
How do Mobile Apps Violate the Behavioral Policy of
Advertisement Libraries?

Feng Dong1, Haoyu Wang1,2, Li Li3, Yao Guo4,5, Guoai Xu1, Shaodong Zhang1
1 Beijing University of Posts and Telecommunications, Beijing, China

2 Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia
3 Faculty of Information Technology, Monash University

4 Key Laboratory of High-Confidence Software Technologies (Ministry of Education)
5 School of Electronics Engineering and Computer Science, Peking University, Beijing, China

{dongfeng,haoyuwang,xga,zhangsd}@bupt.edu.cn,li.li@monash.edu,yaoguo@pku.edu.cn

ABSTRACT
Advertisement libraries are used in almost two-thirds of apps
in Google Play. To increase economic revenue, some app
developers tend to entice mobile users to unexpectedly click
ad views during their interaction with the app, resulting
in kinds of ad fraud. Despite some popular ad providers
have published behavioral policies to prevent inappropriate
behaviors/practices, no previous work has studied whether
mobile apps comply with those policies. In this paper, we take
Google Admob as the starting point to study policy-violation
apps. We first analyze the behavioral policies of Admob and
create a taxonomy of policy violations. Then we propose an
automated approach to detect policy-violation apps, which
takes advantage of two key artifacts: an automated model-
based Android GUI testing technique and a set of heuristic
rules summarized from the behavior policies of Google Admob.
We have applied our approach to 3,631 popular apps that
have used the Admob library, and we could achieve a precision
of 86% in detecting policy-violation apps. The results further
show that roughly 2.5% of apps violate the policies, suggesting
that behavioral policy violation is indeed a real issue in the
Android advertising ecosystem.

KEYWORDS
Ad library; Admob; behavior policy; Ad fraud; Android

ACM Reference Format:
Feng Dong1, Haoyu Wang1,2, Li Li3, Yao Guo4,5, Guoai Xu1,

Shaodong Zhang1 . 2018. How do Mobile Apps Violate the Behav-
ioral Policy of Advertisement Libraries?. In HotMobile ’18: 19th
International Workshop on Mobile Computing Systems & Applica-
tions, February 12–13, 2018, Tempe , AZ, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3177102.3177113

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5630-5/18/02. . . $15.00
https://doi.org/10.1145/3177102.3177113

1 INTRODUCTION
Mobile apps have seen widespread adoption in recent years,
with more than 3.3 million apps available in Google Play [7].
More than 85% of the apps are free [25], and ad libraries (e.g.,
Admob) are commonly used by app developers to monetize
their apps by showing ads to mobile users.

A significant number of studies focused on the topic of ad
libraries in various directions. LibRadar [17] and WuKong [23]
were proposed to identify third-party libraries used in Android
apps. Meng et al. [18] focused on privacy leakage detection
of ad libraries. Shekhar et al. [20] proposed to separate the
privilege of ad libraries from the host apps to prevent per-
mission escalation. Cho et al.[8] and Nath et al.[10] proposed
to detect click fraud of advertisements in Android apps.

Although mobile ad libraries have been extensively studied,
no previous work has been proposed to analyze whether An-
droid apps comply with the usage and behavioral guidelines
defined by ad networks. Some popular ad libraries (e.g., Ad-
mob and DoubleClick) have released policies to regulate the
behaviors of apps that use them [4, 13], including how the
ads should be placed and how they interact with users. Some
policies are mandatory and are meant to avoid kinds of ad
fraud, which might affect user experiences significantly. More-
over, breaking the policies can also impact the reputation of
ad networks and advertisers, as in the end, the displayed ads
are from those ad companies.

In this paper, we propose an exploratory study on how
Android apps violate the behavioral policy of ad library. To
the best of our knowledge, this work is the first attempt in
our community towards checking whether ad libraries are
properly used by Android apps. We choose the Google Admob
library [5] as the starting point because it is a quite popular
ad network [21] provided by Google, the official maintainer of
Android, and it has defined clear guidelines and policies for
its users to follow, which eases implementing and checking for
instances in which ads violate those guidelines and policies.

