
1

Understanding the Evolution of Android App
Vulnerabilities

Jun Gao∗, Li Li†, Pingfan Kong∗, Tegawendé F. Bissyandé∗, Jacques Klein∗
∗University of Luxembourg, Luxembourg

†Monash University, Australia
{jun.gao, pingfan.kong, tegawende.bissyande, jacques.klein}@uni.lu

li.li@monash.edu

F

Abstract—The Android ecosystem today is a growing universe of a few
billion devices, hundreds of millions of users and millions of applications
targeting a wide range of activities where sensitive information is col-
lected and processed. Security of communication and privacy of data
are thus of utmost importance in application development. Yet, regu-
larly, there are reports of successful attacks targeting Android users.
While some of those attacks exploit vulnerabilities in the Android OS,
others directly concern application-level code written by a large pool
of developers with varying experience. Recently, a number of studies
have investigated this phenomenon, focusing however only on a specific
vulnerability type appearing in apps, and based on only a snapshot
of the situation at a given time. Thus, the community is still lacking
comprehensive studies exploring how vulnerabilities have evolved over
time, and how they evolve in a single app across developer updates.
Our work fills this gap by leveraging a data stream of 5 million app
packages to re-construct versioned lineages of Android apps and finally
obtained 28,564 app lineages (i.e., successive releases of the same
Android apps) with more than 10 app versions each, corresponding to a
total of 465,037 apks. Based on these app lineages, we apply state-
of-the-art vulnerability-finding tools and investigate systematically the
reports produced by each tool. In particular, we study which types of
vulnerabilities are found, how they are introduced in the app code, where
they are located, and whether they foreshadow malware. We provide
insights based on the quantitative data as reported by the tools, but
we further discuss the potential false positives. Our findings and study
artifacts constitute a tangible knowledge to the community. It could be
leveraged by developers to focus verification tasks, and by researchers
to drive vulnerability discovery and repair research efforts.

1 INTRODUCTION

Mobile software has been overtaking traditional desktop
software to support citizens of our digital era in an ever-
increasing number of activities, including for leisure, in-
ternet communication or commerce. In this ecosystem, the
most popular and widely deployed platform is undoubtedly
Android, powering more than 2 billion monthly active
users, and contributing to over 3 million mobile applica-
tions, hereinafter referred to as apps, in online software
stores [1]. Yet from a security standpoint, the Android stack

This work is supported by the Luxembourg National Research Fund (FNR)
through grant PRIDE15/10621687/SPsquared and project CHARACTERIZE
C17/IS/1169386.

has been pointed out as being flawed in several studies:
among various issues, its permission model has been ex-
tensively criticized for increasing the attack surface [2],
[3], [4]; the complexity of its message passing system has
led to various vulnerabilities in third-party apps allowing
for capability leaks [5] or component hijacking attacks [6];
furthermore, the lack of visible indicators1 for (in)secure
connections between apps and the internet is exposing user
communication to Man-In-The-Middle (MITM) attacks [7].

Vulnerabilities of mobile apps, in general, and of An-
droid apps, in particular, have been studied from various
perspectives in the literature. Security researchers have in-
deed provided comprehensive analyses [8], [9], [10], [11],
[12] of specific vulnerability types, establishing how they
could be exploited and to what extent they are spread in
markets at the time of the study. The community has also
contributed to improve the security of the Android ecosys-
tem by developing security vulnerability finding tools [13],
[14], [15], [16] and by proposing improvements to current se-
curity models [17], [18], [19], [20]. Although advanced tech-
niques have been employed by malicious developers such
as packer and obfuscation, countermeasures such as [21],
[22], [23] have also been proposed. Unfortunately, whether
these efforts have actually impacted the overall security
of Android apps, remains an unanswered question. Along
the same line of questions, little attention has been paid to
the evolution of vulnerabilities in the Android ecosystem:
which vulnerabilities developers have progressively learned
to avoid? have there been trends in the vulnerability land-
scape? Answering these questions could allow the com-
munity to focus its efforts to build tools that are actually
relevant for developers and market maintainers to make the
mobile market safer for users.

Investigating the evolution of vulnerabilities in Android
apps is however challenging. In the quasi-totality of apps
available in the marketplace, the history of development
is a fleeing data stream: at a given time, only a single
version of the app is available in the market; when the
next updated version is uploaded, the past version is lost. A

1. e.g., padlock and HTTPS in url input field

2

few works [24], [25], [26] involving evolution studies have
proposed to “watch” a small number of apps for a period
of time to collect history versions. However, the insight
observed by such studies may not be representative of that
of the whole Android ecosystem.

This paper. In this work, we set to perform a large
scale investigation on how vulnerabilities evolve in Android
apps. We fully rely on static vulnerability detection tools and
report their results on consecutive versions of Android apps.
We refer the reader to the discussion section on false positive
detections by the state-of-the-art tools that were used. Our
contributions are as follows:
• We carefully proceed to reconstruct the version lineages

of Android apps at an unprecedented scale, based on a
dataset of over 5 million apps collected from a continu-
ous crawling of Android markets (including the official
Google Play). Since market scraping opportunistically fol-
lows links in online store webpages, no explicit identifier
could be maintained to track app versions. Therefore, we
rely on heuristics to conservatively link and order app
versions to retrieve lineages, leading to the selection of
28,564 app lineages containing each at least 10 versions
of a given app. Although this contribution serves the
purpose of our study, it is a valuable artefact for diverse
research fields in our community, notably software quality
and its sub-fields of testing, repair and evolution studies.

• We apply state-of-the-art static vulnerability finding tools
on all app versions and record the alerts raised as well as
their locations. We investigate specifically 10 vulnerability
types associated to 4 different categories related to com-
mon security features (e.g., SSL), its sandbox mechanism
(e.g., Permission issues), code injection (e.g., WebView
RCE vulnerability) as well as its inter-app message pass-
ing (e.g., Intent spoofing). Correlating the analysis results
for consecutive app pairs in lineages, we extract a compre-
hensive dataset of reported vulnerable pieces of code in
real-world apps, and, whenever available, the subset of
changes that were applied to fix the vulnerabilities.

• Finally, we perform several empirical analyses to (1)
highlight statistical trends on the temporal evolutions of
vulnerabilities in Android apps, (2) capture the common
locations (e.g., developer vs library code) of vulnerable
code in apps, (3) comprehend the vehicle (e.g., code
change, new files, etc.) through which vulnerabilities are
introduced in mobile apps, (4) investigate via correlation
analysis whether vulnerabilities foreshadow malware in
the Android ecosystem.

