POSTER: Detection of Information Leaks via Reflection in
Android Apps

Jyoti Gajrani
MNIT, Jaipur, India
2014rcp9542@mnit.ac.in

Li Li
SnT, University of
Luxembourg, Luxembourg

Vijay Laxmi
MNIT, Jaipur, India
vlaxmi@mnit.ac.in

li.li@uni.lu

Meenakshi Tripathi
MNIT, Jaipur, India
mtripathi.cse@mnit.ac.in

ABSTRACT

Reflection is a language feature which allows to analyze and
transform the behavior of classes at the runtime. Reflec-
tion is used for software debugging and testing. Malware
authors can leverage reflection to subvert the malware de-
tection by static analyzers. Reflection initializes the class,
invokes any method of class, or accesses any field of class.
But, instead of utilizing usual programming language syn-
tax, reflection passes classes/methods etc. as parameters to
reflective APIs. As a consequence, these parameters can be
constructed dynamically or can be encrypted by malware.
These cannot be detected by state-of-the-art static tools.
We propose EspyDroid, a system that combines dynamic
analysis with code instrumentation for a more precise and
automated detection of malware employing reflection. We
evaluate EspyDroid on 28 benchmark apps employing major
reflection categories. Our technique show improved results
over FlowDroid via detection of additional undetected flows.
These flows have potential to leak sensitive and private in-
formation of the users, through various sinks.

Keywords

Dynamic Analysis; Instrumentation; Malware; Reflection;
Android

1. MOTIVATION FOR WORK

Faruki et al. identified reflection as one of the major
stealth technique used by Android malware to evade static
analysis techniques [6].

Through an analysis spanned across four years, Andru-
bis [9] reported that reflection is employed by 57.08% of
Android malware samples.

Highly advance malware families like OBAD, Fakelnstallar

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS ’17 April 02-06, 2017, Abu Dhabi, United Arab Emirates
(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4944-4/17/04.

DOL: http://dx.doi.org/10.1145/3052973.3055162

M.S. Gaur
MNIT, Jaipur, India
gaurms@mnit.ac.in

911

Mauro Conti
University of Padua, Italy
conti@math.unipd.it

etc. make use of Java Reflection APIs and nested meth-
ods.

Moreover, Android provides Inter-Component Communic-
ation (ICC) feature for communication among components
of application. Intent is a message passing object to request
an action from a component (from same or different app) to
facilitate ICC. Unfortunately, malware authors are misusing
the feature to distribute the leaks over multiple components
of given apps [10]. Further, not only classes or methods can
be called through reflection but Intents also. Detection and
analysis of these malware require ICC supported analysis
approach.

1 String cls="android.Telephony.
TelephonyManager";

2 String reverse new StringBuffer ("
dIeciveDteg").reverse().toString();

3 Class c = Class.forName(cls);

4 tm = (TelephonyManager) this.getSystemService
(Context .TELEPHONY_SERVICE) ;
5 Method method = c.getMethod(reverse, new Class<?>[0]);

String id=(String) method.invoke(tm) ;

Intent i=new Intent(this, Activity2.class);
i.putExtra("imei", id);

startActivity (i);

NeRo b Bie

MainActivity
10 String value= getIntent ().getExtras().
getString ("imei");
SmsManager sm SmsManager.getDefault () ;
sm.sendTextMessage (phoneNo ,null,value ,null,
null);

11
12

Activity2

Listing 1: Reflective APIs (Highlighted) which can be
exploited for information leaks

Listing 1 shows the code of Onlytelephony_reverse app
from the well-known DroidBench benchmark [2]. This app
uses reflective APIs (lines highlighted) and ICC (lines 7-
9) to leak the sensitive data, e.g., IMEI here. The class
android.Telephony.TelephonyManager define the method
getDeviceId(). MainActivity instantiates the object of
this class using Class.forName API (Line 3). The example
not only uses reflection but also constructs method-name dy-
namically by using the reverse() function (Line 2). Then,
it passes this dynamically constructed method-name to get-
Method() API (Line 5) which creates the method object.

Finally, it invokes the specified method using reflection API
invoke () (Line 6). Furthermore, MainActivity passes the
IMEI value to Activity2 using Android Intent (lines 7-9),
and Activity2 performs the leakage of IMEI using SMS.
The method reverse() here is just a motivating example,
where in other cases more complicated methods could be
applied such as encryption, substring, concatenation etc. to
subvert static analysis.