Practically, we summarize a taxonomy of policy violations
based on the behavior policy provided by Google Admob [4].
Based on this taxonomy, we then propose an automated
approach to detect policy-violated apps. We introduce an
automated test input generation technique to traverse the
user interface (UI) states (i.e., a running page of apps) and
construct a UI state transition graph. Each state has been
associated with a set of visual views (e.g., buttons), where

https://doi.org/10.1145/3177102.3177113
https://doi.org/10.1145/3177102.3177113

the metadata such as the position of each view is included.
The ad-related transitions are then located based on the UI
state graph and are consequently checked against a set of
heuristic rules characterized based on the Admob policies.

We have implemented a prototype system to detect pol-
icy violations and applied it to 3,631 popular Android apps.
The experimental results show that we could achieve a preci-
sion of 86% in violation detection, which counts for roughly
2.5% of apps violated Admob’s behavior policies, demon-
strating that policy violation is indeed a real issue in the
Android ecosystem. We have released the dataset and ex-
periment results to the mobile app research community at:
https://github.com/BUPT-privacy-research/ad-policy-violation.

2 BACKGROUND & RELATED WORK
2.1 The Behavior Policy of Admob
Mobile ads are usually displayed in three common ways: 1)
Banner ad, which is a rectangular image or text ad that occu-
pies a spot within apps; 2) Interstitial ad, which is a square
and locates in the center of the screen; 3) Full Screen ad,
which fills the whole screen. These types of ads are integrated
into an app by either specifying it in the layout XML file or
embedding it in the source code1.

Google Admob has released a series of policies (including
content policies, behavioral policies, etc.) to guide and regu-
late the usage of Admob library [4]. Once an app developer
fails to comply with these policies, Admob will disable ad
serving or disable his/her Admob account, although Admob
does not explicitly provide how they perform policy-violation
detection. In this paper, we only focus on behavioral policies,
because other policies are either non-mandatory or hard to
detect due to the vague standard. For example, Admob does
not permit monetization of dangerous content, while it is
hard to define which content is dangerous. As a result, we
consider in this work six Admob behavioral policies that are
summarized, along with their key behaviors, in Table 1.

2.2 Related Work
Here, we discuss some closely related work relating to general
ad library and automated Android UI testing.

Ad libraries. A significant number of studies focused on
the topic of ad libraries in various directions such as on
discovering ad libraries [14, 17, 22], on detecting privacy
leaks within ad libraries [11, 16], on separating the privilege
of ad libraries from host apps [20, 24], and on pinpointing click
frauds [8, 10]. We believe all the aforementioned approaches
can be leveraged to supplement our work towards providing
a better characterization of violated ad policies.

Automated Android GUI Testing. Automated app test-
ing has been recurrently adopted to address various chal-
lenges [6, 9]. The testing part of our approach is in line with
those work but have a different focus. Because automated
Android GUI testing is known to be time-consuming, we

1https://developers.google.com/admob/android/quick-start

have conducted several customizations on our model-based
approach to improve the overall efficiency in Section 3.2.

3 POLICY-VIOLATION DETECTION
3.1 Overview
The overall process of our approach is shown in Figure 1.
We first use LibRadar [3, 17], an obfuscation-resilient tool to
identify apps that use Admob library with simple static anal-
ysis and feature comparison. Then we propose an automated
test input generation technique to run apps that embed the
Admob library on smartphones. We preserve the attribute
information of visual views (i.e., controls) and state (i.e., a
running page of apps) transition information in the UI state
transition graph. By leveraging properties such as resource
strings, view types preserved in the attribute information, we
can identify Admob ad views accurately. Finally, we apply a
set of heuristic rules to detect policy violations.

3.2 UI State Transition Graph Generation
Automated Test Input Generation. Monkey [2] is the most

popular and lightweight tool to perform Android GUI testing,
but the inputs generated by Monkey are completely random,
which is not effective for us to explore the ad-contained states
and generate the UI state transition graph.

