saw any

run-time incompatibilities with respect to the apps used in this

study. This largely facilitated our confirmation of execution

failures as indeed induced by compatibility issues. More

importantly, the sudden disappearance of run-time

incompatibilities since API 24 indicates the substantial

improvement of Android in accommodating apps of various ages

since that version, implying the changes made in that version [13]

largely addressed forward and backward compatibility issues. In

fact, API 24 was the most substantially changed version during the

Android history we studied with respect to prior versions [28].

Among the four older versions, API 19 and API 23 had mostly

considerably higher (by 15% or above) RIRs than the other two

versions across app years. A plausible reason is that API 19 is now

the oldest Android version with a non-trivial market share, while

API 23 is the first version adopting the run-time permission

mechanism which created quite some execution compatibility

issues [9]. Generally, in terms of the absolute RIR numbers,
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Figure 6: Percentage distribution of run-time incompatible

apps over the varied symptoms exhibited.

run-time incompatibilities were on the rise (albeit slightly) over

the eight-year span we considered, and these compatibilities issues

were much more prevalent than installation-time incompatibilities

(30ś50% RIR versus 15% IIR on average overall all apps).

Finding 4: Run-time incompatibilities extensively (30ś50%

RIR) and increasingly persisted on API 23 and older Android

versions. Yet newer versions (since API 24) had no run-time

compatibility issues with apps created in the studied span.

5.2 RQ2: Distribution of App Incompatibility
Symptoms

The percentage distribution of apps that encountered execution

failures over various symptoms is shown in Figure 6. The symptoms

were represented by 9 keywords (as listed in the legend) most

frequently appeared in the traces of failed app executions. As for

the installation-time incompatibility symptoms (Figure 3), here we

show the aggregated distribution for each app year over all the

Android versions given the similarity of per-version distributions.

For any of these app years, the run-time incompatibilities were

predominated by three symptoms: verify error, native crash, and

null pointer, in a descending order of dominance. Despite

fluctuations in their relative portions, these symptoms largely

remained substantial over the years. Given the top dominance of

verify error and the fact that we already know all these symptoms

as caused by (run-time) incompatibilities, SDK/API changes (to

which verify errors are imputed) were plausibly the primary cause

of these incompatibilities. The reason is that the apps were

compiled against some older SDKs and then ran on newer ones,

while this kind of inconsistencies is generally a major cause of

verify errors [26, 41]. Native crash can be attributed to bugs in the
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Figure 7: Distribution of RIR (encoded by square color) over app lapse and API lapse, for all symptoms (leftmost) and the two

top dominating ones: verify error (middle) and native crash (right).

Android Support Library [40] and more generally to problems with

the native (C/C++) code layer of Android itself. While the Support

Library is an Android effort for overcoming compatibility issues, it

only provided support for less than 23% of newly introduced

APIs [28]. Null pointer errors in this context are often just an

additional/derivative symptom of such issues [23]. Thus, we regard

SDK/API changes as the main cause of run-time incompatibilities.

Finding 5: Run-time incompatibilities were primarily exhi-

bited via verify errors (over 50%) and native crashes (over 20%)

as top dominating symptoms, which were mainly caused by

SDK/API changes during Android evolution.

5.3 RQ3: Contributing Factors of App
Incompatibilities

As in Study I, we examined the distribution of RIR over the same

possible contributing factors. In particular, Figure 7 highlights the

distribution with respect to app lapse and API lapse, over all

symptoms and separately for the top two symptoms, in the same

format as Figure 4. Each data point (circle) in the plot represents

the RIR of all the apps with a specific app lapse and a specific API

lapse, regardless of their creation years. In the overall distribution

(left), the RIRs were generally much lower than those seen in the

per-symptom distributions. This is because the overall distribution

included all of our benchmarks regardless of their app lapses and

API lapses, and we now know that those benchmarks that were

associated with platform API levels 24, 25, 26, and 27 were all of

zero RIRs (i.e., the corresponding apps did not show any run-time

incompatibilities). The two per-symptom distributions, however,

only concern the apps that exhibited run-time incompatibilities

during their executions (i.e., having RIRs greater than zero).