We analyzed this application on FlowDroid [5], IccTA,
AmanDroid, and DroidSafe static analysis tools developed
for detection of privacy leaks. None of these tools were suc-
cessful in identifying the leak. Also, we analyze the applica-
tion using DroidRA [8] which is reflection-aware static ana-
lysis approach. However, DroidRA also fails to identify the
leak here as the app constructs the method name at runtime.
The dynamic construction of parameters of reflective APIs
is very trivial and can be done using various ways like con-
catenation, encryption, and substring generation.

2. CONTRIBUTIONS

Our proposed technique is a work in progress with the
following contributions:

e We propose EspyDroid, a system that combines static and
dynamic analysis to unfold the hidden leaks performed by
the app using reflection. Runtime monitoring makes Espy-
Droid capable of resolving reflection when the arguments
of reflective APIs are encrypted, obfuscated or run-time
dependent.

e EspyDroid is able to detect leaks distributed over multiple
components through Intents. Also, when Intents them-
selves are called through reflection.

e We tested EspyDroid on widely used DroidBench bench-
mark and similar work DroidRA.

3. PROPOSED SOLUTION: EspyDroid

The aim of EspyDroid is to unravel leaks in the presence
of reflection directly on app bytecode to obliviate the need
of source code for this analysis.

3.1 Overall Solution

The overall architecture of EspyDroid is as shown in Fig-
ure 1. The complete system of EspyDroid consists of three
main modules: Dynamic Analyzer, Log Tracer, Instru-
mentation Agent.

The Dynamic Analyzer module uses APIMonitor [1] which
repackages the app to add monitoring code for the specified
reflection APIs and then executes the app and collects logs.
In this way, it assists in resolving the reflective APIs and
associated parameters (Step 1). Log Tracer traces the logs
and prepares processed input (Step 2) for Instrumentation
Agent that generates equivalent non-reflective statement(s)
for each reflective statement and instruments at appropriate
point (Step 3). The Instrumentation Agent is developed
in Java and performs instrumentation in Jimple, the inter-
mediate code representation of Soot framework [4]. The
aim of instrumentation is to prepare enhanced intermediate
code (thus an enhanced app) with resolved reflective calls
so as to enable precise and accurate taint propagation. For
automatic Ul exploration of app, Intelligent UI exploration
module from [7] is used which is black-box testing approach
extended using Robotium framework [3].

912

(1) (2)

Dynamic

Log Tracer
Analyzer

Logs

App having Reflection
APIs for hiding leaks

(3)
Jimple

Code Instrumentation

Soot Agent@dJimple

v

Instrumented App
(Reflection resolved)

Figure 1: EspyDroid System Architecture

3.2 Illustrative Example

Figure 2 shows the Jimple code snippet of MainActiv-
ity corresponding to motivating example of Listing 1. The
corresponding instrumented code with non-reflective state-
ments is also shown. The three reflective APIs (highlighted),
and the corresponding instrumented statements are shown
in Figure 2. For the example, two non-reflective statements
are constructed. One instrumentation is corresponding to
reflectively instantiating class (Line 7) which is useful for
inferring the method name and other instrumentation is
corresponding to reflectively invoking the method (Lines 10
and 14). The illustrative example explains the approach of
Instrumentation Agent with one of the representative app.
Some of the representative samples access Intents class and
its methods also through reflective APIs. The way Instru-
mentation Agent is designed handles the instrumentation of
Intent-based reflections similarly.

4. EXPERIMENTS

We use 17 DroidBench, 9 DroidRA, two modified versions
of DroidRA samples as representative dataset. The major
usages of reflection in the representative dataset are:

e Reflective class instantiations to hide the class names that
perform sensitive leaks.

e Constructor-based reflective class instantiations to hide
the class names that perform sensitive leaks.

e Reflective invocations of methods to hide the malicious
methods invoked.

e Field-based reflective accesses to set the class fields with
the malicious information to be leaked.

e All above cases with leaks in single component or distrib-
uted over multiple components.

e Source and Sink methods accessed by reflective instan-
tiation of their classes to hide the classes and methods
accessing sensitive information or leaking it.

e Intent-based reflective access to hide the communication
between two components.

e Encrypted/Obfuscated parameters of reflective APIs to
fail even reflection aware static analysis based techniques.

EspyDroid is able to identify a number of distinct leakage

1 //ereate a local id of String type and assign

class name

2 $r0.<com. example .onlytelephony.Mainfctivity:
java.lang.String id> = "android.Telephony
.TelephonyManager";

3 $r8 = $r0.<com.example.onlytelephony.
Mainfictivity: java.lang.String id>; //
assign id to local §$r8

4.

il

fi //instantiate class in $r9

T%r% = staticinveoke <java.lang.Class: java,

lang.Class forName(java.lang.String)>($r8
H

8.