In our approach, we generate inputs based on the current
UI state to simulate real user behaviors. As Android apps
are event-driven, inputs are mostly in the form of events. In
our implementation, we simulate both UI events (e.g., touch,
click, etc.) and system events (e.g., BOOT_COMPLETED
intent). Note that we generate UI-guided events according
to the position and type of UI elements instead of sending
random events and clicks like Monkey [2] does. We take ad-
vantage of Accessibility [12] to understand the layout of the
UI state, and obtain exhaustive information from each view
such as name, size and class name, which could be used to
build a view tree that can accurately describe current state.
Our automation technique gets the view list from the current
state and chooses the event input for the next view based on
a systematic exploration strategy.

Exploration Strategy. Previous work suggested that travers-
ing all the UI states of an app takes several hours [15]. By
manually labeling 1,963 UI states that generated from 180
apps [1], we find that 89.3% of the UI states (1,752) do not
contain any ad views and more than 90% of ad views are dis-
played in either the main UI state or exit state. Thus we take
a breadth first traversal exploration strategy to explore the
states for more effective results in terms of ad coverage and
efficiency. To achieve the balance between time efficiency
and coverage, we explore each state with maximal 50 events.
The initial experiments on 180 apps suggested that the time
efficiency increases by 17 times on average (7 minutes vs 120
minutes per app), while we could cover 90% of the UI states
that contain ad views.

Generating UI State Transition Graph. Our automation
technique runs apps automatically to generate the UI state

Table 1: Analysis of Google Admob Behavioral Policies.

Policy # Policy Detail Key Behaviors
Policy #1 Ads should not be placed very close to or underneath buttons or any

other object which users may accidentally click while interacting with
your application

Ads are overlapped with or
hidden behind other views

Policy #2 Ads should not be placed in a location that covers up or hides any area
that users have interest in viewing during typical interaction

Displaying ads during users’
interaction with the app

Policy #3 There must be a way to exit a screen without clicking the ad Ads cannot be closed unless
clicked

Policy #4 Ads should not be placed in applications that are running in the back-
ground of the device or outside of the app environment

Displaying ads outside the
host apps

Policy #5 Ads should not be placed in a way that prevents viewing the app’s core
content. Example: an interstitial ad triggered every time a user clicks
within the app

Poping up ads frequently

Policy #6 Publishers are not permitted to place ads on any non-content-based
pages such as thank you, error, log in, or exit screens

Placing ads on start, exit, lo-
gin, or thank you screens

Apps Admob apps

Ad view features

Ad state

State A

State B

UI state transition graph

...

Step 1: Filtering
Admob ad library apps

Step 2: Running Admob
apps automatically

Step 4:Detecting
violations

Step 3:Identifying
ad views

Violation detector

String feature

Type feature

Location feature

Violation 1

Violation 2

Violation 6

...

Figure 1: Approach Overview.

transition graph, which is basically a directed graph. Each
node of the graph represents a state and each edge between
two nodes represents the input event that triggers the state
transition. Figure 2 shows an example of the UI state transi-
tion graph. The app (com.rcplatform.fontphoto, version 4.0.7)
is launched by event 1 with an intent event “am start”, trig-
gering transitions from state A to state B that contains an
ad view (with resource_id “ad_container”). State B is a
launch screen (i.e., the first screen after starting the app),
thus the ad view is placed on the non-content-based page,
which violates the Policy #6.

3.3 Identifying Ad Views
To differentiate the Admob ad views from a large number of
normal views in a given UI state, we manually labeled many
ad views and normal views, and compared them from various
aspects (e.g., resource string, position, view type, etc.) to
explore features that can distinguish them.

