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Distributed software systems are increasingly developed and deployed today. Many of these systems are
supposed to run continuously. Given their critical roles in our society and daily lives, assuring the quality
of distributed systems is crucial. Analyzing runtime program dependencies has long been a fundamental
technique underlying numerous tool support for software quality assurance. Yet conventional approaches to
dynamic dependence analysis face severe scalability barriers when they are applied to real-world distributed
systems, due to the unbounded executions to be analyzed in addition to common efficiency challenges suffered
by dynamic analysis in general.

In this article, we present Seads, a distributed, online, and cost-effective dynamic dependence analysis frame-
work that aims at scaling the analysis to real-world distributed systems. The analysis itself is distributed to
exploit the distributed computing resources (e.g., a cluster) of the system under analysis; it works online to
overcome the problem with unbounded execution traces while running continuously with the system being
analyzed to provide timely querying of analysis results (i.e., runtime dependence set of any given query).
Most importantly, given a user-specified time budget, the analysis automatically adjusts itself to better cost-
effectiveness tradeoffs (than otherwise) while respecting the budget by changing various analysis parameters
according to the time being spent by the dependence analysis. At the core of the automatic adjustment is our
application of a reinforcement learning method for the decision making—deciding which configuration to ad-
just to according to the current configuration and its associated analysis cost with respect to the user budget.
We have implemented Seads for Java and applied it to eight real-world distributed systems with continuous
executions. Our empirical results revealed the efficiency and scalability advantages of our framework over
a conventional dynamic analysis, at least for dynamic dependence computation at method level. While we
demonstrate it in the context of dynamic dependence analysis in this article, the methodology for achiev-
ing and maintaining scalability and greater cost-effectiveness against continuously running systems is more
broadly applicable to other dynamic analyses.
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1 INTRODUCTION

In response to scientific and societal demands on the scalability of data storage and computation,
a growing number of modern software systems are distributed by design [22] (i.e., they are de-
signed to leverage decentralized, high-performance computing infrastructure and resources). In
particular, most (if not all) of these systems are supposed to be running continuously to provide
an uninterrupted service. Examples of such distributed systems include financial/banking systems,
web search, airline management systems, medical networks, and so on. Given their critical roles
in our society and daily lives, the quality (e.g., reliability, resiliency, and security) of distributed
systems is of paramount importance.

A fundamental strategy for understanding and validating software behaviors is to model run-
time interactions among program entities as dependencies and then reason about program behav-
iors based on the dependence model [12, 45, 48]. Historically, dynamic dependence modeling and
analysis [40, 61] served as the underpinning of a variety of code-based quality-assurance tool sup-
port, ranging from fault diagnosis [83] to security defense [7, 47]. Dynamic dependence analysis
is important, because many application techniques in software quality assurance rely on dynamic
dependence information, such as program optimization, performance monitoring, software test-
ing, vulnerability detection, and so on [50]. For instance, the dependencies computed by a dynamic
dependence analysis can be used to detect runtime sensitive data leaks. Essentially, to find where
the leakages are, we would check if there are any sinks that are reachable from any sources via any
chains of the dependencies. Similarly, software testing is also crucial for software quality assur-
ance, for which dynamic dependencies can be utilized to detect defects in the software by searching
among the dependencies of the program entities where faulty outputs are observed.

Compared with static approaches, dynamic dependence analysis has greater precision, as it fo-
cuses on specific, concrete executions. Developing a cost-effective dynamic dependence analysis,
however, is challenging, especially given the known substantial overheads of dynamic analysis in
general. Recent research has demonstrated the difficulties and complexity in balancing the cost
and effectiveness in dynamic dependence analysis for single-process programs [18]. Developing
such an analysis for most real-world distributed systems is even more challenging because of their
typically larger size and greater complexity. Execution non-determinism, the variety of and un-
certainties in runtime environments of distributed systems, and the unbounded executions (due to
their continuously running nature) further exacerbate such challenges. As a motivating case, we
recently applied an existing state-of-the-art dynamic dependence analysis approach for distributed
programs [15] to Voldemort [4], a real-world, industry-scale distributed system (key-value store),
for three minutes of its execution. The analysis did not finish after running for 12 hours on a
high-performance server. Apparently, with this level of efficiency, current approaches are neither
practically cost-effective nor scalable for distributed systems.

In this article, we address common distributed systems—continuously running distributed soft-
ware whose constituent components1 are (1) decoupled by networking facilities, (2) running in

1A component in such a system is defined as the collection of code entities that run in a single process separately from the
rest of the software, with either one or more threads.
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concurrent processes, and (3) communicating through message passing without a global timing
mechanism. Our overarching goal is to unleash the power of dynamic dependence analysis to en-
able scalable tool support for assuring the quality of distributed systems. To that end, we have
developed Seads,2 a dynamic dependence analysis framework that offers practical scalability and
cost-effectiveness tradeoffs for distributed systems. Our analysis exploits both code (i.e., static)
and execution (i.e., dynamic) data of a given system to compute runtime code dependencies, with
varying analysis parameters (e.g., flow/context sensitivity of the static analysis and data granular-
ity of the dynamic analysis) to enable variable cost-effectiveness tradeoffs during the dependence
computation. The framework works purely at application level, only using data it produces by
itself (e.g., gathering dynamic data via static instrumentation). In particular, Seads realizes a novel
dynamic analysis paradigm featuring three defining characteristics:

• First, Seads is distributed. Our framework answers users’ dependence queries by performing
analyses both within a single process and across multiple processes (referred to as intrapro-

cess analysis and interprocess analysis, respectively). The Seads framework consists of one
computing node that runs the interprocess analysis and a number of different other com-
puting nodes each running the intraprocess analysis for one of the components/processes
of the system under analysis (SUA). These intraprocess analyses constantly communicate
with each other to synchronize their logic clocks to enable the interprocess analysis. This
architecture brings two advantages of Seads compared to conventional program analysis
that typically runs in a centralized fashion (i.e., at one machine): (1) It naturally leverages
the distributed computing resources of the SUA to gain in efficiency, and (2) by running in-
traprocess analysis that is only relevant to a component at the machine that runs the com-
ponent, unnecessary network communications and consequent analysis delays are avoided,
leading to further analysis accelerations.

• Second, Seads is online and continuous. Given the uninterruptedly running nature of the
kind of SUAs we target, an offline dynamic analysis would be largely impeded by the infea-
sibility of collecting and analyzing the unbounded execution traces. While offline analysis
of partial execution traces is useful (for which Seads can accommodate as well), Seads par-
ticularly focuses on scenarios in which whole program execution traces need to be analyzed
while the SUA runs continuously—for these situations, an offline analysis would be unscal-
able or even infeasible. An online design of the analysis in Seads addresses this challenge
by avoiding tracing that involves disk I/Os. Further, the continuous nature of Seads enables
on-demand querying capabilities that are desirable for a continuously running SUA.

• Third, Seads is cost-effective. While the distributed architecture and online design contribute
to its scalability, Seads’s primary scalability enabler is to continuously adjust its analysis
configuration in an automated manner to achieve better cost-effectiveness tradeoffs. These
tradeoffs are realized through the parameters (i.e., configuration items) of the static and dy-
namic analyses in Seads that fall in multiple dimensions. There are two dimensions of static
analysis parameters: data_selection and sensitivity. The data_selection dimension, including
one parameter (staticGraph), concerns whether static data (i.e., static dependence) are used,
while the sensitivity dimension, including two parameters (context sensitivity and flow sensi-

tivity), influences the precision of the static dependence computation. Dynamic analysis pa-
rameters also fall in two dimensions: data_selection and data_granularity. The data_selection

dimension, including two parameters (methodEvent and/or statementCoverage), determines
which types of dynamic data are used, while the data_granularity dimension, including
one parameter (MethodInstanceLevel), concerns the granularity of the dynamic data used in

2Short for Scalable and cost-Effective dynamic dependence Analysis of Distributed Systems.
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Seads. Automatically adjusting these analysis parameters is essential for addressing the po-
tential challenge of heavy memory load with an online dynamic analysis, and the need for
providing cost-effective results to user queries that come with a response time constraint
(i.e., user budget for the average time cost of answering a query). This signature capability
of Seads is mainly offered by its novel design that automatically learns the best analysis
configurations at different time during the SUA execution according to current configura-
tions and associated costs with respect to the user-specified budget, using a reinforcement
learning (Q-learning) methodology.

To evaluate the benefits and limitations of our framework, we implemented Seads as a practical
tool for Java. By applying it against eight real-world distributed systems, our evaluation revealed
the efficiency and scalability merits of Seads over a state-of-the-art conventional dynamic depen-
dence analysis approach, at least for method-level dependence computation. With 10 randomly
chosen queries and querying intervals of random lengths for each subject, Seads demonstrated its
compelling cost-effectiveness (i.e., competitive precision of the resulting runtime dependence sets
at generally low time costs). Specifically, Seads took on average 65 seconds for each query with
negligible storage costs and less than 1× runtime slowdown (both in most cases and on average).
In comparison, the online version of the state-of-the-art dynamic dependence analysis used as
our baseline cannot answer any user queries within 12 hours for one of the subjects, while taking
197 seconds on average for each query with other subjects at a heavy overhead of up to 6× (and
on average 3.3×) runtime slowdown. Meanwhile, Seads achieved the scalability and substantially
higher efficiency while achieving 82% of the precision attained by the baseline. As a result, the
cost-effectiveness of the baseline is only 44% and 32% of that achieved by Seads with respect to
average response time and runtime overhead (slowdown), respectively.

Through Seads, we contribute a methodology for (1) making a hybrid approach to dynamic de-
pendence analysis learnable by decomposing the analysis algorithm into multiple dimensions each
having a unique impact on the analysis cost and effectiveness, and (2) learning configurations of
the algorithm on the fly to enable better cost-effectiveness tradeoffs than traditional approaches.
To the best of our knowledge, this methodology has not been explored before. And Seads is the first
technique instantiating this methodology. By offering a scalable, continuous runtime dependence
analysis, Seads opens many doors for distributed software analysis by enabling a large number of
dependence-based application/client techniques and tools that support quality assurance of dis-
tributed software. In sum, our main contributions in this article include:

• A distributed, online, and cost-effective dynamic dependence analysis framework for com-
mon distributed systems, which demonstrates a novel dynamic analysis methodology of
overcoming the scalability and cost-effectiveness balancing challenges by reinforcement
learning cost-effective analysis configurations on the fly according to current configura-
tions and their costs with respect to the user-specified analysis time budget (Section 4).

• An open-source implementation of Seads for Java that works with real-world continuously
running distributed systems of different architectures, application domains, and scales (Sec-
tion 5).

• An empirical demonstration and quantification of the scalability and cost-effectiveness ad-
vantages of the proposed technique over a conventional, state-of-the-art dynamic depen-
dence analysis (i.e., without automatic configuration adjustment) for distributed programs
as the baseline, in terms of detailed measures on precision losses and efficiency gains,
against a diverse set of real-world distributed systems and their executions (Section 6).

The complete artifact package of Seads has been made available here, including the source
code and all the experimental scripts and datasets. This publicly accessible package not only
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enables reproduction and replication of our work presented in this article, but also facilitates the
development of further advanced approaches to assuring distributed software quality.

2 MOTIVATION

More and more industry-scale software systems are evolving to distributed systems that are con-
tinuously running. As they are part of the backbone of modern information technology infrastruc-
ture, assuring the quality of these systems is of paramount importance. One of the fundamental
enablers for such tool support is dynamic dependence analysis, which, by modeling the interac-
tion among code entities in a program, underlies a range of applications in testing, debugging,
performance diagnosis and optimizations, security threat detection, and so on. For instance, track-
ing runtime dependencies backward from fault-revealing entities would guide the discovery of
fault-inducing (i.e., faulty) entities in the program (i.e., the faults must propagate via dynamic de-
pendencies of the fault-revealing entities on the faulty-inducing entities). For another example,
tracking dynamic dependencies forward from a sensitive data accessing entity would guide the
detection of information leaking (i.e., by checking if the sensitive data flows to any operations that
send the data out of the program through the dynamic dependencies). These dependence-based
applications essentially reason about the program’s properties of interest (e.g., correctness and ef-
ficiency) via the dependence relationships among code entities at runtime. However, while there
is an increasing demand for tool support for distributed software quality assurance, such tool sup-
port is largely lacking. Thus, in this context, our work focuses on common continuously running
distributed systems.

To illustrate our motivation, Figure 1 shows an example of the source code excerpt from a real-
world software project: Voldemort [4], a widely used distributed storage service (e.g., by LinkedIn
to support a large part of the web site). As a distributed non-relational (NoSQL) data storage sys-
tem, Voldemort enables high performance and availability via simple key-value data access. In the
code snippet, a method processEvents() is in the class ClientRequestSelectorManager, and
another method main(String[] args) is in the class VoldemortServer, as shown in Figure 1.
These two classes are in different processes, Store and Server, which may be on separate machines
(computing nodes). Thus, a dependence analysis approach for such a distributed system could be
distributed to monitor these executed methods and to exploit computational resources in these
nodes. These two methods communicate through message passing without a global clock, and
they may have an implicit dependence relationship: The method processEvents() may be depen-
dent on the method main(String[] args) in the execution. However, developers would hardly
find the implicit dependencies between these methods only via reading the source code. Nonethe-
less, most existing dependence analyses rely on explicit dependencies, not capturing implicit ones.
Therefore, we need a novel approach to infer these implicit dependencies.

As shown in Figure 1, the Voldemort system continuously runs to provide functional services.
Tracing is unnecessary for an online dynamic analysis approach, which continuously runs and
analyzes the system, along with the system execution. By contrast, offline dynamic techniques
often analyze the program after the execution(s) have terminated, according to the collected traces
whose storage and I/O costs might be expensive. If the execution is infinite (i.e., unbounded), the
trace storage spaces would also be unbounded. Apparently, tracing the infinite execution is not
practical. In addition, the terminating operation may also be impractical for a production system,
because a common business flow (as realized by the system) should not be interrupted merely for
dependence analyses. Thus, existing dependence analysis techniques, mostly offline, are generally
unsuitable for continuously running distributed systems; and an online and continuous analysis
is more desirable than an offline analysis for these systems.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 1, Article 10. Pub. date: December 2020.



10:6 X. Fu et al.

Fig. 1. Code snippet from the Voldemort system as an example distributed system.

Voldemort has 20,406 methods in 115,310 non-blank non-comment Java source code lines. There
may be serious cost-effectiveness and scalability problems for code analysis against distributed
systems of such a scale. For instance, we spent 151 seconds in gaining dependence sets from a
Voldemort integration test using a dynamic distributed-program dependence analysis technique
DistIa [19] after terminating Voldemort processes and then gathering data from the execution
traces. Though DistIa is very fast, its results (dependence sets) are very coarse. In contrast, the
most precise extension of DistIa [15], a hybrid dependence analysis (a combination of static and
dynamic analyses) solution utilizing both method-level and statement-level data to achieve a dy-
namic dependence abstraction, was twice as precise as DistIa for small- to medium-sized pro-
grams. Yet this analysis could not scale to Voldemort— even the first phase of the analysis (which
has three phases) could not finish in more than 12 hours on an Ubuntu 16.04.3 LTS workstation
with four 2.67 GHz processors, 512 GB DRAM, and 2 TB HDD (finally, we had to cancel the analy-
sis). We concluded that this more precise analysis was too expensive to analyze an industry-scale
distributed program due to the generally large size and great complexity of the target system. In
general, the extension of DistIa suffers an impractical level of efficiency, hence a serious scalability
problem, hence is subject to a very-low level of cost-effectiveness for large distributed systems.