And the main findings are:
• Most vulnerabilities will survive at least 3 updates.
• Some third-party libraries are major contributors to most

vulnerabilities detected by static tools.
• Vulnerability reintroduction occurs for all kinds of vulner-

abilities with Encryption-related vulnerabilities being the
mostly reintroduced type in this study.

• Some vulnerabilities reported by detection tools may fore-
shadow malware.

Noticeably, this is the largest scale Android vulnerability
study so far. Meanwhile, we novelly analyze vulnerabilities
from the aspect of app lineages and certain patterns (e.g.,
vulnerability reintroduction) are firstly spotted in this study.

The artifacts of our study, including the constructed app
lineages as well as the harvested vulnerability detection tool
reports, are made publicly available to the community in the
following anonymous repository:

https://avedroid.github.io

The remainder of this paper is organized as follows:
Section 2 describes the experimental setup, including the
construction of app lineages, an introduction of the vulnera-
bility finding tools, and the research questions. Section 3 un-
folds the empirical analyses. Section 4.2 enumerates threats
to validity while Section 4.1 discusses some promising fu-
ture works. Section 5 discusses related work and Section 6
concludes this work.

2 STUDY DATA & DESIGN

In this section, we first define and clarify some terms used
in the paper. Second, we provide some background infor-
mation on the scale of the app dataset that we adopted,
as well as on the security vulnerability detection tools
that we leveraged in Section 2.2. Third, we describe the
methodology developed in this work to re-construct app
lineages, which are required to perform the evolution study
(cf. Section 2.3). Finally, we outline the research questions as
well as the motivations behind them (cf. Section 2.4).

2.1 Terminology

An apk represents a released package of an app. All apks
in our dataset are uniquely identified based on their hash.
App version is used in our work to refer to a specific apk
released in the course of development of an app and the nth
apk of an app is denoted as apkn. In this paper, we use both
terms (apk and version) interchangeably.

An app lineage is defined as the consecutive series of its
versions that is: L = {apk1, apk2, . . . , apkn}. In this work,
a lineage may include only a subset of the apks that the
app developers have released since our dataset, although
massive, is not exhaustive2.

A vulnerability location l is specified by the class and
method in which the vulnerability is spotted in an apk by a
vulnerability detection tool.

Vulnerability Reintroduction is to check whether fixed
vulnerabilities reappear in app lineages. For a certain type
of vulnerability v, we denote that a vulnerability v is found
at location l as vl. if ∃i, j, k|1 ≤ i < j < k ≤ n, where vl
is found in apki and apkk, but not in apkj . vl is said to be
reintroduced at location l. Moreover, if v is found in apki
and apkk but not in apkj , then we say vulnerability type v
is reintroduced.

2.2 Datasets and Tools

Our investigation relies on the AndroZoo repository [27],
[28] which currently provides the largest publicly available
dataset of Android apps. For harvesting vulnerability issues,
we resort to state-of-the-art vulnerability detection tools
from academia and the security industry.

2. Therefore, for a certain app lineage, there could be missing versions
here and there.

3

2.2.1 App Dataset
AndroZoo currently hosts a dataset of over 5.5 millions
distinct app packages (apks) collected from 14 representa-
tive markets (including the official Google Play store) and
repositories (including the F-Droid open-source repository).
According to the description of its crawlers [27], apks are
continuously collected, opportunistically when they become
visible to crawlers, to keep up with the evolution of apps
in the Android ecosystem. This stream of apks is then
immediately accessible to the research community via a
download API.

60
215

555
741

1583

785

1273

20
10

20
11

20
12

20
13

20
14

20
15

20
16

T
ho

us
an

ds
 a

pk
s

Fig. 1: APK Packaging Date

Fig. 2: Dalvik Executable Size.

As illustrated in Figure 1, AndroZoo has collected apps
which were packaged going back to 20103. As reported by
AndroZoo providers (cf. [27, p. 3]), the dataset does not
represent an exact view of the apps ecosystem throughout
time given that crawling was often challenged by vari-
ous limitations including recurrent changes in store web
page structures that require crawlers to be regularly re-
engineered, as well as occasional fails due to lack of storage
space. Nevertheless, AndroZoo includes a diversity of apps:
the barplot in Figure 2 illustrates this in terms of app size
distribution4.

2.2.2 Vulnerability Scanning
Vulnerabilities, also known as security-sensitive bugs [29],
could be statically detected based on rules modeling vul-
nerable code patterns. They are typically diverse in the
components that are involved, the attack vector that is
required for exploitation, etc. In this work, we focus on
selecting common vulnerabilities with a severity level that

3. We use the Dalvik executable code compilation timestamp as the
packaging date.

4. We focus on the size of the actual executable code, since a given
apk may include resource files such as images which may bias a global
apk size metric.

justifies that they are highlighted in security reports and
in previous software security studies. Before enumerating
the vulnerabilities considered in our work, we describe
the vulnerability detection tools (detection tools for short
hereafter) that we rely upon to statically scan Android apps.

We stand on three state-of-the-art, open source and ac-
tively used detection tools: FlowDroid, AndroBugs, and IC3.
• FlowDroid [13] – In the literature on Android, FlowDroid

has imposed itself as a highly reputable framework for
static taint analysis. It has been used in several works [14],
[30], [31] for tracking sensitive data flows which can be as-
sociated with private data leaks5. The tool is still actively
maintained [32]. Moreover, since the original version of
FlowDroid can only analyze intra-component data flows.
In order to further consider the inter-component data
flows, in this work, we used an ICCTA [14] enhanced
version of FlowDroid.

• AndroBugs [33] was first presented at the BlackHat
security conference, after which the tool was open
sourced [34]. This static detection tool was successfully
used to find vulnerabilities and other critical security
issues in Android apps developed by several big play-
ers [35]: it is notably credited in the security hall of fame
of companies such as Facebook, eBay, Twitter, etc.

• IC3 [15] is a state-of-the-art static analyzer focused on
resolving the target values in intent message objects used
for inter-component communication. The tool, which is
maintained at Penn State University, can be used to
track unauthorized Intent reception [8], Intent spoofing
attacks [18], etc.

Table 1 summarizes the vulnerability checks that we
focus on, in accordance with the capabilities of selected
detection tools. Overall, we consider 10 vulnerability types.
For AndroBugs, not like other detection tools, it reports on
dozens of issues. To focus on those vulnerabilities having
a high level of criticality, we only considered the issues
which are marked as critical by AndroBugs. Furthermore,
several critical issues are also discarded, such as cases where
exploitation scenario was not clearly defined (e.g., checking
for SQLiteDatabase transaction deprecated) and a few other
issues which were not explicitly about executable code (e.g.,
relevant to Manifest information), to eliminate the share of
noise that they can bring to the study.