We randomly choose 180 apps from the 3,631 Admob apps
and manually label 1,963 UI states generated from them.
Overall, we obtain 1,752 ad-free states and 211 ad-contained
states. Then we observe various features that could be used to
identify ad views. As shown in Table 2, the features could be

Event1

"Source state": "state_2017-09-24_173119",
"Destination state": "state_2017-09-24_173124",
"Event_type": "intent"
 IntentEvent(intent='am start
com.rcplatform.fontphoto/
com.rcplatform.fontphoto.activity.HomeActivity2')

Event1

View tree:
 [{View 1
"content_description": null,
"resource_id":"com.rcplatform.fontphoto:id/ad_container
",
"text": null,
"bounds": [[0, 0], [876, 979]],
 "class": "android.widget.FrameLayout",
 "children": [1],
 "size": "876*979",},
{View 2...},...]
Process info:
Activity:com.rcplatform.adlibrary.adManage.ADActivity
Services: com.google.android.gcm.RCPushService
xxxx

Ad State

Violation 6

State A

State B

Figure 2: An example of UI state transition graph.

classified into three categories: string features, type features
and location features.

For string features, we find that roughly 90% of Admob
ad views (189 out of 211) in the labeled ad-contained states
have special representative strings in “resource_id” field

Table 2: Features we used to identify Ad views.

Category
(attribute) Value

type (class) ImageView, WebView
location
(size) 620*800[Center],600*760[Center],

600*790[Center]
string
(resource_id) AdWebview, AdLayout, ad_container,

fullscreenAdView, FullscreenAd, AdActiv-
ity, AppWallActivity, AppBrainActivity,
OverlayActivity

of attribute information, such as “AdWebview”, “AdLayout”
and “ad_container”, while other views in the 1,963 labeled
UI states do not use these strings. Thus we have collected
a list of 9 common strings to detect ad views. For example,
view 1 in the ad state in Figure 2 has a “resource_id” named
“id/ad_container”, which indicates that it is an ad view.

For apps that have no explicit string features due to fully
obfuscation (22 out of 211), we use a heuristic detection
method based on the type and the position of the view. All the
211 Admob ad views in our labeled dataset are implemented
by system views “ImageView” and “Webview”. Furthermore,
they usually have specific size and position features as shown
in Table 2. For example, for “Webview” that locates in the
center of the screen with the size of 620*800, we will identify
it as an ad view.

3.4 Violation Detection
We now provide the practical rules that are, so far, imple-
mented in our work to detect violations.

Violation 1: We consider that an ad view violates Policy
#1 if and only if it has overlapped with or hidden behind
other views. Note that we detect overlap and hiding by
calculating the size, bounds and z-coordinates in the attribute
information of the views.

Violation 2: Violation 2 can be found in either interstitial
ads or full screen ads. Our violation detector first traverses
all the UI states by checking the UI state transition graph to
identify the states that contain interactive views (e.g., dialog
and buttons). Then it will check the adjacent (previous or
next) UI states to analyze whether an ad view exists. The UI
state will be regarded as a violation if an ad view is placed
on top of interactive views.

Violation 3: In general, the interstitial ads and full screen
ads could be closed by either clicking the close widget or
touching the back button. Since it is non-trivial to automati-
cally identify the close widget, in this paper, we only consider
the situation where interstitial or full screen ads cannot be
closed by touching the back button.

Violation 4: Violation 4 is flagged when an ad view is
displayed after its host app exits. Thus, for each state that
contains ad views, we check the package name of the host
app2. Note that the Android system default HOME app’s
2Note that the host app of an ad view will be system default HOME
app if the tested app exits.

Table 3: The experiment result of detection.

Violation (prediction) Normal (prediction)
Violation TP(74) FN(15)

Normal FP(12) TN(3530)

name varies according to different system version, the package
name is “com.cyanogenmod.trebuchet” in our experiment
smartphones.

Violation 5: This violation is flagged if and only if an ad
state is triggered more than three times. To avoid repeated
visits, which may cause inaccurate counts, we only count it
once if a UI state is visited, although multiple times, via the
same path.

Violation 6: This violation is flagged if and only if intersti-
tial or full-screen ads are placed on the app launching, exiting
and log in pages. The app launching and exiting states could
be identified when we start or close the app. The log in state
can be heuristically identified based on the view information.
For example, if a state contains two editviews and has string
features such as “username” and “password”, we will regard
it as a log in state.