From these examples, we see that, while representing the state-of-the-art in distributed program
dependence analysis, both DistIa and its more precise extension are not suitable for common,
continuously running distributed systems due to the scalability and cost-effectiveness problems. To
resolve these problems, an approach should be able to quickly adjust itself. Moreover, in a varying
environment such as a server performing lots of heavy tasks, merely one or a few adjustments may
not be sufficient either. For example, after an analysis has adjusted itself to the optimal condition
meeting the current user requirements, the runtime environment (e.g., operating system) or user
requirements (e.g., time budgets) may change at the next second (for a different query), and then
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there may come a deviation of the analysis from the previous, optimal condition. Thus, scalable and
cost-effective dependence analysis approaches for distributed systems should be able to continually

adjust themselves to meet varying requirements.
Following these observations, we develop Seads as a distributed, online dynamic dependence

analysis framework for common, continuously running distributed systems, which automatically
and continually tunes itself to balance analysis cost and effectiveness. The technique addresses the
scalability and cost-effectiveness balancing challenges faced by existing peer approaches through
our novel approach using a reinforcement learning (Q-learning) strategy to learn cost-effective
analysis configurations for the analysis algorithm to meet changing requirements.

3 BACKGROUND

In this section, we discuss some techniques and key concepts underlying Seads.

3.1 Dependence Analysis for Single-process Programs

Analyzing dependencies among program entities of a software system can help developers better
understand the structure and behaviors of the system. Thus, dependence analyses are very useful
for users to develop, test, and maintain the system, because these tasks rely on the understanding of
system structure and behaviors. Program dependencies can be deduced by both static and dynamic
analyses. A static dependence analysis computes dependencies via analyzing the program code
without executing the software. However, a dynamic dependence analysis infers dependencies
from the data gathered during the execution(s) [56].

As a dynamic analysis approach, Diver [16] computes dependence sets as impact sets by us-
ing dependence analysis techniques. As a recent advance in (offline) dynamic analysis, Diver [16]
achieves higher precision, hence provides a more cost-effective option over EAS-based approaches
(which derive dynamic dependencies based on execution orders), such as Pi/Eas [6]. Diver uti-
lizes a static dependence analysis to significantly decrease the size of the dependence set produced
by Pi/Eas. With significantly smaller resulting dependence sets, the cost-effectiveness tradeoff of
Diver is much higher even with the additional static dependence analysis cost. Diver works in
three technical phases: static analysis (Phase 1), runtime tracing (Phase 2), and post-processing
analysis (Phase 3). Diver first computes traditional control/data dependencies [41] and instru-
ments the input program in Phase 1. In Phase 2, the instrumented version of the program is ex-
ecuted for tracing entry (i.e., program control entering a method) and returned-into (i.e., program
control returning from a callee into a caller) events. In Phase 3, the technique computes the de-
pendence set from the trace for any query given by the user.

An online dynamic analysis, DiverOnline [14] avoids execution tracing costs (e.g., space and
I/O costs) that are ineluctable in offline analyses, via computing dependence sets during the exe-
cutions of the program under analysis. In addition, DiverOnline provides an All-in-One analysis,
which computes the dependence sets for all possible queries (methods), and then corresponding
dependence sets are directly delivered to the user as the result within a short response time. As
such, an All-in-One online dynamic dependence analysis may be a suitable solution for depen-
dence analysis of large-scale software systems. In our Seads framework, we leverage online dy-
namic analysis to compute dependencies within each component of the given SUA— we treat each
component as a single-process program from the perspective of our analyses.

3.2 Dependence Analysis for Distributed Programs

For a complex distributed system with multiple processes, the developer needs to understand vari-
ous (explicit and implicit) dependencies both within a single process and across multiple processes.
Krinke proposed a slicing algorithm incorporating dependencies across distributed components
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Fig. 2. The high-level workflow of Q-learning.

induced by socket-based message passing [51], but the dependencies were approximated over-
conservatively, because they are computed through a purely static analysis. Another approach [10]
infers various kinds of dependencies due to interprocess communications, but the approach poten-
tially suffers a scalability problem due to its heavyweight nature, although it was not implemented
and evaluated against real-world distributed systems.

To overcome the scalability challenges, a lightweight dynamic analysis for distributed programs,
DistIa [19], was proposed. The analysis monitors and records method events and their timestamps
during the system execution, and then approximates runtime dependencies among relevant meth-
ods, either within or across processes, based on the happens-before relations among execution
events associated with those methods. For example, if a method A has the last returned-into event
that was executed before the first entry event of another method B, the partial-order is A before

B, and DistIa approximately supposes that B is dependent on A. Similarly, if one method D is
dependent on another method C , C must execute before D; otherwise, C cannot affect D. Thus,
dependencies computed by DistIa are safe for the executed methods. In our design of the Seads
framework, we exploit the dependence inference based on happens-before relations as the basis
for safe interprocess dependence approximation, as did DistIa.

3.3 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning to suggest a software agent taking
actions in an environment to maximize the total reward in all possible successive actions [55]. The
agent modifies its actions or control policies according to its interactions with the environment.
RL requires less prior knowledge so it can be applied to environments where standard supervised
learning or unsupervised learning approaches are not applicable [54]. Unlike supervised learning
and unsupervised learning, RL does not need training data. As in a Markov decision process whose
states are decided from previous states [64], an output of RL depends on the corresponding input,
and the next input depends on the current output [1]. These characteristics make RL a generally
suitable learning methodology for Seads.

In particular, as a particular type of RL, Q-learning uses the Bellman equation to minimize its
cumulative cost [11]. When applied in software adaptations, it does not require explicit or exact de-
scriptions of software systems and only needs state measurements in its feedback control loop [54].
Q-learning also has an exact capability of learning the next state according to the previous state
only. Starting from an initial state, Q-learning tries to find a way to maximize cumulative reward
values by selecting an action after measuring how good the action is in a particular state [79]. It is
an off-policy and model-free algorithm, as it does not require an existing policy or a model [80].

The overall workflow of Q-learning is depicted in Figure 2, including the following steps: (1) ini-
tialize Q-learning components, such as the environment, the agent, Bellman equation parameters,
and a Q-table (i.e., a lookup table calculating expected rewards); (2) at the current state, the agent
selects an action referencing the maximal value in Q-table or by random; (3) the agent receives a
state and a reward from the environment; (4) update the Q-table using the Bellman Equation [24];
and (5) repeat (2) through (4) until the learning meets predefined conditions (e.g., when the agent
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Fig. 3. An overview of the Seads architecture and workflow, including its input, output, and key modules.

finishes the ultimate task assigned to it). In our Seads framework where RL is applied for learning
cost-effective analysis configurations at runtime, we particularly exploit Q-learning for automat-
ically adjusting the configurations. Since Seads provides a continuous dependence analysis, the
predefined condition for terminating the learning process is when the SUA is terminated. That is,
the learning process in Seads repeats from (2) through (4) after finishing (1), until the SUA exits.

4 APPROACH

This section presents our technical approach with Seads. We first give an overview of the archi-
tecture and workflow of Seads, followed by elaborating each of its key modules.

4.1 Overview

The overall workflow of Seads is shown in Figure 3. Seads consists of several kinds of components,
including an instrumenter, a set of monitors each for a process of the SUA, a set of controllers each
for a process of the SUA, and a querying_client. It takes three inputs from the user: the distributed
SUAD (in an executable format such as Java bytecode), a user budget B, and a dependence queryQ .
In particular, B is a response time constraint for the dependence analysis. In addition, since Seads
works at method level, Q is a method name given by the user for searching dependencies of the
method, such as voldemort.server.VoldemortServer: void main(java.lang.String[]).

The instrumenter first inserts probes, which will monitor entry and returned-into events of all
executed methods and/or monitor the coverage of all executed statements, into D to generate the
instrumented SUA D ′. Then, as time goes on (as indicated by the “Time” axis in the figure), D ′

continuously runs (in N distributed processes), and Seads continually adjusts itself in its analysis
configuration through a monitor and a controller running along with each process. In particular,
during the execution of D ′, in each of its N processes, the monitor performs arbitration (deciding
whether the adjustment is needed) and dependence computation, and the controller adjusts analysis
configurations. As shown in Figure 3, the monitors and controllers of Seads are distributed along
with N processes: In each of the N processes of the SUA, Seads has one monitor and one controller
running in that process for controlling and performing the computation of dynamic intraprocess
dependencies, respectively. In this way, all of the monitors and controllers together perform (per-
process) intraprocess dependence analyses in a parallel and distributed manner naturally (with the
same distributed architecture as that of the SUA itself). The querying_client computes interprocess
dependencies on one machine (where the querying_client runs), which is the only dependence
analysis step in Seads that is not distributed.
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The querying_client receives query Q from the user and sends it, through the network facility,
to the querying_interface that directly communicates with the monitor in each process. After the
dependence computation in a process has finished, the resulting dependencies are delivered back
to the querying_interface attached to the monitor in that process, from which the querying_client

receives the dependencies for the process. After the distributed dependence analyses in all pro-
cesses are completed, the querying_client receives all intraprocess dependence sets and computes
the overall dependencies (via an interprocess analysis) as the final output presented to the user.

Running example. To illustrate how Seads works, we use the Voldemort system against
an integration test as our running example. We consider querying the dependence set of a
query voldemort.server.VoldemortServer: void main(java.lang.String[]) (i.e., a method
main(String[] args) in the class VoldemortServer of the Server process). For brevity, only part
of the source code is shown in Figure 1.

4.2 Configuration

Our core idea for achieving better scalability and cost-effectiveness is to continually adjust analy-
sis configurations according to (i) the user budget, (ii) the current and previous configurations, and
(iii) time costs of dependence computations. The key insight underlying this design is that each
analysis configuration represents a distinct tradeoff between the cost and effectiveness of our de-
pendence analysis. Thus, in our framework analysis configurations play a critical role. Our hybrid
approach leverages varying combinations of static and dynamic analysis techniques along with
varied static/dynamic data (e.g., the static dependence graph, method events, and the statement
coverage) while using different static and dynamic configuration parameters.

As follows, we first present the parameters (i.e., configuration items) considered in our static
and dynamic analysis separately (referred to as static configurations and dynamic configurations,
respectively), and then we describe our holistic (hybrid) analysis configuration encodings. The
rationale (justification) of our selection of these particular analysis parameters is that they have
not only different but also competing influences on the cost and effectiveness of the dependence
analysis. First, their influences should be different from each other, because adjusting between two
configurations that lead to the same cost-effectiveness tradeoff would be wasteful. Second, their
influences on the cost and those on the effectiveness should be competing, because an analysis
parameter that benefits or penalizes cost and effectiveness at the same time should be always set
or dismissed, respectively, hence would be out of the scope of adjustments. Since the chosen pa-
rameters are known to be different and competing influence factors in static/dynamic dependence
analysis in general, their selection is justified by our goal with Seads of balancing the cost and
effectiveness at runtime for better cost-effectiveness.

4.2.1 Static Configuration. There are two dimensions of static configuration parameters consid-
ered in Seads: data_selection and sensitivity. In the data_selection dimension, we currently consider
only one parameter, staticGraph, which concerns whether static data are used.

• The parameter staticGraph determines whether Seads uses static dependencies (within each
component of the SUA, represented as a dependence graph) to compute the dynamic depen-
dencies of the given query. If the parameter is enabled, Seads traverses the per-component
static dependence graphs to infer more precise (runtime) dependencies with a higher time
cost. Otherwise, such static dependence graphs would not be used, and then Seads offers
rough but rapid results (dependence sets) according to dynamic data only.
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The sensitivity dimension, including two parameters (context sensitivity and flow sensitivity),
is expected to bring a higher level of precision of the static dependence computation when the
respective sensitivity is set (enabled) than when it is dismissed (disabled), as explained below.

• Context sensitivity concerns the awareness of the effects of varied calling contexts on anal-
ysis facts in a static analysis. A context-sensitive analysis distinguishes different calling con-
texts of methods and computes separate information for different calls of the same method.
Conversely, a context-insensitive analysis treats all callsites of a method as one callsite [38,
70]. For example, if a method is called twice each at a different callsite, a context-sensitive
analysis would distinguish these callsites when computing analysis facts (e.g., dependen-
cies). As a result, if the analysis fact is valid only with respect to one callsite, the context-
sensitive approach would be able to recognize the false result associated with the other call-
site. A context-insensitive analysis, however, would not be able to do so, thus it may produce
the false result. Meanwhile, differentiating calling contexts comes with an additional cost
compared to not doing so. Therefore, a context-sensitive analysis generally computes more
precise results with higher costs than a context-insensitive analysis.

• Flow sensitivity concerns the observance of control flow reachability in a static analysis.
A flow-sensitive analysis approach takes into account the execution order (i.e., the control
flow) of code entities (e.g., statements), whereas a flow-insensitive analysis does not con-
sider the order [70], when computing analysis facts (e.g., dependencies between two code
entities). For instance, if there are two definitions of a variable in the program, with one use
of the same variable in between, a flow-sensitive analysis distinguishes the execution order
of these definitions and the use hence reports one dependence induced by the first definition
and the use. A flow-insensitive analysis, however, would additionally (and falsely) report
the dependence due to the second definition and the use. Meanwhile, accounting for the
execution order requires control flow reachability analysis, which incurs an additional cost
compared to not doing so. Therefore, a flow-sensitive analysis is often more precise but also
more expensive than a flow-insensitive analysis.

4.2.2 Dynamic Configuration. There are two dimensions of dynamic configuration parameters
considered in Seads: data_selection and data_granularity. The data_selection dimension concerns
which types of dynamic data Seads uses for its analysis. Specifically, there are two configuration
parameters in this dimension: methodEvent and statementCoverage. They determine if the corre-
sponding dynamic data are used, as elaborated below.

• The parameter methodEvent decides if Seads uses method (entry and returned-into) events to
compute dependencies. If the parameter is enabled, Seads infers more precise dependencies
from dynamic data (e.g., method events) with additional costs. Instead, if the parameter is
disabled, Seads coarsely but quickly computes dependence sets without method events.

• The parameter statementCoverage determines whether Seads prunes the static dependence
graphs using statement coverage information before applying the static dependencies in the
hybrid computation of runtime dependencies. The pruning means that Seads only considers
statements covered in the SUA execution analyzed, with other statements dismissed while
referring to the static dependencies. When the parameter statementCoverage is enabled, the
dynamic dependence analysis is more expensive but more precise than otherwise.