We now detail the different vulnerabilities and explicate
their potential exploitation scenarios. Due to space con-
straints, we provide actual vulnerable code examples for
only a few cases. For other cases, we provide references
to the interested reader. Since all apps are collected from
markets without source code, we use Soot [43], reverse en-
gineering apps to obtain their code. So the code snippets in
the following part are Jimple code, the default intermediate
representation of Soot for representing decompiled dex code
of real apps.

2.2.2.1 SSL Security: Vulnerabilities related to SSL
are a common concern in all modern software accessing the

5. We remind the readers that FlowDroid is mainly designed for
detecting sensitive data flows, which may not necessarily be privacy
leaks (e.g., it can be intended behaviours). Nonetheless, since such
sensitive data flows indeed send private data outside the device, and
it is hard to know how these private data will be used, we consider in
this work such sensitive data flows as privacy leaks.

4

TABLE 1: List of Considered Vulnerabilities.

Type Vulnerability checking description Detection Tool
Security features

SSL Security[36]

SSL Connection AndroBugs
SSL Certificate Verification AndroBugs
SSL Implementation (Hostname Verifier of ALLOW ALL HOSTNAME VERIFIER) AndroBugs
SSL Implementation (Verifying Host Name in Custom Classes) AndroBugs
SSL Implementation (WebViewClient for WebView) AndroBugs
SSL Implementation (Insecure component) AndroBugs

Encryption[37] Base64 String Encryption AndroBugs
KeyStore[38] KeyStore Protection AndroBugs

Permissions, privileges, sandbox, access-control
Permission[38] App Sandbox Permission AndroBugs
IntentFilter[3] Unauthorized Intent Reception IC3

Injection flaws

Command[39] Runtime Command AndroBugs
Runtime Critical Command AndroBugs

WebView[40] WebView RCE Vulnerability AndroBugs
Fragment[41] Fragment Vulnerability AndroBugs

Data and Communication Handling
Intent[42] Intent Spoofing IC3
Leak[13] Sensitive Data Flow FlowDroid

Internet [44], [45], [46], [47], [48]. In its basic form, any access
to the Internet using the HTTP protocol without encryption
(i.e. without using https), as in the code example in Listing 1
line 4, could be subjected to man-in-the-middle (MITM)
attacks [7].
1 //SSL Connection Checking
2 private void c(Activity, Bundle, IUiListener) {
3 $r6 = new java.lang.StringBuffer;
4 specialinvoke $r6.<init>(

"http://openmobile.qq.com/api/check?page=
shareindex.html&style=9");

5 $r10 = virtualinvoke $r6.toString();
6 $z0 = staticinvoke Util.openBrowser($r1, $r10);
7 }

Listing 1: SSL Vulnerability Related to Insecure Connection.

In some cases, although the app code is using SSL, the
Certificate Verification is sloppy, still presenting vulnerabili-
ties. As the example shown in Listing 2, the app developer
implements the required X509TrustManager interface in
line 6. Nevertheless, from line 7 to 9, the 3 implemented
methods are empty, which only ensures that the app com-
piles, but creates vulnerabilities for MITM attacks.

1 //SSL Certificate Verification Checking
2 class cn.domob.android.ads.r {
3 public void <init>(android.content.Context) {
4 $r3 = new cn.domob.android.ads.r$b;
5 }}
6 class r$b implements X509TrustManager {
7 public void

checkClientTrusted(X509Certificate[],String) {}
8 public void

checkServerTrusted(X509Certificate[],String) {}
9 public X509Certificate[] getAcceptedIssuers() {return

null;}
10 }

Listing 2: SSL Vulnerability Related to Certificate
Verification.

Vulnerability detection tools further ensure that host-
names are properly verified before an SSL connection is
created. Vulnerable apps generally accept all hostnames,
e.g., by setting hostname verifier with either an SSLCon-
nectionSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER or

implementation of HostnameVerifier interface which over-
rides verify method with a single “return TRUE;” state-
ment, creating opportunities for attacks with redirection of
the destination host.

Another reported vulnerability, specific to mobile apps,
is related to the widespread use of WebViewClient. Web-
ViewClient is an event handler for developers to customize
how should a WebView react to events. For SSL connec-
tions, developer suppose to deal with SSL errors within
method onReceiveSslError() of WebViewClient. However, if a
developer chooses to ignore the errors when implementing
this method, then it introduces a vulnerability to MITM
attacks[49].

Finally, still with regards to SSL security, Listing 3
illustrates a classic vulnerability where developers bring
development test code into production. The well-named
getInsecure method in line 7 for creating unsafe sockets,
when used in a market app, offers immediate paths to
MITM attacks.
1 //E6: SSL Implementation Checking (Component)
2 class org.jshybugger.ji {
3 public void <init>(Context) {
4 $r2 = new android.net.SSLSessionCache;
5 $r1 = $r0.b;
6 specialinvoke $r2.<init>($r1);
7 $r3 = staticinvoke

SSLCertificateSocketFactory.getInsecure(5000, $r2);
8 }}

Listing 3: SSL Vulnerability Related to Insecure Component.

2.2.2.2 Command.: Android apps can be vulnerable
to a class of attacks known as Command injection where
arbitrary commands, e.g., passed via unsafe user-supplied
data to the system shell, are executed using the Runtime API.
Such vulnerabilities can appear in unsuspected scenarios:
in a recent study, Thomas et al. [39] discussed a case
where a remote attacker could use a WebView executing
dynamic HTML content driven by JavaScript to reflectively
call the Java Runtime.exec() method for executing underlying
sensitive Shell commands such as ‘id’ or even ‘rm’.

5

2.2.2.3 Permission.: The Android application sand-
box security feature isolates each app data and
code execution from other apps. However, the docu-
mentation explicitly recommends to avoid permissions
MODE_WORLD_READABLE and
MODE_WORLD_WRITEABLE for inter-process communication
files (i.e., sharing data between applications using files),
since, in this mode, Android cannot limit the access only to
the desired apps [50]. Nevertheless, the secure alternative of
implementing Content Provider may be too demanding for
developers, leading to the development of many vulnerable
apps.

2.2.2.4 WebView.: The example vulnerability de-
scribed for the Command case reflects a more generalized
security issue with WebView’s capability to render dynamic
content based on JavaScript. Until Android Jelly Bean, i.e.,
API level 17 (included), JavaScript code reflectively access
public fields of app objects. This is problematic since an
attacker may leverage this security hole to remotely ma-
nipulate the host app into running arbitrary Java code. [40]
detailedly described this kind of attacks.