4 EVALUATION
We study the prevalence of policy violation on a large scale
of apps that embed the Admob library. Apps are running on
a Nexus 5 smartphone instead of emulators, because previous
work [19] suggested that some apps refuse to display ads
when it detects the app is running in an emulator. Note that
our automation GUI testing tool is running on a laptop, and
it fetches app information from the device and sends input
events to the device through Android Debug Bridge (ADB).
Experiment results are available on GitHub [1].

4.1 Data Collection
We collected 5,981 popular Android apps from Google Play in
July 2017. Take advantage of LibRadar [3], we could identify
3,631 apps (60.71% of the collected apps) that embed the
Admob library. We get 39,702 states from these apps, among
which 3,872 states contain ad views. Through a manual
analysis, we found that the accuracy of ad view identifier
reached 95%, which means that most of the Admob ad views
in our dataset are identified correctly.

4.2 Experiment Results
Overall Result. First of all, to label the ground truth data, two
experienced master students in our group check the graphs
manually for five days. As a result, we label 89 policy-violation
apps, which covers about 2.5% of the Admob apps in our
dataset. We then use these apps to evaluate our automated
violation detector, the detection results are shown in Table 3.
Our violation detector identifies 86 policy-violation apps.
Among them, 12 apps are false positives. Besides, 15 apps are
false negatives. Thus the corresponding precision and recall
of our detector are 86.05% and 83.15%, respectively.

Table 4: The distribution of violation apps.

Violation #1 #2 #3 #4 #5 #6 Total
Number of apps 5 6 0 2 18 87 89

Ad view

Button

overlaps

Figure 3: An example of Violation #1.

False Negatives. We inspected the 15 instances and found
three reasons that could lead to false negatives. (1) Lazy-
loading of the ad views. In some cases, it has a delay time to
display the ad views, leading to the result that we cannot
record it in the states. For example, the ad views in app
br.com.gtlsistemas.crosswords (version 1.6.0) has a 5 seconds
delay to be displayed before our automation technique records
the state. (2) Fully obfuscation. We find some apps are fully
obfuscated, making it hard to extract representative string
features to identify ad views. For example, we extract no use-
ful features to identify ad views in app bubbleshooter.blaze.pop
(version 1.0.1). (3) Some ad views are not displayed when the
app is used for the first time. For example, ad views in app
com.tp.android.waxspa (version 1.0.1) appear only after the
app is started at the second time.

False Positives. Our violation detector caused false pos-
itives because some normal views had the same size and
location features as ad views, which could mislead our detec-
tor. We will discuss the limitations in the Section 5.1.

Violation Distribution. The distribution of the 89 policy-
violation apps is shown in Table 4. Note that some apps have
violated more than one policy. For example, app com.spiderapps.
redhotfruits (version 1.2) violates type 4, type 5 and type
6. More than 97% of the policy-violation apps break Policy
#6, that is to say, these apps pop up ads upon launching
or before potentially leaving the app. One possible reason
is that placing ads on these pages could potentially increase
the impression (i.e., the number of ads displayed) and clicks.
Note that we do not identify apps that violate Policy #3. One
possible reason is that Violation #3 could greatly decrease
user experience, which will lead to the uninstallation of the
app. Thus this type of violation is uncommon.

Case Study. Fig. 3 shows an example of Violation #1. The
app (com.tp.android.curezombie2nd, version 1.0.0) has more

(1) Violation 2: Ad view pops
up above the instruction dialog

(2) Violation 4: Ad view is
placed in the home screen

Figure 4: Examples of Violation #2 and Violation #4.

Ad triggerAd trigger

MainActivity

Figure 5: An example of Violation #5.

than 1 million downloads in Google Play. The game button
is overlapped with the ad view, which could cause acciden-
tally click. Fig. 4 (1) shows an example of Violation #2
(com.heaven.thermo, version 1.3). The ad view pops up above
the instruction dialog, causing undesirable click on the ad
instead of the OK button. Fig. 4 (2) shows an example of Viola-
tion #4 (com.HomeCleaningGames, version 5.0). The ad view
is placed on the home screen after exiting the host app. The
example of Violation #5 (com.sink.apps.girl.voice.changer,
version 1.0.4) is shown in Fig. 5. The ad view triggers every
time after the main activity receives an event input. The app
has 1,000,000 - 5,000,000 downloads. The example of Viola-
tion #6 is shown in Fig. 2. The policy-violation apps with
high downloads may have already produced a huge negative
impact on a lot of mobile users.