In the data_granularity dimension, only one parameter, MethodInstanceLevel, is considered,
which concerns the granularity of the dynamic data (method events) used.
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Table 1. Holistic (Hybrid) Dependence Analysis Configuration Encoding

Encoding Static Configuration Dynamic Configuration
Data Selection Sensitivity Data Selection Data Granularity

Context Flow Method Statement Method
StaticGraph Sensitivity Sensitivity Event Coverage InstanceLevel

000000 No (0) No (0) No (0) No (0) No (0) No (0)
000001 No (0) No (0) No (0) No (0) No (0) Yes (1)

......
111110 Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No (0)
111111 Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) Yes (1)

• The parameter MethodInstanceLevel is about whether Seads uses all method event instances
to compute dependencies. If the parameter is enabled, Seads utilizes all instances of (entry

and returned-into) events to compute dependencies more precisely at the cost of greater
overheads (for monitoring and utilizing a greater amount of dynamic data). Otherwise, only
the first entry and last returned-into events of each executed method are collected and used,
thus the computation is faster but gives relatively rougher results (i.e., lower precision).

4.2.3 Holistic Analysis Configuration. The holistic configuration of Seads consists of both the
static and dynamic configurations described above. We use three bits to encode the three parame-
ters in the static configuration, thus there are eight possible combinations (static configurations).
The first binary number 1 or 0 means whether Seads uses the static dependencies. The second and
third binary numbers of 1 or 0 mean sensitivity (i.e., the sensitivity is enabled, as denoted by Yes)
and insensitivity (i.e., the sensitivity is disabled, as denoted by No), respectively. The second bit
represents the analysis being context-sensitive or context-insensitive, and the third bit indicates
the analysis being flow-sensitive or flow-insensitive. Thus, the static configuration is encoded for
eight possible values, from 000 through 111. In a similar manner, we utilize three bits to encode the
three parameters in the dynamic configuration. The first through third bits represent parameters
MethodEvent, statementCoverage, and methodInstanceLevel, respectively. This way, the dynamic
configuration has 8 possible values, ranging from 000 to 111.

Therefore, the holistic (i.e., hybrid) configuration, including static and dynamic configuration
parameters, is encoded as a 6-bit binary number that ranges from 000000 through 111111. The
first to third bits are encoded as the static configuration parameters, and the fourth to sixth bits
are used as the dynamic configuration parameters. As shown in Table 1, the hybrid configuration
parameters are encoded in order from the left to the right as: staticGraph, context-sensitivity, flow-

sensitivity, methodEvent, statementCoverage, and methodInstanceLevel.
Among the possible 64 (26) hybrid configurations, some are invalid and thus are never used in

Seads, because certain configuration parameters are dependent on others and they are meaning-
ful only with other parameters enabled. For example, three parameters (context-sensitivity, flow-

sensitivity, statementCoverage) depend on the parameter staticGraph. If the parameter staticGraph

is disabled, meaning that Seads does not use the static data (i.e., the static dependence graph),
then the three relevant parameters (context-sensitivity, flow-sensitivity, and statementCoverage) are
meaningless—statement coverage data are only used for pruning the static dependence graph in
Seads. Thus, configurations 001xxx, 010xxx, 011xxx, and 0xxx1x are invalid, where x is a bit that
can be 0 or 1. Another example is that the parameter methodInstanceLevel depends on the pa-
rameter methodEvent, thus configurations xxx0x1 are invalid. In addition, configuration 000000
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means that no data is utilized in the analysis, which is also invalid. In total, there are 38 invalid
configurations and 26 valid configurations in Seads.

Illustration. As shown in Table 1, the configuration 111110 indicates that all the six parame-
ters but methodInstanceLevel are enabled. Under this configuration, Seads would perform a hybrid
analysis of dynamic dependencies, utilizing the static dependencies first computed within each
component of the SUA through a context- and flow-sensitive analysis and then pruned with state-
ment coverage, as well as method execution events collected at method level (i.e., only two events
are kept per executed method). In terms of its internal workings, for the running example, after
the two Voldemort processes started, the Seads monitor in each process checks whether the con-
figuration file Configuration.txt exists or not. If it is found, the monitor reads the configuration
from this file. Otherwise, Seads uses the initial configuration 111111 (i.e., all the six parameters
are enabled) to gain the highest possible precision of the dependence analysis.

4.3 Instrumenter

The instrumenter of Seads inserts probes to the SUA D to produce its instrumented version D ′

that will continuously run. During the execution, the probes monitor and record the entry and
returned-into events per executed method. We probe for these events, because they suffice for
inferring the happens-before relations among executed methods as shown before [16], while the
happens-before relations enable the approximation of dynamic dependencies among methods both
within and across processes. The instrumenter also probes for statement coverage, another kind
of dynamic data considered. For greater monitoring efficiency, only branches are probed, which
suffices for inferring statement coverage from branch coverage as we did before [18]. In particular,
besides the branches associated with explicit predicates, we also treat the entry of each method as
a special branch (i.e., entry branch), whose true edge leads to the entry (execution) of the method.

Illustration. For the running example, Seads traverses the bytecode of Voldemort to create its in-
strumented version with probes monitoring entry and returned-into events of each method as well
as statement coverage during the execution. For example, for the source code shown in Figure 1,
Seads adds a probe before the method server.start () (line 11) to monitor its entry events.
Moreover, another probe is inserted after the method server.start () to monitor returned-into

events of this method. In addition, as an example of statement coverage probing, Seads inserts a
probe at the entry (branch) of the main method (before Line 9) and another probe for the branch
at Line 10 to tell whether the true edges are covered. If so, statements control-dependent on the
edges will be inferred as being covered as well.

4.4 Monitor

After the instrumentation, the instrumented SUA D ′ continuously runs in its N distributed pro-
cesses. Through the instrumentation, the monitor and controller modules for each process ofD ′ are
launched upon the start of that process, and then also continuously run along with the process, as
shown in Figure 4. During the execution of the process, as the core component of Seads, the mon-
itor module determines when the analysis configuration needs to be adjusted (i.e., arbitration) and
computing dynamic dependencies with a current configuration (i.e., dependence computation). The
module consists of two submodules: a processor and a gatherer. The gatherer focuses on collect-
ing dynamic data (method execution events and/or statement coverage), which feed the processor
for the dependence computation therein. More specifically, the processor computes (updates) the
dynamic dependencies for all possible queries (i.e., methods exercised at least once so far) when
(a) the time, since the previous round of dependence computation (updating) exceeds a threshold
(e.g., 5 minutes) and (b) the number of method-execution events accumulated since the previous
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Fig. 4. The monitor and controller modules running along with the instrumented SUA.

round of dependence computation exceeds another threshold (e.g., 1,000). Both thresholds are part
of Seads’s settings, customizable by users.

The dependencies need to be computed for all possible queries for two reasons. First, Seads
aims to answer arbitrary queries at arbitrary times, thus it cannot assume which queries users
would send and when. Second, Seads performs online analyses, thus it does not keep all execution
data, while the query dependencies it computes must respect all the dynamic data available up
to the query arrival time. The online nature of the analysis also justifies the computation being
continually redone (updated)—since the dynamic data used by the analysis come as streaming data.

We set both conditions, (a) and (b) above via the two thresholds, for triggering the dependence
recomputation/updating, because the speed at which the dynamic data arrive can vary widely
across different SUAs. If we consider (a) only, when the time reaches the threshold, there may be
still too few new dynamic data available to deserve the updating (i.e., trivial recomputation); if we
consider (b) only, the dynamic data may arrive too fast such that Seads thrashes between two
rounds of updating (i.e., overly busy recomputation).

Next, we elaborate on the two roles of the monitor running with each SUA process: arbitration
and dependence computation. We then describe how Seads interacts with users, responding to
user queries and delivering query dependencies back to users.

4.4.1 Arbitration. Algorithm 1 shows the arbitration pseudo-code that decides when and how
to trigger dependence computations and configuration adjustments. In this algorithm, several vari-
ables are used to denote the inputs: method as the executed method ID (an integer uniquely rep-
resenting a method), дCounter as the counter of method events, and LastT as the time when the
previous analysis round completed.TC andTT denote the aforementioned time and event number
threshold, respectively. Moreover,QU is a method event queue that records the return-into event(s)
of methods as the method ID(s) and the entry event(s) as the minus method ID(s)—we simply use
negative values here to indicate entry events as opposed to returned-into events. Seads first initi-
ates дCounter ,QU , and LastT , and sets the current configurationTCN as 111111 for the most pre-
cise (but potentially the slowest) analysis to start with (line 1). The variable oldTCN is used to keep
the previous configuration, initialized as None. The values of sдc_T , sдl_T , and d_T are timeouts
for constructing/loading the static dependence graph and computing dependencies, respectively:
These values are empirically allocated from the total user-given budget B (line 2). To illustrate how
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ALGORITHM 1: Triggering the Dependence Computation and Configuration Adjustment

let method be the executed method
let дCounter be the number counter of method events
let T C and TT be the thresholds of event number and analysis time interval, respectively
let LastT be the time of the last computation
let B be the user budget
let sдc_T , sдl_T , and d_T be timeouts of constructing/loading the static graph and computing dependencies,
respectively
let QU be the method event queue
let T CN and oldT CN be current and immediately previous configurations, respectively
let isT imeOut be the boolean value to record timeouts

1: Set дCounter = 0, LastT = 0, QU = ∅, T CN =111111, oldT CN =None
2: Assign sдc_T , sдl_T , and d_T from B

3: while true do

4: if event(method )==entry then

5: дCounter ++
6: Add (-method ) to QU

7: if event(method )==returnInto then

8: дCounter ++
9: Add method to QU

10: if дCounter > T C and (Curr entT ime - LastT ) > TT then // Curr entT ime is the current system time
11: Read current configuration parameters
12: isT imeOut = false
13: if Conf iдur ation_staticGr aph then // if the staticGraph parameter is enabled
14: if Static configuration parameters are different between T CN and oldT CN then

15: Construct a new static (dependence) graph
16: if (Not isT imeOut ) and (constructT ime > sдc_T ) then

17: Cancel the static graph construction, and set isT imeOut = true

18: if The static graph exists then

19: Load the static graph
20: if (Not isT imeOut ) and (loadT ime > sдl_T ) then

21: Cancel the static graph loading, and set isT imeOut = true

22: if not isT imeOut then

23: Call the processor to compute dependencies with T CN

24: if (Not isT imeOut ) and (ComputeT ime > d_T ) then

25: Cancel the dependence computation, and set isT imeOut = true

26: дCounter = 0, LastT = Curr entT ime

27: Call the gatherer to record the time cost of the analysis
28: Call the controller to obtain new configuration newT CN

29: oldT CN = T CN

30: T CN = newT CN

the monitor works, let us consider a concrete example: The user budget is 60 seconds, out of which
we allocate sдc_T , sдl_T , and d_T as 42 s, 12 s, and 6 s, respectively; letTC=1,000,TT=5 (minutes),
and the method being processed be voldemort.server.VoldemortServer: void startInner()
(id=15700); and let voldemort.server.VoldemortServer: void main(java.lang.String[])
be the query.

The algorithm proceeds with an infinite loop arbitrating dependence computations and con-
figuration adjustments (lines 3–30), via invoking (collaborating with) the controller module for
the same process of this monitor. During the execution, in each entry event of the method , Seads
increments дCounter by one and adds minus method (e.g., −15,700) to QU (lines 4–6). In each
returned-into event, Seads also increments дCounter by one (e.g., 2 now) but adds method (e.g.,
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15,700) to QU (lines 7–9). If дCounter is greater than TC and the time span (between the current
time and the last computation time LastT ) is greater than TT (i.e., both conditions (a) and (b) are
satisfied), Seads will start a new round of analysis (e.g., updating dynamic dependencies for all
possible queries) as detailed below. To start with, Seads reads the current configuration and set
isTimeOut as false (lines 10–12). For example, after 1,000 events occurred and 5 minutes passed,
дCounter>TC (1,000) and (the current system time - LastT )>TT (5 minutes). Then, Seads reads
the current configuration TCN=111111 with isTimeOut=false. If the staticGraph parameter is
enabled and at least one of the static analysis parameters varies between the current and immedi-
ately previous configurations, Seads constructs a new static dependence graph (lines 13–15) using
the static configuration. For example, with TCN=111111 now, the first to third bits (three static pa-
rameters) are all 1 (enabled). Thus, Seads constructs the new static dependence graph with both
context sensitivity and flow sensitivity applied.

The static analysis, including constructing and loading the static dependence graph, reuses
Diver [16] and DiverOnline [14], as described earlier in Section 3. Recall that each monitor only
deals with the single process associated with it, thus the static dependence analysis here only tar-
gets the code of the SUA component that runs in the process. When the static dependence graph is
ready, Seads loads the static graph (lines 18–19). Moreover, the processor is invoked to compute de-
pendencies with the current configurationTCN (line 23), as detailed in Algorithm 2 (Section 4.4.2).
When isTimeOut is false, if any part of the static or dynamic analysis—(i) constructing and (ii) load-
ing the static dependence graph and (iii) computing dynamic dependencies (costing constructTime,
loadTime, and computeTime, respectively)—runs timeout, Seads would cancel the respective part
of the analysis and set isTimeOut as true (lines 16–17, 20–21, 22–25). For example, with the cur-
rent configuration TCN=111111, Seads has not finished constructing the static graph in sдc_T
time (42 s). Thus, the graph construction is canceled. Then, isTimeOut=true, hence Seads skips
the static graph loading and dependence computation. After resetting дCounter and LastT , Seads
calls the gatherer to collect the time costs of above analyses (i.e., constructing/loading the static
graph, computing dependencies) under the current configuration and then calls the controller to
obtain the next configuration newTCN (lines 26–28), as detailed later in Algorithm 3 (Section 4.5).
For example, we now have дCounter=0, the time cost=43 seconds and newTCN=000101. Finally,
the algorithm updates the current (TCN ) and previous configuration (oldTCN ) accordingly for the
next arbitration iteration (lines 29–30). For example, now oldTCN=111111 and TCN=000101.

Illustration. For the example considered, the analysis starts withTCN=111111, for Seads to com-
pute the most precise dependence sets possible with respect to its current design. When there are
more than 1,000 new method events and it is over 5 minutes since the last analysis round, with the
staticGraph parameter enabled, Seads attempts to construct a static graph with context-sensitivity
and flow-sensitivity enabled. In sдc_T time (42 s), however, the graph construction did not finish
and thus it was canceled. Then, isTimeOut is set to be true and no static graph is created; hence,
Seads skips the static graph loading, and further skips dependence computation also. Suppose im-
mediately afterwards the controller produces the next (new) configurationnewTCN 000101, which
indicates two parameters (methodEvent and methodInstanceLevel) are enabled while the other four
disabled (i.e., no static dependencies nor statement coverage are used). With this new configura-
tion, Seads is able to finish the entire round of dependence analysis within the total budget time
(60 s). Since only the method events are used for the analysis, the dependencies are inferred im-
mediately based on happens-before relationships according to the partially ordered sequence of
execution methods. In this example, the sequence in the Server and Store process of the Volde-
mort system (in Figure 1) is shown in Figure 5 and Figure 6, respectively.
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Fig. 5. An example of partially ordered sequence of executed methods in the Server process of Voldemort.