2.2.2.5 KeyStore.: Android relies on the KeyStore
API to manage highly sensitive information such as cryp-
tographic keys for banking apps, certificates for virtual
private networks, or even pattern sequences or PINs used to
unlock devices. Unfortunately, a recent study has confirmed
that developers may not use the API very well, opening
doors to attacks [38]. In any case, some developers continue
to directly hard code certificate information in their app.
Others who use the KeyStore end up exposing the so-far
secured information by saving the keystore object into an
unprotected file, or by loading it into as an ordinary byte
array which can then be obtained by attackers.

2.2.2.6 Fragment.: A specific case of code injection
can be implemented in apps running earlier versions of the
Android OS: fragment injection, reported by researchers at
IBM [41], exploits the fact that any UI class (i.e., Activity
extending PreferenceActivity) can load any other arbitrary
class in a Fragment (i.e., sub-Activity). When the UI class
is exported (i.e., can be reused by other apps – for example,
a mail app may directly allow viewing a PDF attachment by
calling a reader app activity), malicious apps can break the
sandbox mechanism by accessing information pertaining to
the vulnerable apps or abuse its permissions. Roee Hey has
demonstrated6 how this vulnerability could be exploited to
attack the Android Settings app to enable an unauthorized
and effortless change of device password. Fortunately, this
vulnerability was patched starting with Android Kit Kat
(API level 19), where all apps including the concerned
activities must implement a specific behavior for properly
checking the code to be run via the isValidFragment() API.

2.2.2.7 Encryption.: It is a standard practice to
encrypt sensitive information when they are hard-coded
within app code. Unfortunately, developers often confuse
encryption with simple encoding: in both cases, the string may
appear unreadable (e.g., in base 64 representation); however
simply encoded strings can be decoded by anyone using the
standard API without the need of a key. Listing 4 illustrates
an example of vulnerable code. In line 4, where base 64

6. https://goo.gl/zQnpTq - Retrieved August 17, 2017

encoded information is hardcoded in the program which
the developer believes it is safe as it is decoded on-the-fly at
runtime, is actually accessible to any attacker.

1 //Base64 String Encryption
2 public static byte[] b(byte[]) {
3 byte[] $r0, $r1;
4 $r1 = staticinvoke <android.util.Base64: byte[]

decode(java.lang.String,int)>
("MDNhOTc2NTExZTJjYmUzYTdmMjY4MDhmYjdhZjNjMDU=",
0);

5 $r0 = staticinvoke <com.tencent.wxop.stat.b.g: byte[]
a(byte[],byte[])>($r0, $r1);

6 return $r0;
7 }

Listing 4: Vulnerable Encryption Using Base64 String
Encoding

The next two vulnerability cases that we consider are
related to the pervasive use of Inter-Component Commu-
nication (ICC) for enabling interaction and information
exchange between Android app components (within and
across apps). Two Android concepts are key in these sce-
narios: the intent object, which is created by a component
to hold the data and action request that must be transferred
to another component, and the intentfilter attribute, which
specifies the kind of intents that the declaring component
can handle. When intents are implicit, i.e., they do not name
a recipient component, they are routed by the system to
the appropriate components with matching intent filters.
Security of intents can then be compromised by malicious
apps which may exploit vulnerabilities to intercept intents
intended for another, or by sending malformed data to in-
duce undesired behavior in a vulnerable app. These attacks,
known as intent interception and intent spoofing attacks, have
been studied in detail in the literature [8], [37], [42], [51],
[52].

2.2.2.8 Intent.: Implicit intents, although they pro-
vide flexibility in run-time binding of components, are often
reported to be overused or inappropriately used [42]. For
example, attackers may simply prepare malicious apps with
intents matching the actions requested (e.g., PDF reader
capability) by vulnerable apps, to divert the data as well
as prevent other legitimate components to be launched. In
our study, following security recommendations in [42], we
consider an app to be vulnerable w.r.t. to Intent when it uses
implicit intents to communicate with its own components:
the developer should have used explicit intent, thus avoid-
ing potential interception by unexpected parties.

2.2.2.9 IntentFilter.: Android apps may declare their
capabilities via intent filters. However, when faced with an
incoming intent, a component cannot systematically identify
which component (trusted or untrusted) sent it. In that
case, a vulnerable app may actually be implementing a re-
delegation [3] of permissions to perform sensitive tasks.
Best security practices require app developers to protect
the offered capabilities with the relevant (or some ad-hoc)
permissions; thus, the attacker would need the user to grant
permission for accessing the sensitive resources he was
attempting to abuse. We otherwise consider the app to be
vulnerable.

2.2.2.10 Leak.: Sensitive data flows across app com-
ponents and outside an app have been extensively studied
in the literature [13], [14], [53], [54], [55], [56]. When such
flows depart from known sensitive sources (e.g., API meth-

6

ods for obtaining user private data) and end up in known
unsafe sinks (e.g., methods allowing to transfer data out of
the device by logging, HTTP transferring, etc.), these are
privacy leakages. When such data flow paths are found in
an app, a vulnerability alert should be raised.

2.3 Re-construction of App Lineages
We now describe the process (illustrated in Figure 3) that
we followed to re-construct app lineages from AndroZoo’s
data heap.

Extraction of
App IDs

App Grouping
by Certificate

App Grouping
by Market

Sorting Apps
by Version

…
…

..

Fig. 3: App Lineages Re-construction Process.

To re-construct app lineages, we need first conservatively
identify unique apps and then link and order their app
versions (i.e. apks) into a set of lineages. The objective is
to maximize precision (i.e., a lineage will only contain apks
which are actually different versions of the same app) even
if recall may be penalized (i.e., not all apk versions might
be included in a lineage). Indeed, missing a few versions
will not threaten the validity of our study as much as
linking together unrelated apps. Hence, we implement the
following four steps:

1. Application Id Extraction. Google recommends [57] that
each app should be named, in all its versions, following
the usual Java package naming convention7. This avoids
the collision in app names, which the market must avoid
since two different apps with the same name cannot be
installed on the same device. App name is indicated
uniquely in the Manifest file with the attribute applica-
tionId. We group together apks with the same application
id as candidate versions of a given app.