5 DISCUSSION
5.1 Method Limitations

Ad Coverage. To improve the time efficiency, we use an
optimized UI-guided automation technique with the BFS
exploration strategy, which is able to traverse more than 90%
of the ad-contained states. However, it is quite possible that
we cannot traverse all the states that contain ad views, e.g.,
it has a delay time to display the ad views in some cases
as discussed in Section 4.2. Note that many apps abuse the
notification bar to display ads, we did not study this kind of
ads in this paper.

Ad View Identification. We use a heuristic approach to
detect ad views. However, our experiment results show that
some ad views have no obvious features due to code obfusca-
tion, which could cause false positives. To mitigate this, one
possible solution is to apply advanced program analysis (e.g.,
mapping ad views to the decompiled code) or machine learn-
ing techniques to build a more accurate ad view identifier.

5.2 Implications
Our experiment results show that behavioral policy violation
is indeed a real issue in the Android ecosystem. Profit-driven
app developers may break the behavioral policies of ad net-
works in order to increase economic revenue. However, in-
appropriate usage of ad libraries may impact the success of
mobile apps as it gives a bad impression to app users. Fur-
thermore, app markets and ad networks should take efforts
to identify/prevent policy violation apps. Ad networks should
also consider how to prevent/check certain policy violations
when designing ad libraries, e.g., requiring app developers
to implement a close function for each ad view in the ad
libraries to prevent Violation #3.

6 CONCLUSIONS
In this paper, we propose an exploratory study of ad behav-
ioral policy violation in Android apps. We first design a set
of violation rules based on the characteristics observed from
the Admob behavioral policies. Then, we propose an auto-
mated approach (via automated GUI testing) to detect ad
behavior policy violations. By applying our approach to 3,632
apps that have embedded with Admob library, our approach
achieves a precision of 86.05% in detecting policy violations.
The experiment results further show that 2.5% of apps have
violated the Admob policies, suggesting that behavior policy
violation is a real problem in Android ecosystem and hence
is necessary to be highlighted and subsequently avoided.

ACKNOWLEDGMENT
This work is supported by the National Natural Science Foun-
dation of China (No.61702045, No.61401038 and No.61772042),
the 2016 Frontier and Key Technology Innovation Project of
Guangdong Province Science and Technology Department
(No.2016B010110002), the National Key Research and De-
velopment Program (No.2017YFB0801901), and the BUPT
Youth Research and Innovation Program (No.2017RC40).
Haoyu Wang is the corresponding author. We would like to

thank our shepherd Dr. Narseo Vallina-Rodriguez and the
anonymous reviewers for their helpful comments.

REFERENCES
[1] 2017. admob-behavioral-policy-violation. (2017). Re-

trieved October 16, 2017 from https://github.com/
admob-behavioral-policy-violation/violation-detector.git

[2] 2017. MonkeyRunner. (2017). https://developer.android.com/
studio/test/monkeyrunner/index.html

[3] 2018. LibRadar. (2018). Retrieved January 9, 2018 from https:
//github.com/pkumza/LibRadar

[4] Google Admob. 2017. AdMob & AdSense policies. (2017).
Retrieved October 14, 2017 from https://support.google.com/
admob/answer/6128543?hl=en&ref_topic=2745287

[5] Google Admob. 2017. AdMob by Google. (2017). Retrieved
October 21, 2017 from http://www.google.cn/admob/

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and
A. M. Memon. 2015. MobiGUITAR: Automated Model-Based
Testing of Mobile Apps. IEEE Software 32, 5 (2015), 53–59.