Fig. 6. An example of partially ordered sequence of executed methods in the Store process of Voldemort.

4.4.2 Dependence Computation. When Seads calls the processor to compute dependencies,
the online analysis based on DiverOnline [14] is adopted, avoiding execution tracing to econ-
omize analysis costs, such as storage and disk I/O costs. Algorithm 2 gives the pseudo-code of
the online algorithm to compute dependencies. In Algorithm 2, QU is the same method event
queue as in Algorithm 1, and DS (m) is the dependence set for the method m. First, four con-
figuration parameter variables (i.e., Conf iдuration_staticGraph, Conf iдuration_methodEvent ,
Conf iдuration_statementCoveraдe , and Conf iдuration_methodInstanceLevel ) are read from the
current configuration (line 1). For example, from the current configuration 000101, we have these
variables assigned 0, 1, 0, 1, respectively. If the parameter methodInstanceLevel is disabled, Seads
filters the first entry and the last return-into events from the event sequence in QU (lines 2–3).
For example, since methodInstanceLevel is enabled, Seads skips the filtering. If staticGraph and
statementCoveraдe are both enabled, the static dependence graph is pruned according to the state-
ment coverage (lines 4–5). For example, since both staticGraph and statementCoveraдe are dis-
abled, Seads skips the pruning. Then, Seads traversesQU to compute dynamic dependencies cor-
responding to the method events in QU (lines 6–24), as elaborated as follows:

For each event e inQU , letm be the corresponding method of e andDS (m) be the dependence set
ofm that is empty initially (line 7). For example, for e = −15700, DS (e ) is empty now, where 15,700
is the ID of method voldemort.server.VoldemortServer: void main(java.lang.String[]).)
If the parameter methodEvent is enabled and the value of e is negative (i.e., e is an entry event) and
m is executed, Seads addsm itself into the dependence set DS (m) (lines 8–10). For example, since
the parameter methodEvent is enabled and e = −15,700 (< 0), the method (of ID = 15,700) is added
to DS (m).

If parameters methodEvent and staticGraph are enabled, Seads adds dependencies via calling
a subroutine AddDSForEntry for the negative e value (entry event) or calling another subroutine
AddDSForReturnInfo for the positive e value (returned-into event) (lines 11–15). For example, as
the parameter staticGraph is not enabled, Seads skips both subroutines. We leveraged DiverOn-
line [14] to develop these two subroutines, in which Seads traverses the static dependence graph
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ALGORITHM 2: Computing dependencies

let Conf iдur ation_staticGr aph be staticGr aph parameter of current configuration
let Conf iдur ation_methodEvent be methodEvent parameter of current configuration
let Conf iдur ation_statementCover aдe be statementCover aдe parameter of current configuration
let Conf iдur ation_methodInstanceLevel be methodInstanceLevel parameter of current configuration
let DS (m) be dependence set for method m

1: Read current configuration parameter settings
2: if N ot Conf iдur ation_methodInstanceLevel then

3: QU =getFirstLastInstances(QU )

4: if Conf iдur ation_staticGr aph and Conf iдur ation_statementCover aдe then

5: Prune the static graph with the statement coverage

6: for each method event e ∈ QU do

7: m=abs(e ), DS (m) = ∅
8: if Conf iдur ation_methodEvent then

9: if e < 0 then

10: DS (m) ∪ = {m }
11: if Conf iдur ation_staticGr aph then

12: if e < 0 then

13: AddDSForEntry(m)
14: else

15: AddDSForReturnInto(m)

16: else

17: if e < 0 then

18: for each last returned-into event e′ that happens after e ∈ Q do

19: m′=abs(e′)
20: DS (m) ∪ = {m′ }
21: else

22: if Conf iдur ation_staticGr aph then

23: AddDSForEntry(m)
24: AddDSForReturnInto(m)

to add dependencies into DS (m), using different dependence propagation rules for the entry and
returned-into event of the method (m), respectively.

If the parameter methodEvent is enabled and the parameter staticGraph is disabled, upon each
negative e (i.e., an entry event), Seads adds all methods whose last (returned-into) event in QU
happened after e , into the dependence setDS (m) (lines 16–20). For example, since parameter meth-

odEvent is enabled and the parameter staticGraph is disabled, Seads adds all methods whose last
(returned-into) event in QU happened after e (−15,700) into the dependence set DS (m).

If the parameter methodEvent is disabled and the parameter staticGraph is enabled, Seads sim-
ply calls these two subroutines AddDSForEntry and AddDSForReturnInfo to add dependencies
into DS (m) (lines 21–24): In this situation, these two subroutines compute the dependencies by
traversing the static dependence graph without utilizing any dynamic data. With the example
configuration being considered (methodEvent is enabled and staticGraph is disabled), Seads skips
both subroutines here.

Note that for each process the monitor only computes the runtime dependencies within the
process (referred to as intraprocess dependencies). Dependencies across processes (referred to as
interprocess dependencies) will be computed for a given query Q by the querying_client of Seads
after it receives the intraprocess dependencies of Q from each of the SUA’s processes.

Illustration. Consider the same example used for illustrating the arbitration algorithm above.
With the new configuration 000101, the partially ordered sequences of methods are those in
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Fig. 7. An example set of intraprocess dependencies of a query in the Server process.

Fig. 8. An example set of intraprocess dependencies of a query in the Store process.

Figures 5 and 6. The pruning of the first entry and last return-into events is not executed, because
the parametermethodInstanceLevel is enabled in this configuration. With this configuration, static
dependence analysis and graph pruning are skipped, too. Next, in the loop of traversing the queue
QU , m and DS (m) are initiated first. With the parameter methodEvent enabled, for each e that is
an entry event (the e value is negative), Seads adds all methods whose last returned-into events
in the queue QU happened after e , into the dependence set of the method m (i.e., Lines 17–20).
As a result, Seads computes the runtime dependencies for all possible queries (i.e., methods exe-
cuted in any process). For example, for the query method voldemort.server.VoldemortServer:
void main(java.lang.String[]) exercised in the Server process, the dependence set at
a particular querying time is partially shown in Figure 7, while a resulting dependence
set of the query method voldemort.store.socket.clientrequest.ClientRequestExecutor:
java.nio.channels.SocketChannel getSocketChannel() executed in the Store process
is partially shown in Figure 8. Note that each of these dependence sets includes intrapro-
cess dependencies only, despite the existence of methods executed in more than one process
(e.g., the method voldemort.store.socket.clientrequest.ClientRequestExecutorFactory
$ClientRequestSelectorManager: void processEvents() in this illustrative example).

4.4.3 Querying Interface. To offer the querying service to users, the monitor module for each
process includes a querying_interface to receive the dependence query Q from and send corre-
sponding dependence sets back to, the querying_client module of Seads, both through the network

facility (see Figure 3). When a query is received at (the querying_interface of) the monitor module,
there are two situations, dealt with by the interface differently as follows:

(1) The monitor is in the middle of computing/updating the dependence sets for all possible
queries. In this situation, the querying_interface will wait until the dependence computa-
tion/updating is completed to return the dependence set of Q .

(2) The monitor is performing arbitration functionalities, but not computing/updating
dependencies—that is, it has completed a previous round of dependence computa-
tion/updating and is waiting for the next round. In this situation, the querying_interface

will immediately return the most recently computed dependence set of Q .

As mentioned earlier, while the querying_interface (attached to the monitor) for each process
computes intraprocess runtime dependencies, the querying_client module of Seads derives
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Fig. 9. The dependence set for an example query returned to the user.

interprocess dependencies, hence produces the final dependence set, while merging all the
per-process intraprocess dependence sets, for the user-supplied query Q . Once it has received
Q , the querying_client sends it to the querying_interface for each process, and then waits for all
the per-process interfaces to return their respective intraprocess dependence sets for all possible
queries. The reason is that all these dependence sets may be needed for deriving interprocess
dependencies for Q . More specifically, the querying_client will identify the process Pi where Q
was executed first (i.e., where the earliest first entry event of Q occurred). If no process exercised
Q , an empty dependence set would be returned immediately back to the user. Otherwise, the
final dependence set of Q , noted as f DS (Q ), is initialized as the intraprocess dependence set of Q
returned from the querying_interface for Pi (noted as intraDS (Q, i )).

Then, for each other process Pj :

(1) if Pj also exercised Q , intraDS (Q, j ) is straightforwardly merged into f DS (Q ); otherwise,
(2) for each methodm exercised in Pj , intraDS (m, j ) is straightforwardly merged into f DS (Q )

if the last returned-into event happens after the first entry event of Q .

This merging process implicitly derives and adds to f DS (Q ) the interprocess dependencies
for Q according to the happens-before relationships among method execution events across all
processes.

Illustration. Suppose when the two monitors, one for the Voldemort Server process and the other
for the Store process, have received the same dependence query voldemort.server.Voldemort
Server: void main(java.lang.String[]) from their respective querying_interface, both are
just performing routine arbitration (not in the middle of computing/updating dependencies).
Thus, both monitors have all of their dependence sets (computed in the previous round of anal-
ysis) ready. Further suppose the Server process executed this query while the other process did
not. The intraprocess dependencies of the query voldemort.server.VoldemortServer: void
main(java.lang.String[]) in the Server process include voldemort.server.Voldemort
Config: int getBdbCleanerLookAheadCacheSize(), voldemort.server.VoldemortServer:
voldemort.server.StoreRepository getStoreRepository(), and a few other methods.
In the Store process, only one method, voldemort.store.stats.Tracked: java.lang.
String toString(), has its last returned-into event happened after the first entry event
of the query here, and includes in its dependence set the method voldemort.store.
socket.clientrequest.ClientRequestExecutorFactory $ClientRequestSelectorManager:
void processEvents() and a few others, besides itself. Then, according to the process of deriving
the final (cross-process) dependencies as described above, the querying_client will return to the
user the final dependence set as shown in Figure 9. Here the two methods in the Store process are
added to the dependence set due to their implicit dependencies on the query via happens-before
relations.
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ALGORITHM 3: Configuration Adjustment using Q-learning

let T CN and newT CN be current and new configurations
let Qtable , actions , r ewards , states , γ , α , and ϵ be components and parameters used by Q-learning
let T be overall dynamic dependence analysis time cost with the current configuration
let B be the user budget
let probabil ity be the possibility to select the action according to the largest value in Qtable

1: Initiate Q-learning components: learner , Aдent , Qtable , actions , r ewards , and states

2: Set Bellman equation parameters γ , α , and ϵ between 0 and 1
3: Update r eward = 1/(B - T ) * 1,000.
4: Update Qtable using the Bellman equation
5: probabil ity=random(0,1)
6: if probabil ity < = (1 - ϵ ) then

7: Take the best action according to the largest value in Qtable

8: else

9: Randomly take an action

10: Compute a new configuration newT CN according the action and T CN

4.5 Controller

For each process of the SUA, Seads runs a controller to adjust analysis configurations in Seads.
As shown in Figure 4, the controller takes the costs of the current configuration and user bud-
get B as inputs to determine which next configuration the analysis should use to achieve a better
cost-effectiveness (than with the current configuration) while respecting the user budget (i.e., con-
taining the total analysis cost under the budget). Recall that the analysis in Seads is distributed,
thus the controller associated with each process of the SUA is only responsible for adjusting the
configuration for the analysis of that process—the controllers across all processes work indepen-
dently of one another.

Each controller module consists of two submodules: a learner and an executor. The learner
utilizes the data from the gatherer (i.e., the analysis costs under the current configuration) while
referring to the user budget, to adjust the configuration—the output is a configuration that may
be the same as or different from the current configuration. Then, the executor updates Seads to
the new configuration: It takes the learner’s output and simply prepares for transferring the new
configuration to the collaborating monitor. Specifically, the preparation is realized by serializing
the configuration to an external file that is later loaded by the processor in the monitor. Next, we
elaborate the learner’s inner workings for configuration adjustment.

Seads makes decisions on new analysis configurations using a reinforcement learning method-
ology, in particular the Q-learning method (Section 3). Supervised learning, which needs a large
training set, is not appropriate for the configuration adjustment in Seads, because there are not
enough data for training when Seads starts with a particular SUA. Meanwhile, since the dynamics
of execution may vary widely across different SUAs, learning from other SUAs beforehand may not
be effective either. Thus, given the unpredictably changing environment during the execution of an
SUA, reinforcement learning, which is not subject to those constraints, is more suitable. Moreover,
Q-learning as a special type of reinforcement learning is particularly appropriate for configuration
adjustments in our framework, because dependence computation time costs constantly vary dur-
ing the execution without an existing policy or a strict model of the adjustments [80]. Therefore,
we employ Q-learning as an off-policy and model-free learning strategy for Seads.

In Q-learning as applied in Seads, an agent receives a state (i.e., the current configuration) from
the environment and takes an action (i.e., selecting a new configuration), either from a Q-table
or by a random exploration of possible actions. As a consequence, the agent receives feedback in
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Fig. 10. The interactions between the agent and environment of Q-learning in Seads.

terms of a reward computed according to the action’s performance. As shown in Figure 10, a state
represents the current dependence computation configuration, and the monitor is the environment
while the controller is the agent. With the user budget and analysis time cost, a reward is calculated
and sent back to the agent as feedback. In the case of a positive reward, the corresponding action
is encouraged (i.e., reinforced); otherwise, the action is discouraged. Q-learning uses the reward
to update the Q-table whose largest value will be presumably selected as the future action [32]. In
other words, for Seads, the larger the reward is, the more possible the corresponding configuration
is selected.

Q-learning updates the Q-table according to the Bellman equation to find optimal policies and
value functions [43]. With this equation, the value in the Q-table (i.e., QV ) for the next state is
computed as follows:

QV = QV + α ∗ [reward + γ ∗max{q |q ∈ Q-table} −QV ] , (1)

where γ and α are two equation parameters. In particular, γ is a discount factor between 0 to 1 to
determine the importance of future rewards. If γ is 0, the Q-learning agent only considers current
rewards; if γ is 1, the agent strives for a long-term high reward. The other parameter, α , indicates
the learning rate between 0 to 1 to control how much the difference between previous and new
QV values is considered. If α is 0, the agent only exploits prior knowledge; if α is 1, the agent
considers only the most recent information to explore possibilities and ignores prior knowledge.
Another relevant parameter, ϵ , as part of the learning algorithm, is used to control the agent taking
an action (i.e., selecting a new configuration) either from the Q-table or by a random exploration
of possible actions. If a randomly calculated variable value is less than or equal to (1 - ϵ), the agent
uses the epsilon greedy strategy [84] to take the best action according to the largest value in the
Q-table. Otherwise, the agent randomly selects an action [26].