2. App Grouping by Certificate. Since Android apps are prone
to repackaging8 attacks [58], [59], different apks in a group
sharing the same app name may actually be different
branches by different “developers”. We do not consider
in our study that repackaged apps should appear in a
lineage since the changes that are brought afterward may
not reflect the natural evolution of the app. Thus, we
group apks in each group based on developer signatures.
Meanwhile, during the implementation of this step we
also noticed that most of the markets, even for Google
Play (the official market), do not emphasize a unique
certificate (i.e., only one certificate for each app). For
these cases, we found that there are around 0.064% apks
which include more than one certificates. Since, for these
apks, we cannot uniquely distinguish their ownership, we
dropped them in the final dataset.

7. Developers should use their reversed internet domain name to
begin package names

8. An apk can be disassembled, slightly modified and reassembled
into another apk

3. App Grouping by Market. We further constrained our lin-
eage construction by assuming that developers distribute
their app versions regularly in the same market. From
each group obtained in the previous step, we again sep-
arate the apks according to the market from which they
were crawled. As a result, at the end of this step each
group only includes apks that are (1) related to the same
app (based on the name), (2) from the same development
team (based on the signatures), and (3) were distributed
in the same market (based on AndroZoo metadata). Each
group is then considered to contain a set of apks forming
an unique lineage.

4. App Version Sorting. In order to make our dataset readily
usable in experiments, we proceed to sort all apks in
each lineage to reflect the evolution process. We rely on
the versionCode attribute which is set by developers in
the Manifest file. We further preserve our dataset from
potential noise by dropping all apks where no versionCode
is declared.

To avoid toy apps, we adopted the strategy used in [60]
to set a threshold of at least 10 apks before considering a
lineage in our study. And during this step almost 92% of
apks were filtered out.

100

101

102

103

104

0 50 100 150 200

apks per lineage

C
um

ul
at

iv
e

A
pp

 #

Fig. 4: Lineage Sizes

origin lineage
0

10

20

30

40

de
x

si
ze

 in
 M

B

Fig. 5: Dex Sizes

Overall, we were able to identify 28,564 lineages and the
five-number summary of lineage size are 10, 11, 13, 18 and
219 respectively. Figure 4 shows that the largest proportion
of apks are included in smaller-size lineages. This also
explained why large portion of apks were removed during
toy app filtering. Table 2 presents the top 5 lineages w.r.t.
the number of apks. In total, our lineage dataset includes

7

465,037 apks. Figure 5 compares dex sizes of APKs between
the original dataset and the re-constructed lineage dataset.
It can be noticed that apks of small size has been removed
mostly during lineage re-construction, as the median value
increased from around 2.6 to 3.3 MB.

For the toy apps we removed from our dataset, there
are still chances that they are highly used by smartphone
users. To further study such a possibility, we investigate the
installation situations of the apps removed and compare it
with the situation of kept apps. Since there are almost 3
million removed apps, we randomly sampled 200 thousand
Google Play apps for this investigation. We successfully
crawled the “installs” metadata for 29,3009 apps and the
installation situation for both removed and kept apps are
shown in Figure 6. We observe that compared to kept apps,
the whole shape of removed apps is remarkably shifted to
the left, which indicates that removed apps are much less
installed by app users. Thus, we can confirm that our study
focuses on apps that are more likely to be downloaded and
installed by users.

TABLE 2: Top Five App Lineages.

Lineage #apks Market Developer
com.knightli.book.jokebookseries.m3 172 appchina knightli

wp.wpbeta 164 google play WP Technology
com.manle.phone.android.yaodian 162 appchina manle

com.imo.android.imoimbeta 143 google play imo.im
com.knightli.ebook.zyys 134 appchina knightli

1+ 5+ 10+ 50+
100+

500+
1,000+

5,000+
10,000+

50,000+

100,000+

500,000+

1,000,000+

5,000,000+

10,000,000+

50,000,000+

100,000,000+

500,000,000+

1,000,000,000+

5,000,000,000+

Installs

0

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

removed apps
kept apps

Fig. 6: Intallation Comparison between Removed and Kept
Apps

To assess the diversity of our lineage dataset, we first
explore the categories of the concerned apps. Since this
information is not available from the AndroZoo repository,
we took on the task of crawling market web pages to
collect meta-data information for each lineage. We focused
on our study on the official Google Play. Out of the 16,074
lineages which were crawled from Google Play, we were
able to obtain category information for 14,208 lineages. 1098
lineages were no longer available in the market while the
market page for 768 lineages could not be accessed because
of location restrictions. Figure 7 illustrates the high diversity
in terms of category through a word cloud representation.

9. Because of app off-shelf and region-based access control of Google
Play Store, the metadata for some apps cannot be collected.

Second, we investigate the API levels (i.e., the Android
OS version) that are targeted by the apps in our dataset.
Since the Android ecosystem is fragmented with several
versions of the OS being run on different proportions of
devices, it is important to ensure that our study covers
a comprehensive set of Android OS versions. Figure 8
presents the distribution of API level span of lineages of
the dataset. The API level span of a lineage indicates the
range between the minimum and maximum targeted API
level found in the lineage. In the figure, the X-axis is the
lower bound of the API level of a lineage while the Y-axis
stands for the upper bound. Therefore, for each square, it
indicates an API level span from the lower bound to upper
bound. Meanwhile, the color of a square reflects the number
of lineages of this API level span. According to the figure, it
is easy to find out that most of the deep colored squares
are located either on the diagonal or on the right lower
corner. This phenomenon suggests that most apps tend to
stay within one API level. For such app lineages that have
their apps initiated with latest API levels, they are more
likely to be upgraded with higher API levels. But still, apps
of other API level spans can also be spotted in our dataset.
Thus, our lineage dataset is quite diverse in terms of API
level span.

2.4 Research Questions
The goal of this work is to explore the evolution of vulnera-
bilities in the ecosystem of Android apps. Our purpose is to
highlight trends in the vulnerability landscape, gain insights
that the community can build on, and provide quantitative
analysis for support the research and practice in addressing
vulnerabilities. We perform this study in the context of An-
droid app lineages, and investigate the following research
questions:

RQ1: Have there been vulnerability “bubbles” in the
Android app market? The literature of Android security
appears to explore vulnerabilities in waves of research pa-
pers. Considering that many of the vulnerabilities described
above have been, at some periods, trending topics in the
research community [61], [62], [63], [64], [65], we investi-
gate whether they actually correspond to isolated issues in
time10. In other words, we expect to see the disappearing
of some vulnerabilities just like the explosion of bubbles.
This question also indirectly investigates whether measures
taken to reduce vulnerabilities have had a visible impact in
markets.