[7] AppBrain. 2017. Number of Android applications. (2017). https:
//www.appbrain.com/stats/number-of-android-apps

[8] Geumhwan Cho, Junsung Cho, Youngbae Song, and Hyoungshick
Kim. 2015. An empirical study of click fraud in mobile advertising
networks. In ARES. IEEE, 382–388.

[9] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso.
2015. Automated Test Input Generation for Android: Are We
There Yet? (E). In ASE. 429–440.

[10] Jonathan Crussell, Ryan Stevens, and Hao Chen. 2014. Madfraud:
Investigating ad fraud in android applications. In MobiSys. ACM,
123–134.

[11] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and
Carl A Gunter. 2016. Free for All! Assessing User Data Exposure
to Advertising Libraries on Android.. In NDSS.

[12] Android Developers. 2018. Accessibility Overview. (2018). Re-
trieved January 9, 2018 from https://developer.android.com/
guide/topics/ui/accessibility/index.html

[13] DoubleClick. 2017. DoubleClick program policies. (2017).
Retrieved October 21, 2017 from https://support.google.com/
adxseller/topic/7316904?hl=en&ref_topic=6321576

[14] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
2016. An Investigation into the Use of Common Libraries in
Android Apps. In SANER 2016. 403–414.

[15] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014.
DECAF: Detecting and Characterizing Ad Fraud in Mobile Apps..
In NSDI. 57–70.

[16] Minxing Liu, Haoyu Wang, Yao Guo, and Jason Hong. 2016. Iden-
tifying and Analyzing the Privacy of Apps for Kids. In HotMobile

’16. 105–110.
[17] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016.

Libradar: Fast and accurate detection of third-party libraries in
android apps. In ICSE. ACM, 653–656.

[18] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and Wenke
Lee. 2016. The Price of Free: Privacy Leakage in Personalized
Mobile In-Apps Ads.. In NDSS.

[19] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis
Polychronakis, and Sotiris Ioannidis. 2014. Rage Against the Vir-
tual Machine: Hindering Dynamic Analysis of Android Malware.
In EuroSec ’14.

[20] Shashi Shekhar, Michael Dietz, and Dan S Wallach. 2012. Ad-
Split: Separating Smartphone Advertising from Applications.. In
USENIX Security Symposium, Vol. 2012.

[21] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A mea-
surement study of google play. In IMC. 221–233.

[22] Haoyu Wang and Yao Guo. 2017. Understanding Third-party
Libraries in Mobile App Analysis. In ICSE 2017. 515–516.

[23] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015.
WuKong: a scalable and accurate two-phase approach to Android
app clone detection. In ISSTA. 71–82.

[24] Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I.
Hong. 2017. Understanding the Purpose of Permission Use in
Mobile Apps. ACM Trans. Inf. Syst. 35, 4, Article 43 (July 2017),
43:1–43:40 pages.

[25] Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang,
Guoai Xu, and Jason Hong. 2017. An Explorative Study of the
Mobile App Ecosystem from App Developers’ Perspective. In
WWW 2017. 163–172.

https://github.com/admob-behavioral-policy-violation/violation-detector.git
https://github.com/admob-behavioral-policy-violation/violation-detector.git
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://github.com/pkumza/LibRadar
https://github.com/pkumza/LibRadar
https://support.google.com/admob/answer/6128543?hl=en&ref_topic=2745287
https://support.google.com/admob/answer/6128543?hl=en&ref_topic=2745287
http://www.google.cn/admob/
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://developer.android.com/guide/topics/ui/accessibility/index.html
https://developer.android.com/guide/topics/ui/accessibility/index.html
https://support.google.com/adxseller/topic/7316904?hl=en&ref_topic=6321576
https://support.google.com/adxseller/topic/7316904?hl=en&ref_topic=6321576

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 The Behavior Policy of Admob
	2.2 Related Work

	3 Policy-violation detection
	3.1 Overview
	3.2 UI State Transition Graph Generation
	3.3 Identifying Ad Views
	3.4 Violation Detection

	4 Evaluation
	4.1 Data Collection
	4.2 Experiment Results

	5 Discussion
	5.1 Method Limitations
	5.2 Implications

	6 Conclusions
	References