Algorithm 3 shows the pseudo-code of the learning process for configuration adjustment. In the
first place, Seads initiates Q-learning components (e.g., learner , Aдent , Qtable , actions , rewards ,
ϵ , and states) and Bellman equation’s parameters: γ and α (lines 1–2). For example, we set the
values in the Q-table as all zeros and the parameters γ , α , and ϵ as 0.9, 0.9, and 0.2, respectively.
Since γ=0.9 is slightly lower than 1, the Q-learning agent prefers a long-term high reward rather
than the current reward. Also, α is 0.9, thus the agent prefers for the most recent data (e.g., reward,
values in the Q-table). In addition, ϵ = 0.2, thus (1 - ϵ)= 1 - 0.2= 0.8= 80%. Therefore, the possibility
that the agent takes the best action according to the largest value in the Q-table is 80% while the
possibility that the agent randomly selects an action is 20%.

Then, the reward and Qtable are updated (lines 3–4). The reward is defined as 1/(the user
budget B - the current dependence analysis time cost T ) * 1,000—the rationale is that the closer
the analysis cost is to the user budget (the learning goal here), the higher the reward. For example,
suppose the user budget B is 6,0000 (ms) and the current analysis time costT is 43,000 ms. Then the
reward is 1/(60,000 - 43,000) * 1,000 = 0.0588 as used to update the Q-table. In our algorithm, the
action means the transfer from the current state (configuration) to the next state (configuration).
If the randomly calculated probability value equals or is less than (1 - ϵ), the Q-learning Aдent
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uses the epsilon greedy strategy [8, 77] to take the best action according to the largest value in
the Qtable (lines 5–7). For example, suppose Seads randomly calculated the probability value as
0.813, which is greater than 0.8. Then, Seads skips taking the best action according to the largest
value in Qtable . Otherwise, the Aдent randomly selects an action (lines 8–9). For example, the
Aдent may randomly take an action (selecting the next configuration). Last, a new configuration
newTCN (e.g., 000101) is computed according to the action and the current configuration (line 10).

Illustration. For the running example, we first initiate the values in the Qtable as all zeros and
set Q-learning parameters γ , α , and ϵ as 0.9, 0.9, and 0.2, respectively. The user budget B is 60,000
(ms), and the current time cost T is 43,000 ms after Seads canceled the static dependence graph
construction because of the timeout. Then the reward is 1/(60,000 - 43,000) * 1,000 = 0.0588, which
is used to update the Q-table. After the reward andQtable were updated, theprobability calculated
randomly is 0.813 (> 0.8). And 1 - ϵ = 1 - 0.2 = 0.8. Thus, the Aдent randomly selects 000101 as the
new configuration, which only has two parameters enabled: methodEvent and MethodInstanceLevel.
With this new configuration 000101, Seads will quickly infer rough and rapid dependence sets only
from the dynamic data: full (instance-level) events of all executed methods.

5 IMPLEMENTATION AND LIMITATIONS

We have implemented Seads as a tool for Java to work with various distributed systems used in
the real world. In this section, we discuss some key technical issues for the implementation, as
well as its current limitations.

5.1 Analysis of Intraprocess Dependencies

Seads reused our Java dynamic dependence analysis tools, Diver [16] and DiverOnline [14], both
based on the Soot [53] bytecode manipulation and instrumentation framework. In particular, we
reused relevant code from Diver implementation for (1) constructing the static dependence graph
for each SUA component, (2) instrumenting and probing for the two kinds of method execution
events, and (3) for computing dynamic dependencies at method level within each process with the
hybrid dependence analysis approach that utilizes the per-component static dependencies and the
intraprocess method execution events. We then reused DiverOnline when developing the online
version of the dynamic dependence analysis for each process. We also leveraged the capabilities
of both tools in handling exceptional handling constructs (e.g., catch and finally blocks) and
computing the data/control flow facts induced by those constructs. This is important for making
Seads work for modern real-world Java systems, since exception-handling code is prevalent in
those systems.

In addition, we leveraged the Indus Java code analysis (slicing) framework [65] to compute
threading-induced static dependencies. In particular, we reused their code for inferring inter-
thread ready, synchronization, and interference dependencies. The fact that Indus is also built on
Soot facilitated our integration of these analysis parts into our Seads framework.

5.2 Inferring Interprocess Dependencies

Seads derives interprocess dependencies from partially ordered method execution events across
all SUA processes throughout its execution, similarly to what we did in DistIa [19], although
we further utilized static dependencies and statement coverage data to refine intraprocess depen-
dencies. Thus, we reused relevant code from DistIa implementation, mainly for probing for and
monitoring message-passing events (i.e., the event of a message being sent and the event of a mes-
sage being received) that are used to partially order the method execution events at runtime. This
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includes handling various kinds of network I/Os in such ways that the runtime monitoring and
processing of the message-passing events do not affect the original communication semantics of
the SUA, which is crucially important for our Seads tool to work with real-world distributed sys-
tems of varied architectures. We also leveraged the capabilities of DistIa in handling exceptional
control flows to address message-passing events initiated in exception-handling constructs of Java.

5.3 Responding to User Queries

To enable users to interact with and query the continuously running Seads, we implement the
querying_client as a command-line tool, which takes user queries and collaborates with the query-

ing_interface in each process of the SUA in a classical client/server architecture. More specifi-
cally, to avoid potential interferences of user querying with the continuous analysis in Seads,
each querying_interface communicates with the querying_client via a Java non-blocking IO (NIO)
socket channel [23]. This way, Seads deals with the user interaction asynchronously with its in-
ternal workings. In contrast, using network I/O working in a blocking and synchronous mode for
the communication would be inefficient. Users would typically launch the querying_client tool on
demand (i.e., whenever dependence querying is needed). Recall that the users here are commonly
dependence-based client analyses/techniques that utilize the runtime dependencies to enable par-
ticular applications (e.g., diagnosing performance issues and security threats).

5.4 Reuse of Prior Techniques/Tools

We have leveraged a few of our own prior techniques and tools in developing Seads, including
Diver, DiverOnline, and DistIa, as described earlier in Sections 3 and 5. While not our main
contribution (the key novel contribution of this work is the use of RL to learn, hence tune analysis
configurations at runtime), customizations and improvements were necessary for our non-trivial
reuse of these existing techniques/tools in Seads. We considerably extended the dynamic interpro-
cess dependence computation algorithm of DistIa, a lightweight dynamic analysis for distributed
programs. DistIa was immediately reused only when Seads works at a particular configuration
(000100), which only has one analysis parameter (i.e., methodEvent) enabled: The analysis uses
only one form of dynamic data (i.e., executed method events) while without using any static in-
formation of the SUA. For other configurations, Seads only utilizes the algorithm of DistIa for
inferring the happen-before relations between method events; it adapted the algorithm to work
also with all of the other configurations and for some of them incorporated static dependencies
and statement coverage.

Also, we enhanced the algorithms of the Diver/DiverOnline dynamic analysis frameworks
for constructing the static dependence graph, probing for dynamic data, and computing dynamic
intraprocess dependencies. Diver/DiverOnline can only deal with a single-process program in
building a single static dependence graph for the program. For a distributed program, Seads needed
to build such a graph for each of the distributed (and decoupled) components of the program. To
that end, it had to improve the static dependence analysis algorithm in Diver/DiverOnline to
identify and traverse all of the entry points of the distributed program before starting the static
analysis with each entry point. Accordingly, in utilizing the static dependencies and method exe-
cution events to compute the dynamic dependencies within each process, Seads had further to first
identify the right dependence graph (i.e., of the component corresponding to the process) and the
method events that only belong to the process. In addition, Diver or DiverOnline only represents
one of the multiple static configurations in Seads (i.e., with the parameter context sensitivity dis-
abled and the parameter flow sensitivity enabled). Seads extended these prior tools to support all of
the four static configurations (i.e., for the static analysis to be context/flow sensitive/insensitive).
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Table 2. Experimental Subjects

Subject (version) #Method #SLOC Test type

NioEcho (r69) 27 412 Integration
MultiChat (r5) 37 470 Integration
OpenChord (v1.0.5) 736 9,244 Integration
Thrift (v0.11.0) 1,941 14,510 Integration
xSocket (v2.8.15) 2,209 15,760 Integration
ZooKeeper (v3.4.11) 5,383 62,194 Integration, Load, System
Netty (v4.1.19) 12,389 167,961 Integration
Voldemort (v1.9.6) 20,406 115,310 Integration, Load, System

5.5 Limitations

During the instrumentation, Seads needs to insert probes into the bytecode of the SUA to mon-
itor method events. If administrators do not allow to modify the bytecode, Seads has no way to
work. Seads targets continuously running distributed systems, offering online dynamic depen-
dence analysis (querying) capabilities with practical scalability and cost-effectiveness tradeoffs.
If no querying is performed before the SUA is terminated (hence Seads exits accordingly), Seads
would not provide useful results, since it does not dump (or save in other ways) its analysis results.

Also, Seads tries to provide the most cost-effective result (dependence set) achieved within a re-
sponse time constraint (i.e., the user budget for the average time cost for processing a dependence
query). However, our current controller (Q-learning) algorithm may not be optimal—it does not
necessarily choose the next configuration that is optimal (i.e., the configuration with which the dy-
namic dependence computation/updating does not necessarily have the optimal cost-effectiveness
tradeoff possible with respect to our framework). For instance, the Q-learning algorithm might
take a wrong action (especially when the selection is random—see Algorithm 3) at certain steps.
As a result, the dynamic dependence analysis, as informed by the controller, may not be always
the most cost-effective as it could be. In addition, if the user sets an improper budget (e.g., one
that is far off the typical time cost for answering a dependence query against the particular SUA),
the analysis configuration adjustment by the controller can be even less effective (i.e., leading the
analysis in Seads to be further away from optimal cost-effectiveness balances). However, when
the user does not specify a budget, Seads would have to use a default budget, which may not be
desirable to the user or not suitable for the given SUA.

6 EVALUATION

Aiming to assess the scalability/efficiency and cost-effectiveness of Seads and its merits in these
regards, our evaluation was guided by the following research questions:

• RQ1: How efficient is Seads in terms of its query response time in an average case?
• RQ2: How scalable and efficient is Seads in terms of its analysis overheads?
• RQ3: How cost-effective is Seads in terms of query response time and analysis overheads?

6.1 Experiment Setup

We applied Seads against eight Java distributed systems, as shown in Table 2. As study subjects,
these systems typically run continuously. The sizes of these subjects are measured as the number
of methods defined in the subject source code (the second column #Method) and the number
of Java source code lines excluding blank lines and code comments (the third column #SLOC).
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The last column shows the test types, including integration, load, and system tests. We chose
these subjects with different architectures, domains, and scales. NioEcho [72] is a simple system
whose server echoes any message from the clients. MultiChat [36] is a chat system whose clients
broadcast messages to all other clients through the server. OpenChord [75] uses distributed hash
tables to provide peer-to-peer network services. Thrift [5] is an application development frame-
work that has a code generation engine for developing scalable cross-language services. xSocket
[76] is a framework based on NIO for constructing high-performance, scalable software systems.
ZooKeeper [2, 44] is a coordination system providing distributed synchronization and group
services. Netty [63] is an asynchronous NIO client-server framework used to rapidly develop
network applications. Voldemort [3] is a distributed key-value storage system used by LinkedIn.

In each integration test, we started several server/client instances and performed various op-
erations, to cover main subject functionalities in respective SUA components. For NioEcho, we
started a server and a client, and next sent random text messages from the client to the server, and
then waited for the echoing of each message. For MultiChat, we sent random text messages from
a client to the server and then broadcasted these messages to all other clients. For OpenChord,
a peer-to-peer system, we first started three nodes, A, B, and C and then performed following
operations: On a machine (node) A, we created an overlay network; on other nodes B and C, we
joined the network; on the node C, we inserted a new data entry to the network; on the node A, we
searched and then removed the data entry; on the node B, we listed all data entries. For Voldemort,
after we started a server and a client, the ordering of our operations is: adding a key-value pair,
finding the key for its value, removing the key, and retrieving the pair. For ZooKeeper, we started
two instances of a server and a client, and our operations were: creating two nodes, searching
them, looking up their attributes, updating their data association, and removing these two nodes.

Particularly for Thrift, xSocket, and Netty, which are all libraries/frameworks, we developed
one sample application program of each of them to cover their major functional features, and
then exercised these subjects via executing corresponding applications. For Thrift, we developed a
calculator application with a server and a client. Some basic arithmetic operations were sent from
the client to the server, and the calculation results were sent back from the server to the client. For
xSocket, after a server and a client started, the client sent text messages to the server. For Netty, we
started a client sending messages to the server. In our developed application programs, each client
interacts with the server regularly and infinitely. Besides the integration tests, the load and system
tests were downloaded as parts of software packages from respective official project websites.

We note that all of these test cases for our subjects were used as runtime inputs to trigger the
subject executions to generate the dynamic information needed by Seads’s analyses, yet we did
not aim to use them to test the subject systems or to address specific testing problems. In the ar-
ticle, we did not develop and evaluate any specific dependence-based applications (e.g., testing)
but rather focus on the foundational dependence analysis itself; accordingly, our evaluation fo-
cuses on assessing the efficiency, effectiveness (i.e., precision), scalability, and cost-effectiveness
of Seads versus the baseline. Recall that Seads targets SUAs that run continuously; thus, in real
deployment settings, the executions analyzed by Seads are supposed to be uninterrupted. For the
purpose of our evaluation experiments, however, we ran each SUA for as long as it needed for ten
randomly selected sample queries to be processed by Seads. And these queries were sent from
the querying_client with a random interval between 5 to 15 seconds. In our evaluation results, we
thus report the cost and effectiveness measures with respect to such executions for the subject
systems. For the controller, we set relevant parameters as follows: sдc_T=42 s, sдl_T=12 s, d_T=6
s, TC=1,000, TT=1 mins for the two smallest subjects (NioEcho and MultiChat) and 5 mins for
others. In addition, with respect to the likely great variety of user budgets in practice, we specified
the user budget for each subject also randomly, ranging from 14 to 200 seconds.
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Table 3. Time (in Seconds) and Storage costs (in MB) and Precision (Ratios) of Seads versus Doda

Normal Doda Seads
Execution Run Run Slow Response Run Slow Response Precision Storage

Time Time Down Time Time Down Time

NioEcho 158.37 228.17 44.07% 14.39 214.15 35.22% 13.71 100.00% 2.00

MultiChat 148.96 241.89 62.39% 15.12 223.67 50.15% 14.32 100.00% 2.00

Openchord 233.78 606.87 159.59% 51.36 359.37 53.72% 25.33 77.44% 14.00

Thrift 199.87 573.49 186.93% 45.23 345.19 72.71% 23.82 90.68% 25.00

xSocket 380.59 1,817.61 377.58% 170.82 772.38 102.94% 65.37 83.25% 21.00

Netty 589.39 4,218.85 615.80% 409.56 1,226.16 108.04% 115.16 87.12% 105.00

Zookeeper

Integration 598.34 3,543.47 492.22% 343.19 1,139.25 90.40% 103.21 66.29% 96.00

Zookeeper

Load 616.16 3,804.37 517.43% 368.43 1,209.77 96.34% 111.97 65.55% 96.00

Zookeeper

System 598.17 3,676.91 514.69% 355.56 1,183.97 97.93% 107.94 63.28% 96.00

Voldemort

Integration 398.06 - - - 791.37 98.81% 69.62 - 200.00

Voldemort

Load 194.44 - - - 731.71 276.32% 67.58 - 200.00

Voldemort

System 355.78 - - - 719.38 102.20% 66.96 - 200.00

Average: 372.66 2,079.07 330% 197.07 743.03 99% 65.41 81.5% 88.08

6.2 Results and Analysis

In this section, we illustrate and discuss our empirical results related to the research questions.
One of the key innovations in Seads is its capability of adjusting analysis configuration at run-
time through reinforcement learning to automatically achieve better cost-effectiveness than tech-
niques with a fixated analysis configuration. To show the impact and merits of this innovation, and
given the absence of a directly comparable peer technique, we created and used an online version
of D2Abs [15], the state-of-the-art dynamic dependence analysis for distributed programs (to the
best of our knowledge), as the baseline in our evaluation (referred to as Doda). In terms of imple-
mentation, Doda is essentially a variant of Seads that does not change its analysis configurations
on the fly but constantly uses a fixated configuration (111111, for the highest precision possible
within our analysis infrastructure)—otherwise, these two tools are not different.