RQ2: What is the impact of app updates w.r.t. vulnera-
bilities? Few studies have shown that Android developers
regularly update their apps for various reasons (including
to keep up with users’ expectations). A recent paper by
Taylor et al. has concluded that apps do not get safer as
they are updated [26]. We do not only investigate the same
question with a significantly larger and more diversified
dataset, but also find detailed patterns of the survivability
of vulnerabilities.

RQ3: Do fixed vulnerabilities reappear later in app
lineages? One of the main reason for software updates is
to patch security flaws (i.e., vulnerabilities). Nevertheless,

10. We use the Dalvik executable code compilation timestamp as the
packaging date to implement this study.

8

Fig. 7: Word Cloud Representation of Categories Associated with Our Selected Lineage Apps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
API Level Lower Bound

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

AP
I L

ev
el

 U
pp

er
 B

ou
nd

0

250

500

750

1000

1250

#
 o

f L
in

ea
ge

Fig. 8: API Level Span Distribution of Lineages

there could be chances for updates to introduce vulnera-
bilities as well, especially for those that had been fixed in
previous updates. With RQ3, we study the phenomenon of
vulnerability reintroductions in Android apps.

RQ4: Where are vulnerabilities mostly located in pro-
grams and how do they get introduced into apps? The recent
“heartbleed” [66] and “stagefright” [67], [68], [69] vulnera-
bilities in the SSL library and the media framework have left
the majority of apps vulnerable and served as a reminder
on the unfortunate reality of insecure libraries [70]. A recent
study by Watanabe et al. [71] has even concluded that over
50% of vulnerabilities of free/paid Android apps stem from
third-party libraries. We partially replicate their study at a
larger scale. Furthermore, to help researchers narrow down
searching range for vulnerabilities we investigate whether
vulnerabilities get introduced while developers perform
localized changes (e.g., code modification to use new APIs),
or whether they come in with entirely new files (e.g., an
addition of new features).

RQ5: Do vulnerabilities foreshadow malware? Al-
though vulnerabilities do not represent malicious behavior,
they are related since attackers may exploit them to imple-
ment malware. We investigate whether some vulnerability
types can be associated more with some malware types than
others. Considering evolution aspects, we study whether
some malware apps appear to have been “prepared” with
the introduction of specific vulnerabilities.

2.5 Experimental Setup
2.5.1 Execution Environment
Experiments at the scale considered in our study are chal-
lenging, requiring a significant amount of memory, storage
disk as well as computing power. The retrieval of apks from

the AndroZoo repository alone took 7 days and occupied
56 terabytes (TB) of local storage space. Among the vulner-
ability detection tools, FlowDroid and IC3, as previously
reported in the literature [30], are heavy in terms of re-
source consumption. Fortunately, we were able to leverage
a high performance computing (HPC) platform [72], using
up to 80 nodes, to run as many analyses as possible. We
use the fully parallel capability of the HPC platform and
we automated the analysis scenarios with Python scripts:
FlowDroid11 analyses occupied 500 cores and consumed 240
CPU hours to scan 223,474 apks; IC3 occupied 200 cores and
consumed 360 CPU hours to scan 72,983 apps. AndroBugs
light scanning only took 13 CPU hours with 500 cores to go
through 458,814 apks.

Overall, we obtained results for 454,799 apks of 27,974
lineages by AndroBugs, 37,736 apks by FlowDroid and
30,042 apks by IC3 with 3357 and 2048 lineages respec-
tively12. The final raw results hold in about 40GB of disk
space. There are 2 reasons that caused the different numbers
in the result of different tools. One is because of the limited
time budget for running analysis. As we know from the
previous paragraph that AndroBugs is the lightest tool in
resource requirement, we collected the most results from
its analysis. On the contrary, IC3 is the heaviest tool which
got the least results. Meanwhile, some apks could cause
crashing of certain detection tools and, normally, different
tools crash on different apks. This is another reason that
leads to a different number of analysis results in different
tools.

False positives of the selected static analysis tools. It
is known that static analyzers will likely yield false positive
results. Towards evaluating the severity of this impact, we
resort to a manual process to verify some of the results.
Because manual verification is time-consuming and may
require training in understanding vulnerability types, we
restrict ourselves within a working day to conduct the
manual verification of a sampled set of vulnerabilities.

Specifically, we invited 2 PhD students who have been
working on Android and static analysis related topics to
work on the reports of the three selected tools, respectively.
One student spent one day on sampled reports 13 of An-
droBugs and another one spent two days on the reports of
IC3 and FlowDorid respectively. They are able to check 711

11. Default sources and sinks configuration file provided with Flow-
Droid source code was used in this study. It can be obtained from the
GitHub repository under directory ”soot-infoflow-android”.

12. Since the obtained results for different vulnerabilities (i.e. tools)
are different, the percentages calculated in the rest of the paper are
based on the analyzed apks of a certain vulnerability.

13. Sampling by using find path/to/reports -type f | shuf -n sampleNumber

9

vulnerabilities14 for AndroBugs, 275 vulnerabilities (98 of
intent spoofing and 177 of unauthorized intent reception)
for IC3 and only 78 leaks for FlowDroid. The manual
verification process confirms that, at least from the syntactic
point of view (i.e., these vulnerabilities are in conformance
with the definition of vulnerabilities as proposed in the
tools documentation), the results reported by the adopted
static analyzers are all true positive results. The students,
however, admit that they are only able to focus on checking
simple syntactic rules for validating the results. It is time-
consuming and sometimes very hard to follow the seman-
tic data flows within the disassembled Android bytecode.
Indeed, Android apps are commonly obfuscated, making
it difficult to understand the code manually. Even without
obfuscation, it is also non-trivial to understand the intention
behind the code if no prior knowledge is applied.

Moreover, in addition to checking real-world Android
apps via disassembled bytecode, which is known to be
difficult, we conducted another experiment with a set of
open-source apps, in the hope that these apps could help
us better validate the reported static analysis results. To
this end, we randomly selected 200 apps from F-Droid and
conducted the same experiments as for the close-source
apps. Interestingly, the results of this experiment are more
or less the same to that of close-source apps. We have
only observed one false positive for FlowDroid. Among the
200 open-source apps, FlowDroid reported that 45 of them
contain sensitive data flows. We manually investigated 15
of them (i.e. developers’ code14 were manually checked)
accounting for 29 leaks. Out of 29 reported leaks from these
apps, we spot one false positive, which was found in app
idv.markkuo.ambitsync. The false positive is caused by an
incorrectly generated dummyMainMethod. For FlowDroid to
construct call graphs for Android apps, a dummyMainClass
containing several dummyMainMethods is required to be
instrumented. However, in this case, the dummyMainMethod
is incorrectly generated which further leads to a non-exist
path, and hence a false-positive result. Similar validations
were done for Androbugs and IC3 as well, while no false
positives were spotted.