] ffaﬂsiqn method nhﬁect in %rid

L0 $r1i3=virtualinveke $r9.<java.lang.Class: java

.lang.reflect.Method getMethod (java.lang
.String, java.lang.Class[]} >($r7, $ri2);

11

12 .

13 //invoke the method whose object is in $ri3d.

14 $ri0=virtualinvoke $ri3.<java.lang.reflect.
Method: java.lang.Object invoke (java.
lang.Object, java.lang.Object [])>($ril,
$ris);

15°

16 // the value returned by method call is
stored in $r7

17 $r7 = (java.lang.String) $r10;

instrumented with

instrumented with

1 //create a local id of String type and assign
class name

2 $r0.<com.example.onlytelephony . MainActivity:
java.lang.String id> = "android.Telephony
.TelephonyManager";

38%r8 = §r0.<com.example.onlytelephony.
MainActivity: java.lang.String id>; //
assign id to local $r8

o

//instantiate class in $r9

$r9 = staticinvoke <java.lang.Class: java.
lang.Class forName(java.lang.String)>($r8
)i

\B $r9 = new android.telephony.TelephonyManager

9

10 //assign method object in $ri3

11 $r13=virtualinveke $r9.<java.lang.Class: java
.lang.reflect.Method getMethod (java.lang
.String, java.lang.Class[]) >($r7, $r12);

//invoke the method whose object is in $ri3.
$ri0=virtualinvoke $ri13.<java.lang.reflect.
Method: java.lang.Object invoke (java.
lang.0bject, java.lang.Object[])>($r1l,

$ris);

12 .
13 .
14
15

16 .

IT // the value returned by method call is
stored in $r7

8 $r7 = (java.lang.String) $ri0;

19 $r7=virtualinvoke $r9.<android.telephony.
TelephonyManager: java.lang.String
getDeviceld () >()

Figure 2: Jimple code of Listing 1, and the instrumented Jimple Code

paths which are not captured by FlowDroid alone. The
results show a large improvement in identification of leak-
ages and hence, lead to reduction of false negatives. In the
original representative dataset, FlowDroid could identify 19
leakage paths while the same tool could identify 47 leakage
paths in the instrumented apps when used in conjunction
with EspyDroid. Not only the leakage paths, but the number
of identified sources and sinks is also improved. FlowDroid
could identify 143 sources and sinks in original dataset while
FlowDroid could identify 173 sources and sinks on instru-
mented dataset. The results demonstrate that the precision
of static analysis tools get improved on taking instrumented
apps as input instead of original reflection-employed apps.

S. CONCLUSIONS

We propose EspyDroid, a reflection aware technique which
is resilient against encryption, obfuscation or run-time de-
pendency of reflection APIs parameters. The results on
small representative dataset demonstrate that static analyz-
ers results in large false negatives in the presence of reflec-
tion. To improve upon these missed leaks, EspyDroid pro-
poses an hybrid approach to improve false negatives. Espy-
Droid is a modular work in progres which shall be expanded
for handling more advanced cases of reflection.

6. ACKNOWLEDGMENTS

This work is partially supported by Security Analysis Fra-
mework for Android Platform (SAFAL, Grant 1000109932)
by Department of Electronics and Information Technology,
Government of India. The work is also partially suppor-
ted by DST-CNRS project IFC/DST-CNRS/2015-01/332 at
MNIT Jaipur.

913

7. REFERENCES

[1] APIMonitor. https://code.google.com/archive/p/
droidbox/wikis/ APIMonitor.wiki.

[2] DroidBench. https://github.com/
secure-software-engineering /DroidBench/tree/develop.

[3] Robotium.
https://github.com/RobotiumTech/robotium.

[4] The soot framework for java program analysis: a
retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

[5] S. Arzt et al. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps. ACM SIGPLAN Notices, 2014.

[6] P. Faruki et al. Android security: a survey of issues,
malware penetration, and defenses. IEEE
Communications Surveys & Tutorials, 17(2), 2015.

[7] J. Gajrani et al. spectra: a precise framework for
analyzing cryptographic vulnerabilities in android
apps. In to be published in 2017 14th IEEE Annual
Consumer Communications & Networking Conference
(CCNC). IEEE, 2017.

[8] L. Li et al. Droidra: Taming reflection to support
whole-program analysis of android apps. In
Proceedings of the 25th International Symposium on
Software Testing and Analysis. ACM, 2016.

[9] M. Lindorfer et al. Andrubis - a tool for analyzing
unknown android applications. 2014.

[10] D. Octeau et al. Effective inter-component

communication mapping in android: An essential step
towards holistic security analysis. In Presented as part
of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013.