Table 3 presents our major experimental results, including the cost and effectiveness measures
of Seads versus the baseline Doda against the 12 SUA executions (as listed in the first column).
The third to fifth and sixth to eighth columns list the total runtime (Run Time)—the continuous
running time during which we sampled ten random queries with random intervals, runtime slow-
down (SlowDown), and average query response time (Response Time), for each instrumented SUA
execution with Doda and Seads, respectively. The normal runtime (the second column) for each
SUA execution was the total length of execution of the SUA against the same sequence of runtime
inputs used for driving the corresponding instrumented SUA execution. To enable the comparison
between our approach and the baseline, we ensured that, for each SUA execution, the runtime
inputs to the SUA were exactly the same during the analysis by both techniques, in addition to
feeding them with the same sequence of queries.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 1, Article 10. Pub. date: December 2020.



10:28 X. Fu et al.

In the ninth column (Precision), we report the average precision of Seads via a relative measure
(to the baseline): For each SUA execution and each query, the measure was computed as the ratio
of the size of query dependence set computed by Doda to the size of the query dependence set
computed by Seads. We chose to compute and report the relative measure for two reasons. First,
we do not have the ground-truth dependence sets available for the sample queries, and we are not
aware of an existing tool that scales to and works with our subject systems to compute such ground
truths. Second, the main goal of our evaluation is to validate the scalability and cost-effectiveness
merits (over conventional analyses that have a fixated configuration) of Seads due to its on-the-
fly adjustable analysis configurations and its ability to learn the configurations to adjust to. With
respect to this goal, measuring relative cost and effectiveness differences between Seads and the
baseline, which represents the conventional analyses, should suffice. Also, we only report precision
as the effectiveness metric, assuming the design (of adjusting analysis configurations) of Seads
does not affect the recall of the dynamic dependence analysis relative to the baseline—because
the baseline always uses the most precise configuration while Seads sacrifices precision for better
scalability and overall cost-effectiveness. To validate this hypothesis, we compare the dependence
sets between the two techniques against each query—we confirm that Seads does not sacrifice
recall if its dependence set includes the dependence set produced by Doda for the same query.

The last column (Storage) lists the total storage costs (disk space taken) of Seads, ranging from
2 MB for the two smallest subjects (NioEcho and MultiChat) to 200 MB on the largest system
(Voldemort), for an average of 88 MB across all the 12 executions. These are the space costs mainly
incurred by storing the static analysis data (i.e., the static dependence graph for each SUA compo-
nent) and the instrumented versions of the SUAs. As these costs with the baseline are almost the
same as those with Seads for each SUA execution, we omitted the numbers for the baseline.

Results for Doda against the Voldemort executions are unavailable (hence, missing from the
table) because the baseline did not scale to the system: We killed the analysis after running it for
12 hours. For this reason, the relative precision of Seads for these executions is missing also. Next,
we discuss major findings and observations from these results to answer our research questions.

6.2.1 RQ1: Efficiency: Response time. The response time, as shown in the fifth and eighth
columns, is the user’s waiting time, since a dependence query is sent out until the user receives
the dependence set in return. Over all SUA executions, Seads took 65.41 seconds on average to
respond to random user queries with random intervals and user-specified budgets. For individual
executions, Seads took the shortest response time (13.71 seconds) on average against the NioE-
cho execution, most plausibly due to its smallest size. However, Seads took the longest average
response time (115.16 seconds) on Netty, the largest system among our subject SUAs. Yet looking
at this efficiency measure across all the SUA executions reveals no consistent correlation between
subject sizes and the average response time. One reason is because the source size of a subject is
not the only factor that affects this efficiency measure—for example, the complexity of the exe-
cution analyzed is another major factor here. In fact, the three SUA executions for the same SUA
Voldemort saw noticeably different average response time with Seads. Other factors, such as the
time cost of network communication and that of merging dependence sets while deriving inter-
process dependencies at the querying_client after it receives all per-process dependence sets, also
have non-trivial effects on the response time perceived by the user.

In addition, the variations in the response time have to do with how Seads works: When it
receives a query, Seads may be in one of two possible situations, as mentioned earlier: (1) com-
puting/updating dependence sets for all queries or (2) being idle during the time interval between
two consecutive rounds of dependence computation. In the first case, the relevant dependence sets
will be delivered back to the user after the computation is done. Depending on the timing of query
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arrivals, the query response time can be substantial in this case. This situation often occurs when
the user requests a query for an SUA of a large code size or a great execution complexity, for which
the dependence computation may take a relatively long time. Of course, even in this situation, the
response time can still be fairly short: For example, for small subjects such as NioEcho and Mul-
tiChat, any round of dependence computation is very fast, so Seads can deliver newly computed
dependence sets shortly after receiving a dependence query. Otherwise, in the latter case, the com-
puted results (i.e., dependence sets) are sent back to the querying_client at once, since the results
(from the most recent round of dependence computation) are already available. In consequence,
the response time is generally short in this case.

For the same query requests as sent to Seads, Doda took 197 seconds by average over the 12 SUA
executions, with the average response time for individual SUA executions ranging from 14.39 sec-
onds on NioEcho to 409.56 seconds on Netty. In particular, for Voldemort, Doda could not answer
any user query within 12 hours—as mentioned earlier, we had to kill, after that long time, the
analysis by Doda against this subject SUA (for any of its three executions, because the scalability
challenge mainly lies in the static dependence analysis part). In practice, a user (either a human or
an application/client analysis using the dynamic dependence results) is not very likely to wait even
longer than 12 hours for querying a dependence set. That is, Doda may suffer a serious scalability
problem that impedes its practical adoption to industrial-scale distributed systems. In contrast, for
the three executions of Volemort studied, Seads took a bit over one minute to respond, highlight-
ing the scalability and efficiency advantages of our approach over the conventional dependence
analysis.

It is worth noting that the efficiency advantage in terms of mean response time of Seads over the
baseline was generally more significant with larger-scale SUA executions. As shown, the gap in this
efficiency measure between the two techniques tended to increase when the SUA grows in source
size and execution complexity—for instance, for the two smallest SUAs, the average response time
of Doda was very close to that of Seads (the difference was less than one second on average for
each query); for a medium-scale SUA such as Thrift, Seads was about 2× faster; and for the largest
SUAs, Seads was over 3× faster. This further implies that the efficiency/scalability merits of Seads
over Doda are especially important and needed for large, complex real-world distributed systems.

6.2.2 RQ2: Efficiency: Analysis Overheads. Beyond the average response time, we further
gauged the efficiency/scalability of Seads relative to the baseline in two measures of analysis over-
heads: the runtime slowdown caused by the instrumentation, and the storage costs. The measure-
ment of runtime slowdown followed the standard computation. In our study in particular, we were
concerned about the overall slowdown of each technique during the entire continuous execution of
each SUA that we considered. Thus, this measure was computed as the percentage of increase be-
tween the Normal Run Time (the second column of Table 3) and the Run Time of each technique
(the third and sixth columns). Specifically, a runtime slowdown of Doda was calculated as (TD -
Tn )/Tn , where TD was the runtime of the SUA instrumented by Doda and Tn was the runtime of
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the original SUA. For example, the original NioEcho executed 158.37 seconds, and the runtime of
the Doda-instrumented NioEcho was 228.17 seconds. As a result, the runtime slowdown of Doda
in this case was (228.17 - 158.37)/158.37 = 0.4407 = 44.07%, as shown in the fourth column (Slow

Down). Similarly, a runtime slowdown of Seads was computed as (TS -Tn )/Tn , where TS was the
runtime of the SUA instrumented by Seads (the sixth column Run Time). For instance, the runtime
of NioEcho instrumented by Seads was 214.15 seconds. Thus, we calculated the runtime slowdown
caused by Seads as (214.15 - 158.37)/158.37 = 35.22% (the seventh column Slow Down).

From Table 3, we can see that the runtime slowdown of Seads ranged from 35% (NioEcho) to
276% (Voldemort load test), with 99% on average over the 12 SUA executions. In comparison, the
runtime overheads of Doda ranged from 44% (NioEcho) to 616% (Netty), with 330% on average.
Recall that both techniques perform dynamic dependence analysis online. Thus, the slowdown was
resulting from the time cost of the online analysis (e.g., collecting analysis data and computing
dependencies, both during the instrumented SUA execution). Therefore, the slowdown measures
are connected to the factors that influence the online analysis costs. Intuitively, these factors are
similar to those that caused the variations in the average response time in relation to the source
size and execution complexity of the subject SUAs. Generally, the slowdown of either technique
was greater against larger SUAs with more complex executions, as expected.

Although the runtime of Doda-instrumented Voldemort is absent in the table as explained ear-
lier, we know that for each of three Voldemort executions the time was at least 12 hours. Since
Doda did not answer any dependence query within that period of time, the corresponding slow-
down measures were not meaningful and thus omitted—albeit they would be extremely high: at
least (12*3600 - 398.06/398.06) = 4,319,900%. For the other nine SUA executions for which the in-
dividual runtime slowdown measures were available for both techniques, Seads was consistently
more efficient than the baseline. Similar to their contrasts in average response time, the advantage
of our approach over Doda was increasingly significant for SUAs of growing size and execution
complexity. For instance, while for the two smallest and simplest SUAs the slowdowns of both
techniques were close, Doda incurred over 2× greater slowdown than Seads for a medium-scale
SUA xSocket; for the large-scale SUAs like Netty and ZooKeeper, Doda’s slowdown was 4–5×
greater. Overall, Seads was over 3.3× as efficient as the conventional approach to dynamic depen-
dence analysis in terms of the slowdown measure, further elucidating the merits of the on-the-fly
analysis configuration adjustments through reinforcement learning in our approach.

In terms of the other overhead measure, storage cost, the two techniques compared were very
close both for any individual SUA execution and overall. Thus, Seads did not have substantial
advantages in this regard. Yet given the generally negligible storage costs as shown in (the last
column of) Table 3—no more than 200 MB—the results on this overhead measure do not affect the
efficiency and scalability advantages of Seads against the baseline otherwise.

6.2.3 RQ3: Cost-effectiveness: Precision-cost Ratios. To evaluate the cost-effectiveness of our
approach, we need to first compute the precision by comparing the average sizes of query depen-
dence sets computed by Doda and Seads. The precision for each SUA execution, as shown in the
ninth column (Precision) of Table 3, is the average ratio of the size of the dependence set for each
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Fig. 11. Comparisons (y axis) of the cost-effectiveness expressed as the ratios of the precision to the response

time of Doda and Seads per execution (x axis). The higher the ratio, the more cost-effective.

query computed by Doda to the size of that computed by Seads for the same query. For each
dependence query, we also compared the content of both dependence sets, and found that Seads’s

dependence set always subsumed the dependence set given by Doda for any of the queries involved
in our evaluation—this confirms that Seads, although sacrificing precision by adjusting analysis
configuration to achieve higher scalability and efficiency, had no loss in recall. These relative effec-
tiveness measures essentially treated the baseline results as ground truths. Thus, given the equally
100% recall of both techniques, we only considered the relative precision of Seads (with Doda
precision as constantly 100%) when computing the cost-effectiveness of both techniques as the
ratio of effectiveness to cost.

Our results show that, for the nine SUA executions for which the baseline dependence sets were
available to enable the relative precision measurement for Seads, the precision achieved by Seads
ranged from 63% to 100%, for an overall average of 82%. In the best cases, for the two smallest
SUA and simplest SUA executions (i.e., NioEcho and MultiChat), Seads did not lose any precision
relative to the baseline. The reason was mainly because the online analysis by Seads constantly in-
curred time costs lower than the user budgets even with the most precise analysis configuration for
these subjects; thus, Seads did not need to switch away from the highest-precision configuration
it started with throughout the entire online analysis. Likewise, Seads had the lowest precision of
63.28% for Zookeeper system test, most plausibly because Seads experienced the most aggressive
and frequent adjustments of its analysis configuration to maintain scalability and efficiency with
respect to the given user budgets. That is, the average (relative) precision (over the 10 queries)
that Seads achieved for an SUA execution had to do with the size and complexity of the SUA
execution, which was reflected in part in the two efficiency metrics (response time and runtime
slowdown). Indeed, the numbers in Table 3 generally revealed a connection between the precision
(the ninth column) and those efficiency metrics (the seventh and eighth columns)—the shorter av-
erage response time and smaller slowdown mostly went with higher precision, despite the absence
of an always consistent correlation. Such potential interplays between precision and costs further
necessitate the assessment of cost-effectiveness as a holistic measure.

To compute the cost-effectiveness measure for each technique, for each SUA execution, we
calculated the ratio of the average precision (over the 10 queries) to one of the two cost measures
we considered: average response time (over the 10 queries), and runtime slowdown (overall during
the entire execution across the 10 queries). Accordingly, we had two measures, each with respect
to one of the two cost measures, in our cost-effectiveness assessment and comparison between the
two techniques, shown in Figure 11 (with average response time as the cost factor) and Figure 12
(with the runtime slowdown as the cost factor), respectively. For ease of presentation with respect
to space constraints, we use abbreviations in both figures as follows (on the x axis): MC. for
MultiChat, OC. for OpenChord, V for Voldemort, Z for ZooKeeper, I. for integration test, L. for
load test, and S. for system test. In particular, to highlight the merits of our approach over the
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Fig. 12. Comparisons (y axis) of the cost-effectiveness expressed as the ratios of the precision to the runtime

slowdown of Doda and Seads per execution (x axis). The higher the ratio, the more cost-effective.

baseline, either figure only shows how Seads compared to Doda in terms of the cost-effectiveness
per SUA execution (indicated along the y axis), as the percentage of Doda’s cost-effectiveness
over the cost-effectiveness of our approach, rather than showing the individual cost-effectiveness
measure numbers of each technique separately. This is why both figures show the bars for Seads
constantly corresponding to 100%, whereas the cost-effectiveness of the baseline is shown as a
fraction of that of our approach. The rationale of doing so is to normalize the measure values,
especially ironing out the large differences in cost measures across these SUA executions. Because
Doda could not be applied to Voldemort, the corresponding cost-effectiveness measures were
zero. We do not consider storage costs as another cost factor in computing the cost-effectiveness
because they were almost negligible (only 88 MB on average and 200 MB at most), hence did not
affect much the efficiency/scalability of either technique.