Furthermore, it is worth to mention that the three static
analyzers we selected in this work have been recurrently
leveraged by a significant number of state-of-the-art ap-
proaches to achieve various purposes. For example, Flow-
Droid’s results have been leveraged by Avdiienko et al. [30]
to mine abnormal usage of sensitive data, Cai et al. [73]
leverage IC3 to understand Android application program-
ming and security, while Taylor et al. [26] have leveraged
AndroBugs to investigate the evolution of app vulnerabili-
ties. Moreover, there are studies focusing on analyzing and
comparing analysis tools too. Qiu et al. [74] compared the
three most prominent tools which are FlowDroid, Aman-
Droid and DroidSafe and discussed their accuracy, perfor-
mances, strengths and weaknesses etc. Meanwhile, Ibrar et
al. [75] studied vulnerability detectors of Mobile Security
Framework (MobSF), Quick Android Review Kit Project
(QARK) and AndroBugs Framework with banking apps.

14. Vulnerabilities of non-HTTPS links are not considered since these
vulnerabilities are pervasive in our dataset and are relatively straight-
forward to identify statically (hence, less likely to be false positives).

In the aforementioned two works, they all discussed the
false positive issues of the tools. According to their results,
FlowDroid and Androbugs both performed the best among
their kind of tools in terms of false positives. Therefore, from
the false positive point of view, we can conclude that the
tools we have chosen are the most reliable among other
counterpart tools.

2.5.2 Study Protocol

0%

25%

50%

75%

100%

SSL

Sec
ur

ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

% of Non−Vulnerable apks % of Vulnerable apks

(a) Proportion of Vulnerable APKs.

48

2 5 4 2
9 3

58

3 5

SSL

Sec
ur

ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

(b) Average # of Vulns. per APK

Fig. 9: Distributions of Vulnerable APKs and of Vulnerabilities

Each of the vulnerability detection tools outputs its
results in an ad-hoc format. We build dedicated parsers
to automatically extract relevant information for our study.
Figure 9 provides quantitative details on the distributions of
vulnerable apks in the lineages dataset. SSL vulnerabilities
are widespread among Android apps and across several apk
locations. We also note that a large majority of apps may
include a large number of sensitive data flows. As these
leaks reveal private information, although for most of them,
how the sensitive data will be used is unknown, we should
consider them as vulnerabilities.

For the evolution study, Vulnerable pieces of code are
extracted from the location l of an apk indicated by the
vulnerability detection tools. These vulnerable pieces of
code are collected and released as a valuable artifact for
the community. Real-world examples from this artifact were
presented in Section 2.2.2.

Finally, we monitor and record how vulnerabilities
change at these locations that is: given the analysis results
for an apk v1 and its successor v2 of a lineage, we track the
differences in terms of vulnerability locations; when a given
vulnerability type is identified in a location but is no longer
reported at the same location, we compute the change diff
between the two apk versions and refer to it as potential
vulnerability fix changes15.

15. Since the change could be only related to program refactoring, we
cannot say if the change is a real fix or not.

10

0%

20%

40%

60%

80%

100%

2010 2011 2012 2013 2014 2015 2016

Command Permission WebView KeyStoreSSLSecurity
Fragment Encryption Leak Intent IntentFilter

(a) % of Vulnerable Apps Across Time.

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25

SSL_Security Command Permission WebView KeyStore

Fragment Encryption Leak Intent IntentFilter

(b) % of Vulnerable Apps per API Target.

0

20

40

60

80

100

120

2010 2011 2012 2013 2014 2015 2016

SSL_Security Command
KeyStore Fragment

Permission
Encryption
 LeakIntent IntentFilter

WebView

(c) Average # of Vulnerabilities in APKs.

0%

20%

40%

60%

80%

100%

2010 2011 2012 2013 2014 2015 2016

GooglePlay Anzhi AppChina

(d) % of Vulnerable APKs in Markets (three markets con-
sidered).

0%

25%

50%

75%

100%

2010 2011 2012 2013 2014 2015 2016

GooglePlay Anzhi AppChina

(e) % of APKs with Command Vulnerability in Markets.

0%

25%

50%

75%

100%

2010 2011 2012 2013 2014 2015 2016

GooglePlay Anzhi AppChina

(f) % of APKs with KeyStore Vulnerability in Markets.

Fig. 10: Evolution of Android App Vulnerabilities.

3 RESULTS

We now investigate the evolution of Android app vulner-
abilities. Our objective in this work is to understand the
evolution of Android app vulnerabilities and thereby to
recommend actionable countermeasures for mitigating the
security challenges of Android apps.

3.1 Vulnerability “Bubbles” in App Markets
To answer RQ1: Have there been vulnerability bubbles in the
Android app market? We first compute, for each vulnerabil-
ity type, the percentage of apks which are infected in a given
year. Figure 10a outlines the evolution of vulnerable apks
in the space of 6 years. Clearly, we do not see any steady
trend towards less and less proportions of vulnerable apks.
A more specific investigation is conducted to further explore
the expected pattern. The same computation is repeated
with apps only debuted on year 2010. This limits to a dataset
containing only 3109 apks of 141 app lineages. Nevertheless,
very similar patterns have been observed16. Since apks are
built to target specific Android OS versions (i.e., API level

16. vulnerabilities of Intent and IntentFilter contains missing data in
certain years. Therefore, these 2 vulnerabilities are not discussed here.

targets), the availability of specific features and program-
ming paradigms may influence the share of vulnerable apks.
Thus we present in Figure 10b the evolution of the percent-
age of vulnerable apks across different API level targets. We
note an interesting case with the Command vulnerability: the
percentage of vulnerable apks has steadily dropped from
60% in apks targeting first OS versions to about 10% for
the more recent OS version. This evolution is likely due to
the various improvements made in the OS as well as in the
app markets towards preventing capability and permission
abuse.

We further investigate (1) whether the overall evolu-
tions depicted previously break down differently in specific
markets, given that markets do not implement the same
security checking policies; and (2) whether evolution trends
are visible inside the apps, since developers may make
efforts to at least reduce their numbers. Figure 10d illustrates
the evolution of three dominant markets, namely the official
Google Play store, and the alternative markets AppChina
and Anzhi. We note that the rate of vulnerable apks in all
three markets has remained high throughout the considered

11

history17. Evolution trends in Figure 10c reveal how Leak
vulnerabilities have significantly dropped in 2011: from an
average 120 vulnerabilities per apk, it came to about 40
before slowly increasing again. We remind the reader that
these vulnerabilities found using FlowDroid are computed
as possible paths from sensitive data to sinks such as log
files. Such a drop in the number of leak vulnerabilities
per apk may be explained by the wide interest of the
community. TaintDroid [76], the first state-of-the-art tool for
tracking data flows has just been proposed, and the first
comprehensive study on Android security issues (which put
leaks as a priority concern) was made available [77]. MIT
technology review had also realized on the wave of apps
leaking private info [78].