Referring to the overall distribution, unlike our observations in

Study I, larger API lapses were not associated with higher RIRs,

while what really impacted the RIRs were the app lapses. In fact,

the association was quite the opposite. For example, fixating at API

lapse of 20, the RIRs were mostly zeros for greater app lapses of

5 to 7 yet substantially higher for smaller app lapses (e.g., 2 and

3). The two per-symptom distributions also revealed the relatively

weak impact of API lapse, and that larger absolute values of app

lapse were associated with lower RIRs. Notably, in terms of these

two top symptoms, significant RIRs were mostly concentrated in

the areas where the app lapse was in [−4, 4], implying that apps

had most run-time compatibilities issues on the Android versions

(within API 19, 21, 22, and 23) that were 4 years older or newer

than they (the apps) were. An implication of this result is that

Android’s promise for backward compatibilities, albeit claimed by

Table 3: Spearman correlation (moderate or stronger coeffi-

cients in boldface) between RIR and contributing factors

app

lapse
API
lapse minSdkVersion

SDK
API level

app
year

overall -0.46 0.117 -0.274 -0.513 -0.052

native crash -0.266 0.092 -0.179 -0.278 -0.034

verify error -0.437 0.123 -0.268 -0.482 0

Android to offer [22], were not well fulfilled during the evolution

of the Android framework. Apparently, here we see that Android’s

support for forward compatibilities cannot be always anticipated

either (e.g., API 23, introduced in late 2015, saw over 60% RIRs for

apps developed in years 2016 and 2017).

These visually-appearing correlations between RIR and app/API

lapses were largely corroborated by the Spearman correlation

coefficients of Table 3. Overall, app lapse was significantly (with

moderate coefficients) correlated to RIR, as was the cases in which

only the RIRs associated with verify errors were concerned. The

negativity of the correlation confirmed our observations above:

higher RIRs were connected to shorter app lapses (in terms of the

absolute values of this app property). The correlation strengths

with respect to native crashes were weaker than those to verify

errors, because the latter had much greater dominance as seen in

Figure 6. On the other hand, among the other potential

contributing factors, API level (Android version) was most

strongly correlated with RIR, suggesting that SDK/API changes

might have been highly responsible for the run-time

incompatibilities we observed. This further implies that SDK API

level (accordingly the Android version release year) was the main

reason why app lapse had significant impact on RIR (given the

negligible impact of app year). Note that the negative correlation

between RIR and SDK API level was largely attributed to the fact

that the four newest (largest) Android versions had seen no

incompatibilities in our apps.

Finding 6: App lapse and SDK API level had relatively

strong correlations with RIRs: Apps of a greater app lapse

had lower RIRs on higher Android versions.

6 THREATS TO VALIDITY

One threat to internal validity of our study results lies in possible

errors in the implementation of experimentation utilities (tools

and scripts). To reduce this threat, we have conducted careful code

review of our own toolkit and scripts in addition to manual

verification of their functional correctness against our

experimental design. We have further done so by manually

validating partial experimental results against selected
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benchmarks. Other tools used in our study are part of the Android

SDK, which have been used widely by researchers and developers.

The primary threat to the external validity of our study results

concerns our choice of benchmark apps. While we have attempted

to use a large set of apps collected from a variety of sources, the

huge number of Android apps available to users or on the various

app markets still renders our selection a relatively small subset.

Thus, the studied apps from each of the eight years may not be

well representative of all Android apps of that year. Our results and

conclusions based on the results are limited to the apps studied.

The coverage of run-time inputs affects the ability of dynamic

analysis and the quality of its results in general. While the

dynamic analysis employed in our study is simple, the

identification of run-time incompatibility effects was immediately

subject to how much of the apps’ behaviors were exercised during

the five-minute execution. The random inputs generated by

Monkey might have missed some execution paths, hence certain

incompatibility effects, of the apps. Also, although we ensured

same test inputs against each app across the eight runs (each for a

different Android version), the app might still have been covered

differently in different runs due to changes in the Android

platform across the versionsÐan external threat to the validity of

our run-time incompatibility study results.

Yet another threat to external validity concerns the multi-APK

phenomenon in Android: a developer may upload multiple APKs of

an app to support different devices, and Google Play will provide

the correct APK to users as per the characteristics (e.g., hardware,

vendor, and Android version) of their devices. To preliminarily

evaluate the possible impact of this phenomenon on our results,

we randomly chose 10 apps that were found incompatible with API

21 in our study and tried manually installing (from Google Play

directly) and running them on a real Samsung Galaxy S4 (API 21)

phoneÐin our study these apps were downloaded from AndroZoo

without using a device ID. Our results show that all 10 apps are still

incompatible, suggesting that multiple APKs may not exist for these

apps. However, a systematic examination of all our benchmarks

against this phenomenon would be needed to thoroughly assess

its impact. Similarly, we did not consider the possibility that an

app, out of our benchmarks and found incompatible, may have an

updated version provided later that fixed the compatibility issues.