In Figure 11, we can see that the cost-effectiveness (with respect to response time) of Doda was
about 44% of that of Seads on average. For individual SUA executions, Doda and Seads had very
close cost-effectiveness against the two smallest and simplest SUAs, NioEcho and MultiChat. In
RQ1 and RQ2, we observed that the efficiency and scalability advantages of Seads over the base-
line were more prominent when applied to larger and more complex systems. This comparative
trend applies here also: The cost-effectiveness merits of our approach were more substantial with
SUAs of large scale and more complex executions, compared to Doda. For instance, Doda cost-
effectiveness was around 60% of that of Seads for medium-scale SUAs like Open chord and Thrift,
while the ratio went down to less than 45% for larger systems like ZooKeeper and further down
to 30% for even the larger SUA Netty; at one extreme of this trend, the baseline cost-effectiveness
was zero for Voldemort, the most challenging SUA in our study.

Concerning the runtime slowdown as the cost factor, Figure 12 shows the cost-effectiveness con-
trasts between the two techniques in the alternative measure. Overall, the cost-effectiveness with
respect to this cost measure of Doda was only about 32% of that of Seads on average, substantially
lower than the cost-effectiveness with respect to average user-query response time as shown in
Figure 11. The reason is apparently because the efficiency and scalability advantages of Seads over
the baseline in terms of runtime slowdowns were greater than those in terms of average response
time. However, compared to the cost-effectiveness variations in relation to the underlying SUA
executions analyzed in Figure 11, the variations in the cost-effectiveness with respect to runtime
slowdown were similarly associated with the scale of the SUA executions—the cost-effectiveness
advantages of our approach were greater against larger and more complex SUAs.

Put together, Seads was substantially more cost-effective than Doda, regardless of the cost
factor concerned with. This implies that, although looking at the precision losses alone seemed
to suggest that Seads sacrificed effectiveness significantly in exchange for higher scalability and
efficiency, the precision sacrifices were well paid off by the gains in efficiency and scalability,
resulting in the ultimate merits in cost-effectiveness overall. Thus, our methodology of adjusting
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analysis configurations at runtime appeared to be a scalable and cost-effective solution to the
dynamic dependence analysis of large-scale, real-world distributed systems.

6.3 Accuracy Validation based on Ground Truth

As we discussed earlier, for the evaluation of our technique Seads versus the baseline Doda,
ground-truth dependence sets for the studied subjects and executions are unavailable, while there
are no existing tools available to compute them either. Meanwhile, thoroughly identifying all
ground truth needed with manual effort would be too expensive to be practical. Nevertheless, it is
still useful to manually construct partial ground truth to validate the accuracy of both techniques
to provide confidence about their correctness.

Methodology. Given the tedious nature of the manual process, we limited the validation scale to
10 randomly chosen sample queries per subject execution for which the method-level dependence
sets computed by Doda included no more than 30 methods. For each of the 12 subject executions,
we manually constructed the ground-truth dependence setTD for each of such queries q through
understanding the subject code and tracing the program execution paths starting at the query.
We then computed the precision and recall of Doda for each query q according to TD and the
dependence set DD produced by Doda for q. For Seads, we assessed its precision and recall for
the same query q by comparing DD against each of the dependence sets SD produced by Seads
for q at each of five querying times with random intervals during Seads’s continuous analysis.

Results. Our manual study revealed that Doda had overall average precision of 97.7% with con-
stantly 100% recall for the 10 random queries across the 12 subject executions, according to our
manual ground truth. The imprecision was mainly attributed to the interprocess dependence ap-
proximation that was based on happens-before relations between method events across processes.
For Seads, we validated that for each query q, the dependence set given by Doda was always a
subset of that given by Seads (i.e., DD-SD==∅), which suggested that Seads had the same recall
as Doda did (i.e., 100%).

We also checked dependencies reported by Seads but not by Doda (i.e., SD-DD) and found
that all of those dependencies were false positives, further supporting the 100% recall of the base-
line. Our results showed that these false positives led Seads to a lower precision than Doda—80%
on overall average with respect to the manual ground truth, or 81% with respect to the baseline
dependence sets (which is consistent with the results from our empirical evaluation in Section 6.2).

6.4 Speed of Configuration Learning

As Seads uses Q-learning to learn analysis configurations for obtaining and maintaining scal-
ability and better cost-effectiveness of the dynamic dependence analysis, its controller module
takes time to learn, hence start producing reasonably good decisions (i.e., the next configuration
to switch to). In fact, Q-Learning as an iterative learning method widely used in approximate
dynamic programming for Markov decision processes (MDPs) computes an optimal MDP policy
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Table 4. The Number of Iterations and Learning Time

(in seconds) of Q-learning in Seads

Execution #Iteration Time

NIOEcho 1 36.73
MultiChat 1 41.38
OpenChord 2 327.19
Thrift 2 316.70
xSocket 3 639.37
ZooKeeper_integration 4 1013.73
ZooKeeper_load 4 1097.26
ZooKeeper_system 4 1053.82
Netty 4 1132.98
Voldemort_integration 3 697.35
Voldemort_load 3 632.42
Voldemort_system 3 621.94
Overall Average: 3 634.24

through multiple iterations such that the averaged dynamics could be desired with convergence
properties [60]. To see how fast Seads can learn cost-effective configurations, we have collected
the numbers of Q-learning iterations and learning time before Seads started computing more cost-
effective results (i.e., when the controller started stably choosing the next configuration that led
to more cost-effective dynamic dependence computation than would the current configuration) in
our empirical evaluation (Section 6).

Table 4 shows the number of learning iterations (#Iteration) and learning time (Time) in sec-
onds for each of our 12 subject executions (Execution). As we described earlier, executions for all
of the subjects other than Zookeeper and Voldemort were driven by respective integration tests.
Generally, Seads tended to take more iterations to learn better configurations for more complex
system executions, intuitively because of the greater variations in the dynamics of these execu-
tions. Note that the learning time included the time cost of dependence computations across the
corresponding iterations. According to the efficiency results in Table 3, Seads took longer time
to compute dependencies, hence responded more slowly to dependence queries for more complex
system executions. This explains the observation here that the learning time was generally longer
as well for those system executions. On overall average, Seads needed three rounds of learning
and 634 seconds before it started achieving more cost-effective results.

6.5 Optimality of Configuration Learning

From our evaluation results, we see that although Seads has scalability and cost-effectiveness
advantages over Doda, Seads is not optimal and suffers an inability to maximally utilize the user
given time budget while having noticeable room for improvement in precision (only 81.5% on
average relative to the baseline). An immediate explanation for this inability is that the controller
in Seads did not always give the optimal (i.e., most cost-effective possible) configuration for
the dependence analysis algorithm to take, as we mentioned earlier in Section 5.5. Our further
examination suggested that a plausible underlying reason for the lack of optimality in our config-
uration learning is that currently Seads simply uses a generic Q-learning algorithm whose reward
function is not optimized for a particular subject—the algorithm is not aware of the particular
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characteristics of the subject and does not consider the different execution characteristics across
different subject systems.

Towards gaining the optimality of configuration learning in Seads in the future, we have mul-
tiple directions to pursue. One possible idea is to develop a control-theoretical method using a
feedback control mechanism to predict optimal configurations for the analysis algorithm so it can
utilize as much of the user-specified analysis time budget as possible to obtain the highest level of
precision possible when the configuration adjustment is arbitrated. Another idea is to optimize the
Q-learning algorithm used by the Seads controller to provide optimal cost-effectiveness tradeoffs
for the analysis algorithm by learning a reward function that is specific to (i.e., parameterized for)
each particular subject execution. We will also consider exploring other popular learning meth-
ods to optimize the controller underlying our dynamic dependence analysis, such as multi-step
Q-learning [60], self-adapt neural network [27], multi-modal deep learning [66], and so on.

6.6 Threats to Validity

Our empirical results are subject to various common kinds of validity threats according to Ref-
erence [82]. We describe below each major kind and discuss how we control or mitigate relevant
threats.

Internal validity. The major threat to internal validity concerns potential mistakes in the imple-
mentation of Seads, Doda, and our experimental procedure. Errors in any of these implementa-
tions would compromise the validity of our empirical results and our conclusions drawn based on
the results. However, Seads is based on Soot [53], a framework that has matured over a decade.
Many of the key components of Seads and Doda, including the code for static instrumentation,
static dependence analysis, runtime monitoring/profiling, and hybrid computation of dynamic de-
pendencies, were drawn from tools developed in previous work [14, 16, 19] which have been de-
bugged and tuned for years. To minimize the threats concerning the experimentation scripts and
newly developed components of Seads and Doda (e.g., the controller backed by the Q-learning
algorithm), we conducted careful code review and manual inspection against simple samples (e.g.,
the two smallest SUAs) and cases (e.g., queries with relatively small dependence sets) to ensure
functional correctness.

Another kind of internal validity threat is that the instrumenter of Seads may cause false neg-
atives and false positives. First, our instrumenter is static, thus it cannot instrument dynamically
loaded code, which is not available during the instrumentation phase. As a result, Seads cannot
catch entry and returned-into events of methods invoked in the dynamically loaded code, which
may lead to false negatives in its profiling step, hence later in its dynamic dependence computation.
Dynamic instrumentation would overcome this threat, but it would cause a portability problem,
because it typically needs to customize underlying platforms such as runtime systems or operating
systems. Second, the message-passing API list used by the instrumenter might be incomplete, thus
Seads may miss some message-passing events at runtime that are necessary for timing synchro-
nization across distributed processes. This incompleteness could lead to incorrect partial ordering
of method execution events, hence false positives and/or false negatives in the dynamic depen-
dence analysis in Seads. To mitigate this implementation-wise threat, Seads currently includes
the most commonly used kinds of message-passing APIs by default. Users can readily supplement
the default list with other such APIs used in their systems under Seads’s analysis.

External validity. One threat to the external validity of our results lies in the representativeness
of the subject SUAs and their executions used in our evaluation study. The SUAs we chose may
not well represent all real-world distributed systems that Seads could apply to, and the executions
considered for each chosen SUA may not have exercised all the typical behaviors of that SUA
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(or may not reflect its representative operational profiles). If the differences between our sample
SUA executions used and representative distributed system executions are significant, users of
Seads may experience its performance and merits differently from what we reported here. We
have attempted to reduce these threats by considering subject SUAs of varying size, architecture,
and application domains, as well as execution scenarios of varied kinds. Nevertheless, to minimize
such threats, we would need to use real operational scenarios of real-world distributed systems in
their actual deployment settings.

Construct validity. The baseline chosen for the comparative evaluation is not ideal—to avoid
potential biases, we would need to use a state-of-the-art online dynamic dependence analysis tool
developed by others (rather than ourselves) that at least works with some (if not able to scale to
all) real-world distributed systems. Even more desirably, we would want to use as the baseline a
scalable and cost-effective dynamic dependence analysis tool for distributed systems, which may
achieve the scalability and cost-effectiveness (potentially at different levels from those offered by
our approach) through different methodologies from ours. Given the unavailability of such desir-
able baselines, we used Doda as an alternative. This choice may have led to biases in our evalua-
tion, since Doda was also developed by ourselves. To reduce this threat, we built Doda on top of
the state-of-the-art dynamic dependence analysis for distributed software systems while ensuring
both Doda and Seads share underlying analysis infrastructure and utilities as far as possible.

In addition, given the unavailability of actual ground-truth dependence set for each query, we
only considered relative measures to evaluate the precision and recall of Seads with respect to
the baseline’s results, which constitutes another threat to construct validity. Also, the dependence
queries chosen may not represent real queries sent by users (either human users or application
analyses/tools) in practice. A similar threat concerns the user budgets considered for each subject
SUA execution. To reduce these threats, we randomly chose the queries and sent them at ran-
dom intervals, and specified user budgets also randomly, trying to cover a variety of these inputs
to Seads in real use scenarios. Finally, we only observed continuous executions within a limited
amount of time and used a limited number of queries in the evaluation. As a result, users inter-
acting with real-world distributed systems for a much longer time with much more queries sent
at different intervals from those in our experimental setup could obtain performance results with
our techniques that are different from what we reported.

Conclusion validity. The main conclusion validity threat lies in the generalizability of our eval-
uation results and conclusions. Due to the limited number and diversity of subject SUAs and SUA
executions we considered, as well as the discussed concerns with the baseline choice and other
experimentation settings, we do not claim that our results (e.g., those supporting the substan-
tial cost-effectiveness advantages of Seads over Doda) generalize to an arbitrary real-world dis-
tributed system in all operational scenarios while in comparison to any other relevant baseline
approaches. Finally, our conclusions based on the results of the dynamic dependence analysis at
method level may not generalize to finer-grained levels (e.g., statement level), at which the analysis
would face much greater scalability and efficiency challenges.

7 DISCUSSION

In the section, we discuss additional aspects of our technical approach and empirical evaluation.

7.1 Objectives of Empirical Evaluation

Compared to the baseline approach Doda that prioritizes analysis precision with a fixated
configuration, Seads sacrifices (relaxes) analysis precision to contain the analysis cost within the
user-specified time budget. It is intuitive that the price for a less precise and accurate analysis is
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generally lower. Thus, it was well expected that Seads would be less precise and more efficient
than the baseline. Yet, we cannot simply assume and expect that the precision loss would be
always outweighed by the efficiency gains, hence the overall cost-effectiveness would be higher
than the baseline. Therefore, while the general evaluation results on the efficiency merits of
our approach are not surprising, it is still important to deeply measure the precision loss and
efficiency gains of Seads compared with Doda as done in our empirical evaluation, to explicitly
validate and quantify the cost-effectiveness and scalability advantages of our approach.

7.2 System-level Scalability Challenges

A distributed system may start with a very large number of concurrent processes in its execu-
tions. It is also likely that the number of processes in the execution of a long-running (or con-
tinuously running) system increases to be very large at runtime. In either situation, the scale of
the distributed system execution may generally cause a scalability challenge to Seads when ap-
plied against such systems. The goal of Seads is to address the scalability issue (with dynamic
dependence analysis of long/continuously running distributed systems) caused by the great over-
head of both of its static and dynamic analysis parts. Although our evaluation results indicate
that the overall cost/overhead dealt with by Seads was dominated by the cost of its static analysis
(i.e., computing the static intracomponent dependencies) part, generally the cost of its dynamic
analysis part can become substantial, too (e.g., when the system execution has a very large num-
ber of processes to start with or added in the middle of the execution). Such substantial dynamic
analysis costs would trigger Seads to adjust its analysis configurations to strive for a good cost-
effectiveness tradeoff and maintain scalability.

Meanwhile, when there are a large number of processes in the system execution, a challenge to
the underlying platform and infrastructure (e.g., computing power and network bandwidth) would
arise. If these underlying resources cannot scale to the distributed system execution itself, the
execution of Seads would certainly be impeded as well. Thus, since it works purely at application
level, Seads deals only partially with the system-level scalability issues that involve the runtime
platform and computing infrastructure of the distributed system under analysis.

7.3 Analysis on Execution Slices

While Seads aims to address scalability and cost-effectiveness balancing challenges for dynamic
dependence analysis based on long-/continuously running executions (hence long/unbounded
traces), it is also feasible and useful to adopt a dynamic analysis technique on a (relatively short)
slice of the executions (i.e., trace slice). Seads can be readily adapted to work on a trace slice, too.
However, there are two issues to be considered for such an analysis against a long-/continuously
running system. The first one is that the dependence analysis working on a trace slice may be
incomplete: Without previous runtime states (e.g., the events occurring prior to the start of the
slice) of the system being considered, the dependencies computed for the slice are not complete
with respect to the system’s entire execution up to the end of the slice. The second one is that some
dynamic dependence-based applications may produce incorrect analysis results if only a slice of
the execution is analyzed. For instance, in a dynamic taint analysis (based on dynamic dependen-
cies), when a source is executed beyond a slice while a sink that is actually reachable from the
source at runtime is executed within the slice, the dynamic information flow path from the source
to the sink (hence the sensitive data leak) would be missed. In this article, we address dynamic
dependence analysis with complete executions of continuously running systems (i.e., unbounded
traces).
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7.4 Online versus Offline Analysis

While we designed Seads as an online technique, offline dependence analysis and its applications
(e.g., impact analysis) are generally useful as well. In fact, our previous techniques (e.g., Diver,
DistIa) that compute dynamic dependencies for dynamic impact prediction are mostly offline
dynamic analysis approaches. Yet, we note that these prior techniques only address short-running
programs producing traces that are not very large, while considering the entire traces. They would
not work with long-/continuously running programs that produce infinite and voluminous traces.

For long-/continuously running programs, when we need to consider entire execution traces
(we exemplified such situations in Section 7.3), an offline analysis is generally infeasible, because
the execution traces are unbounded, hence cannot be completely serialized. However, an offline
analysis would work well when (1) the program does not run very long and whole program ex-
ecution traces are not very large, even though entire execution traces need to be analyzed, or
(2) only a part of the execution traces needs to be analyzed. For both cases, Seads would readily
accommodate as well by just considering the trace part (slice) of interest.

We also note that although we have referred to impact analysis as an example application of
the dynamic dependence analysis offered by Seads, impact analysis itself is just one of the many
possible applications based on dynamic dependencies. In this article, our focus is more generally
on dynamic dependence analysis rather than on its particular application to impact analysis. Also,
with Seads, we mainly address the situations in which entire program execution traces need to be
analyzed while these traces are unbounded.

8 RELATED WORK

There are several classes of prior work that are most related to ours: program dependence analysis,
dependence analysis for distributed systems, analysis with variable cost-effectiveness, and adaptive

software systems and techniques.

8.1 Program Dependence Analysis

Dependence analyses are used to infer dependence relationships among program entities and to
further reason about the relationships for coding, debugging, and testing software systems [50,
61]. We can compute program dependencies using static, dynamic, or hybrid approaches. A static
dependence analysis approach computes dependencies without referring to the program execu-
tions, while a dynamic dependence analysis solution utilizes the execution data of programs for
the computation [56]. Another type of analysis, called hybrid analysis, combines static and dy-
namic analysis techniques [69] to deduce dependencies. According to the nature of the analysis
result (dependencies), hybrid analysis can be regarded as a special type of dynamic analysis, as
opposed to purely dynamic analysis, since its results are dynamic: Its results only hold for partic-
ular executions utilized (as opposed to static analysis producing results that hold for all possible
executions). In the article, we focus on the hybrid approach to dynamic dependence analyses.

One example of dynamic analysis is dynamic program slicing. For instance, Korel and Laski
[48] utilized arrays and dynamic data structures to significantly reduce the slice size for a finer
localization of program fault(s). Zhang and Gupta introduced a dynamic program slicing algo-
rithm Opt based on a precise dynamic dependence graph (dyDG) representation that is rapidly
traversable [86]. Hybrid approaches have also been proposed for dependence computations. For
instance, Diver employs a static dependence analysis to significantly reduce the computation time
of the final dynamic dependence analysis [16]. Existing dependence analysis approaches mostly
focused on single-threaded systems. For example, besides Diver, TracerJd is also a dynamic
dependence analysis approach, including a static analysis phase, for single-threaded programs
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[17]. In addition, Rus and Rauchwerger proposed a hybrid dependence analysis for automatic
parallelization to achieve almost maximum parallelism with minimum runtime overhead using
an integrated compiler via seamlessly merging static and dynamic analysis techniques together
[69]. Concurrent program slicing deals with multi-threaded but mostly single-process code, as
exemplified in References [35, 37] as dynamic approaches—most existing approaches in this
domain are static [21, 35, 51, 58, 65]. However, for multi-process applications, SimEvo employs
static and dynamic analysis techniques to identify system-level concurrent dependencies [85],
thus it can also be considered a hybrid analysis approach.

Seads clearly differentiates itself from these existing dependence analysis approaches in that
it targets distributed software, which executes in multiple, distributed processes each including
single or multiple threads. Moreover, the defining distinction of Seads lies in its changing analysis
configurations on the fly, versus existing approaches commonly using a fixated analysis config-
uration. Meanwhile, Seads leverages the state-of-the-art hybrid dependence analysis approaches
(i.e., References [16, 19]) for computing intraprocess dependencies.

8.2 Dependence Analysis for Distributed Systems

Some dependence analyses have enabled numerous client applications for distributed systems,
including impact prediction [33, 62, 74] and performance optimization [46]. Yet these analysis ap-
proaches are static and limited to specialized systems (e.g., DEBS [57] and RMI-based systems)
or a customized language that relies on developer annotations [25]. As a dynamic analysis for
commonly deployed distributed systems, DistIa, including its basic and enhanced versions, can
compute dependencies both within and across processes by exploiting the partial ordering of ex-
ecuted methods. Moreover, the enhanced version of DistIa is much more cost-effective than the
basic version, because the former prunes methods that do not satisfy the message-passing seman-
tics to improve the cost-effectiveness [19]. Relative to these approaches, Seads differs clearly in
that it computes dynamic dependencies while achieving an even greater level of cost-effectiveness
than DistIa by utilizing static dependencies and statement coverage when the user budget allows.

DistTaint [29], a purely application-level dynamic information flow analyzer for common dis-
tributed programs, computes intraprocess and interprocess dependencies from globally partial-
ordered execution method events to handle implicit dependencies with high analysis precision at
a fine-grained (statement) level. DistTaint achieves practical cost-effectiveness and resolves mul-
tiple technical challenges, including applicability, portability, and scalability challenges, through a
principled, multi-phase analysis strategy [31]. The key difference between DistTaint and Seads is
that the former as an information flow analyzer is essentially a targeted dependence analysis: For
a given query, only the dependencies through which the query reaches to known targets (i.e., the
sinks) are computed. Thus, compared to Seads as a general dependence analysis, DistTaint has a
much narrower analysis scope. Moreover, like other existing dependence analyses, DistTaint uses
a fixated configuration during the entire analysis. Also, DistTaint is an offline dynamic analysis,
as opposed to the online analysis in Seads.

8.3 Analysis with Variable Cost-effectiveness

Most existing analysis approaches commonly suffer from challenges of balancing the analysis cost
and effectiveness: They are either precise but too expensive or efficient but too imprecise. To deal
with these challenges, one existing solution is to offer variable cost-effectiveness balances to sat-
isfy varying user needs. For example, the DiaPro framework provides flexible cost-effectiveness
choices for a variety of levels of cost-effectiveness tradeoffs with the best options for variable user
requirements and budgets [18]. By combining the static and dynamic data, DiaPro unifies Pi/Eas
[6], Diver [16], and three dependence-based dynamic impact analysis techniques: one using
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coverage and trace, one using aliasing and trace, and the other using all these dynamic data
(aliasing, coverage, and trace). Another example is D2Abs [15], which aims at practical scalability
and offers various levels of cost-effectiveness tradeoffs in the dynamic dependence analysis for
distributed programs. Its most precise computation of runtime dependencies has been used to mea-
sure interprocess communication (IPC) coupling in distributed systems [30]. To achieve different
cost-effectiveness tradeoffs, D2Abs provides four versions each enabling and disabling different
analysis steps. In contrast to these peer approaches, which achieve variable but a small number
of (four or less) cost-effectiveness levels via the same number of versions of an analysis with each
still utilizing a fixated analysis configuration, Seads achieves a much greater and easily extensible
number of cost-effectiveness levels in one analysis that adjusts its configurations on the fly.

8.4 Adaptive Software Systems and Techniques

Self-adaptive systems automatically adapt themselves to continuously meet requirements in dy-
namic, uncertain, and unpredictable environments [71]. Self-adaptive systems also monitor rele-
vant changes in the environments and adapt themselves to ensure adaptations [28]. For example,
Bodden [13] developed a dedicated domain-specific language and intermediate representations
to express self-adaptive static analyses. These representations allow for an automatic adaptation
of the code of the analysis, both ahead-of-time (through static analysis) and just-in-time during
the execution of the analysis. In addition, Heo et al. proposed a new technique for developing a
resource-aware program analysis [39], which monitors the resource usage of the analysis and ad-
justs the analysis’s behaviors by coarsening program abstraction usually using less memory and
time to meet the constraint on the usage of physical resources (e.g., memory). The analysis ad-
justs itself many times under the direction of a controller to decide how much the analysis should
coarsen the abstraction, with the varying computation of the analysis. Seads shares a similar goal
with these adaptive approaches, but it adjusts itself (in its configuration) concerning the analy-
sis cost and user budget both in terms of time as opposed to hardware resources (e.g., memory).
Also, Seads is a dynamic analysis versus the peer approaches being static. However, some control-
theoretical approaches have been designed for self-adaptation, such as References [34, 49, 59], and
[81]. These approaches generate and update explicit architectural models of themselves for self-
adaptation [71].

As a computational intelligence subfield, machine learning has been widely applied to provide
self-adaptation capabilities. As a subfield of machine learning, RL refers to a set of trial-and-error
methods by which an agent could learn how to make good decisions through interactions with
an environment. The adaptive nature of RL makes it very appropriate for self-adaptation [9].
Cardellini et al. presented an Elastic and Distributed data stream processing Framework (EDF)
to autonomously control elastic data stream processing applications. EDF elastically self-adapts
at runtime to prevent resource wastage and match the workload. In EDF, several distributed self-
adaptation policies were designed, including a model-free RL (Q-learning) solution and a model-
based RL [52] solution. The framework utilizes different levels of available knowledge about system
dynamics, where distributed agents learn the most valuable reconfiguration actions [20].

In addition, Zhao et al. proposed a framework for self-adaptation through combining an of-
fline learning phase to create adaptation rules for goal settings and an online adaptation phase
to make adaptation decisions using the generated rules. At these two phases, there are two key
self-adaptation capabilities of the framework: (1) at the offline phase, the framework automati-
cally learns adaptation rules from different goal settings; (2) at the online phase, the framework
automatically evolves adaptation rules from the environment and user goals [87]. Wan et al. pre-
sented another self-adaptation framework to handle the complexities of software changes using
a rule-based RL self-adaptation planning method [78]. Also, Hrabia et al. presented an approach
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that integrates RL into a hybrid decision-making and planning framework for online learning from
beneficial behaviors’ experiences of robots depending on the environment. In the framework, RL
is used to improve self-adaptation and to deal with dynamically changed target conditions [42].

For managing multiple containers deployed across multiple host nodes (machines), Rossi et al.
developed Elastic Docker Swarm (EDS) extending a container management tool Docker Swarm

with self-adaptation capabilities. EDS is based on (model-based) RL to adapt the deployment of
container-based applications at runtime in a decentralized manner. For the sake of comparison, the
authors also designed approaches based on Q-learning and Dyna-Q [73] algorithms [68]. Fabiana
Rossi [67] also proposed decentralized policies based on RL to adapt the application deployment,
in terms of container migrations and elasticity. As a first step, the author designed and evaluated
Q-learning, Dyna-Q, and model-based RL solutions to exploit system dynamics.

In sum, these prior approaches generally focus on bringing self-adaptation capabilities to vari-
ous kinds of software applications through RL, adapting the behaviors of the software itself to the
runtime environments and/or system-level resources. In comparison, Seads also leverages the RL
methodology to achieve adaptation capabilities, but it aims to adapt a foundational program analy-
sis of software applications (as opposed to adapting the software itself) to better cost-effectiveness
tradeoffs while targeting continuously running distributed software in particular.

9 CONCLUSION AND FUTURE WORK

We have presented Seads, a distributed, online, scalable, and cost-effective dynamic dependence
analysis framework for common continuously running distributed systems with concurrent and
decoupled processes. Seads itself is distributed, with nodes (each analyzing one of the distributed
processes of the SUA) to compute dependencies in parallel using the SUA’s distributed computing
resources. Seads is online to avoid disk I/O and storage costs of dynamic data tracing. To achieve
practical scalability and cost-effectiveness, Seads automatically and continually adjusts its analysis
configurations during the SUA execution, according to previous configurations, corresponding
costs, and the user-defined budget, using a reinforcement learning (Q-learning) strategy.

Our evaluation targeted eight real-world Java distributed systems with continuous executions.
The results revealed that Seads offers a scalable, cost-effective, online, and continuous dynamic
dependence querying service, with practical runtime overheads (99% slowdown), acceptable re-
sponse time (65 seconds), and almost-negligible storage costs (only 88 MB) in an average case. We
also demonstrated that Seads has scalability and cost-effectiveness advantages over our baseline,
the online version of a state-of-the-art dynamic dependence analysis for distributed program but
using a fixed (highest-precision) analysis configuration: (1) Seads was 3× faster than the baseline
to respond to the user (65 seconds vs. 197 seconds); (2) Seads was 3.3× as efficient as the baseline
in terms of the runtime slowdown caused by the online analysis; (3) Seads was more cost-effective
than the baseline that only attained 44% and 32% of Seads’s cost-effectiveness with respect to av-
erage response time and runtime slowdown, respectively; and (4) Seads scaled to enterprise-scale
SUAs, such as Voldemort, while the baseline could not.

Through Seads, we demonstrated a novel methodology for achieving a scalable and cost-
effective online dynamic dependence analysis, as a fundamental dynamic analysis that has numer-
ous applications in various domains (e.g., debugging, testing, security defending, and performance-
tuning distributed systems). Thus, one immediate next step is to develop practical client analyses
and tools for these application problems for real-world, enterprise-scale distributed systems. An-
other future direction is to develop an optimal self-adaptive dynamic dependence analysis frame-
work that provides optimal cost-effectiveness tradeoffs at arbitrary querying time.
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