Together, these possibilities cause our study to suffer from potential

over-estimation of incompatibilities.

The main threat to construct validity concerns the metrics and

measurement procedures we used to assess the extent and

distribution of app incompatibilities. There might have been other

measures and metrics we missed that would better or further

support our conclusions. To mitigate this threat, we have

considered a diverse set of measures to characterize the

compatibility issues in Android apps from multiple perspectives. In

addition, we examined our data via various ways of measurement,

including the group statistics for understanding the overall

characteristics (e.g., the aggregate RIR) and the statistics of yearly

subsets for understanding relevant evolutionary patterns. Also, our

current study did not address app incompatibilities with respect to

the targetSdkVersion specified in apps (e.g., IIR of apps on the

platform of an API level that is equal to, versus smaller/greater

than, the app’s targetSdkVersion). Addressing this aspect could

affect our overall conclusions on installation-time incompatibilities

(especially those on Android’s forward and backward

compatibility). Finally, the eight AVDs used in our studies all used

x86/x86_64 processors. However, some of our benchmarks might

have been developed for ARM architectures. For those

benchmarks, the installation incompatibilities exhibited via the

INSTALL_FAILED_NO_MATCHING_ABIS errors may be justified by

the apps’ architecture preferences. Running these benchmarks on

devices with ARM processors could lead to different IIR results

hence changes to our current conclusions based on such results.

Due to heavy overheads of our study, we only considered a

single set of hardware configuration parameters for all the eight

devices (corresponding to the eight Android versions studied).

Thus, a threat to conclusion validity is that our results may not

generalize to all possible hardware configurations of Android

devices in use. Thus, our conclusions are best interpreted with

respect to the device API levels and configurations already used in

our study. Given the dominating symptoms and corresponding

causes of the incompatibilities we found and our case study above

(with the 10 apps on the Samsung phone), the incompatibilities

appeared to be attributed to the Android ecosystem (rather than to

the Nexus One device we used). Thus, we expect our results would

be similar if the study were conducted on a different device (such

as a Samsung phone). However, to be fully conclusive, we would

need to experiment with more than one hardware devices.

7 LESSONS & RECOMMENDATIONS

Based on our empirical findings as presented before, we now distill

further insights into app incompatibilities and provide practical

recommendations on how to deal with those issues.

7.1 On Installation-Time Incompatibilities

Lessons learned. Concerning installation-time compatibility

issues only, while it seems that these issues are significantly

related to the age of an app, what really matters is the

minSdkVersion specified in the app. Installing an app to an Android

version with a delta within 10 between its minSdkVersion and the

platform API level might not be a big issue, but going too far could

risk failing the installation, especially when the gap goes beyond

15. When the installation did fail, it is most likely because the app

uses some native functionalities that are not supported by the

targeted hardware architectures.

Recommendations. For an app to be successfully installed to a

device, the developers should carefully specify the minSdkVersion,

making sure it is not too far from the API level of targeted Android

platform. Since minSdkVersion would be defaulted to 1 if it is not

specified in an app [25], not specifying this attribute would be a

risky decision (as the API lapse would be large, especially with

respect to newer Android versions). Also, to avoid installation

failures, the developer should check if the targeted devices support

all the app functionalities in terms of the hardware architecture of

the devices and the Android customizations by the device vendors.

7.2 On Run-Time Incompatibilities

Lessons learned. Compared to installation-time incompatibilities,

run-time compatibility issues are a greater problem in the Android
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ecosystem prior to API 24, suggesting relevant efforts made by the

Android team (e.g., providing Support Libraries) to deal with these

issues were not sufficient. After an app is successfully installed

to a device, the minSdkVersion specified in the app is no longer

a major concern (as it does not affect much whether the app can

run well on the device). The major concern, with older Android

versions (before API 24), is that the SDK an app is compiled against

might not be compatible with the SDK it runs against due to API

changes. In particular, during the years of those older versions, the

corresponding SDK/API changes seem to need four years to iron

out most forward and backward compatibility issues. The good

news is that since API 24, Android seems to have made a giant leap

in addressing run-time incompatibilities in general.

Recommendations. With apps targeting Android versions

before API 24, the developers are recommended to avoid building

the apps based on Android SDKs that are released more than four

years away. Further, to minimize run-time compatibility issues, the

developers should look into the API changes made in the SDK

compared to prior SDK versions to make sure APIs used in the app

respect those changes. When the resulting apps fail during

execution, messages/logs on verify errors and native crashes might

be good places to look into when identifying and diagnosing

potential compatibility issues. For app users, updating to

newer/latest Android versions would be a good idea in order to

use more apps without much trouble. If they stick to older

platforms (prior to API 24), they should realize that apps developed

in years closer to the platform year might be even easier to fail.

8 RELATED WORK

In earlier works, researchers have been concerned about the

compatibility issues in Android apps. In order to obtain empirical

evidences of the Android fragmentation phenomena, Han et

al. [27] focused on two Android device vendors (HTC and

Motorola) to study related bug reports submitted by users of these

devices, so as to identify the evidences through topic models and

topic analysis. The authors aimed at offering an understanding of

the fragmentation problem itself, but not of the compatibility

issues that problem had led to.

Several previous works investigated crashes of Android apps to

understand their causes [10] and to reproduce the crashes [36].

The crashes studied were not necessarily tied to app

incompatibilities, though. We only looked at the crashes that are

due to compatibility issues in order to characterize app

incompatibilities. Fazzini et al. [11] devised an automated tool for

detecting the inconsistent behaviors of apps across different

Android platforms. Incompatibilities can be part of the reasons for

the detected behavioral differences, yet our work focuses on the

incompatibilities themselves and their effects.

In [44], Wei et al. studied 191 instances of fragmentation-induced

compatibility (FIC) issues in five Android apps and characterized the

causes of FIC issues from this dataset. They further devised a tool for

automatically detecting FIC issues based on their empirical findings.

While Android fragmentation is a lasting cause of these issues,

it is not the only cause. Zhang et al. [47] proposed an approach

to testing the compatibility of apps for reducing the testing cost.

Recent studies [28, 32] focus on compatibility issues induced by

SDK evolution and API changes, where these changes, along with

developers’ strategies dealing with the issues, are characterized.

In contrast, our study is not as limited to a specific cause, and

with a much larger scale than prior peer works. We also studied

the compatibility issues at different phases (installation and

execution) that were actually observed, opposed to

characterizing/detecting such issues based on static analyses of

app’s code. The detection approaches are of a predictive nature

thus suffer from false positives as evidenced in their

results [28, 32]. In comparison, all the compatibility issues we

studied are true-positive issues. Also, none of those previous

studies addressed installation-time compatibility issues, nor did

they examine such issues with an evolutionary view. On the other

hand, their results are complementary to ours in that they covered

developers’ practice in preventing and fixing incompatibilities.

Also, our study results can be leveraged to, but not limited to, help

devise better incompatibilities diagnosis techniques.

A few studies on Android applied the evolutionary lens to

certain characteristics of apps. McDonnell et al. [35] examined

how the Android API evolved prior to the year of 2013 by looking

at the API update rate in Android. They revealed that the API

evolution was faster than the adoption pace of clients. In [42], the

authors investigated the evolution of malware but with respect to

the effectiveness of anti-malware analysis tools, rather than

examining the incompatibilities in malware. In comparison, our

study characterizes the incompatibilities in benign apps. Also, we

investigated the evolution of app incompatibilities, as opposed to

that of the API evolution which is a cause of app incompatibilities.

Compared to previous evolution studies, ours also spanned a much

longer period of time (of eight years). Recently, we started looking

into developers’ intentions for app compatibilities [48], which

provides another angle of understanding the causes of

incompatibilities but limited to installation-time issues.

9 CONCLUSION AND FUTUREWORK
We conducted a large-scale study of app compatibility issues in

Android, concerning the occurrences of these issues at installation

time in 62,894 apps and those exercised at runtime in 15,045 apps.

We characterized both types of compatibility issues in terms of

their prevalence, distribution, and evolutionary patterns over an

eight-year span from 2010 through 2017. We examined the

relationships between app incompatibilities and the API level that

was specified in apps themselves and that was used by the device.

We introduced two derivative app properties relevant to

incompatibilities, app lapse and API lapse, and investigated the

correlation between them, along with other individual

app/platform properties, with compatibility issues at installation

and run time. This study design has enabled us to discover many

new findings, which further led us to novel lessons regarding

compatibility issues in Android apps and to practical

recommendations for dealing with those issues. Part of our future

work is to expand our study by running the experiments on more

devices of various hardware configurations to gain deeper

understanding of hardware relevance to app incompatibilities.
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