Figures 10e and 10f further depict interesting evolu-
tion cases for the Command and KeyStore vulnerability
types between markets. While the official Google Play
has seen Command-vulnerable apks drop and KeyStore-
vulnerability remain low, alternative markets have accepted
more and more Command-vulnerable apks, and still include
a large share of KeyStore-vulnerable apks. These findings
may suggest that the security mechanisms implemented
by some markets might be effective against frequently ex-
ploited vulnerabilities. Indeed, let us take Google Play as an
example, Google has introduced Google Play Protect18 for
continuously pinpointing potentially harmful applications
(such as apps with SMS fraud, phishing, or privilege esca-
lation, etc.). As revealed in the Android Security 2017 year
in review report, Google Play Protect had actually disabled
potentially harmful apps from roughly 1 million devices
with approximately 29 million apps removed.

Insights from RQ1: Our analyses did not uncover any
vulnerability bubble in the history of app markets. In-
stead, we note that vulnerabilities have always been
widespread among apps and across time. Nevertheless,
the case of Leaks suggests that wide and intense research-
ing focus can significantly impact the number of vulnera-
bilities in apps.

3.2 Survivability of Vulnerabilities
To answer RQ2: What is the impact of app updates w.r.t.
vulnerabilities? We investigate whether a given vulnera-
bility type identified at a location remains or is removed
from the successor apk in the lineage. Similarly, we inves-
tigate whether new vulnerability types appear in updated
versions of the app. Figure 11a summarizes the impact
that app updates have on the vulnerabilities in a lineage.
On average, for most vulnerabilities, more than 50% of
vulnerable locations remain. The number of vulnerabilities
related to Encryption and Inter-component communication
(i.e., Leaks, Intent and IntentFilter) has evolved substantially
across app versions (e.g., only 20% of Leak vulnerabilities
kept untouched). Figure 11b presents the distribution of
delay (in terms of apk versions) before a vulnerability
is removed from its location. Survivability appears to be
similar across vulnerability types. Furthermore, the median

17. A given apk is considered to be vulnerable if it includes any case
of our selected vulnerability types.

18. https://www.android.com/play-protect/

delays indicate that most vulnerabilities will not be fixed
until three version updates later.

73% 70% 74% 73% 77% 76%

56%

20%

45% 44%

SSL

Sec
ur

ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

(a) % of Vuln. Unaffected by Updates.

0

5

10

15

20

SSL

Sec
ur

ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

of

 G
en

er
at

io
n

(b) # of Updates before Fix

Fig. 11: Survivability of Vulnerabilities in APKs

We further detail in Figure 12 the distribution of the
numbers of vulnerabilities added and removed in apps.
Except for the Permission case, we note that the median
number of vulnerabilities added is equal or higher to the
number of vulnerabilities that are removed. This confirms a
finding in a recent study by Taylor et al. [26] on a smaller
set of apps: “Android apps do not get safer as they are up-
dated”. The p-values of Mann-Whitney-Wilcoxon (MWW)
test with null hypothesis of equal distribution, alternative
hypothesis of not equal distribution and confidence level of
0.95, indicated above each box plot pair, however, show that
the difference is statistically significant only for the three
ICC-related vulnerabilities.

0.228

0.788
0.189

0.827
0.503

0.058 0.005

2.2e−16

3.2e−15
2.2e−16

0

50

100

150

200

250

SSL

Sec
ur

ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

removed added

2.2e−16

of

vu

ln
er

ab
ili

tie
s

Fig. 12: Distribution of Added and Removed in a Numbers of
Vulnerabilities between Consecutive APK Versions. Numbers
represent p-values from MWW tests on the statistical signifi-
cance of the differences.

We now investigate the general trend in vulnerability
evolutions, comparing the impact of updates between con-
secutive pairs and the impact of all updates between the
beginning and the end of a lineage. We expect to better
highlight the overall evolution of vulnerabilities as several
changes have been applied. The box plots in Figures 13
highlight a simple reality: commonly vulnerabilities are
neither removed nor introduced during app updates (i.e.,
all median values equal to 0 in Figure 13a) and when
they happen, their chances are quite equal as well (i.e.,
all mean values are very close to 0 too). When looking at
the distribution obtained based on the initial/latest versions

12

shown in Figure 13b, the major pattern stays similarly (i.e.,
all median values are still 0 only except for Leak which is 1
and for most of the mean values, they increased slightly but
still between around 0.5 to 0. the exceptions are Leak and
IntentFilter which are 3.8 and 2.3 respectively), but observ-
able differences are exhibited as well. Several vulnerabilities
expand in size and the scale increases obviously. The main
parts of all boxes are on the positive side of y-axis, which
indicates that there are more cases of adding vulnerabilities
than removing.

SSL

Sec
ur

ity

Com
man

d

Pe
rm

iss
ion

Web
View

Key
Stor

e

Fra
gm

en
t

Enc
ry

pt
ionLe

ak
In

ten
t

In
ten

tF
ilt

er

4

2

0

2

4

6

(a) Between Consecutive APK Pairs.

SSL

Sec
ur

ity

Com
man

d

Pe
rm

iss
ion

Web
View

Key
Stor

e

Fra
gm

en
t

Enc
ry

pt
ionLe

ak
In

ten
t

In
ten

tF
ilt

er

10

0

10

20

(b) Between Initial and Latest Versions.

Fig. 13: Variations in # of Vulnerabilities Following Updates.

Insights from RQ2: As more than 50% of vulnerabili-
ties stay untouched during 1 update and the possibility
of fixing and introducing vulnerabilities during updates
does not show a significant difference, app updates indeed
do not make apps safer. Moreover, vulnerabilities can
normally survive 3 updates and even longer, this suggests
developers haven’t been paying enough attention on vul-
nerability issues.

3.3 Vulnerability Reintroductions

To answer RQ3: Do fixed vulnerabilities reappear later in
app lineages? We track all vulnerability alerts (associated
with their locations) and cross-check throughout the lin-
eages. We found 342,809 distinct cases of location-based
vulnerability reintroductions (i.e., vulnerable code removed
and reappeared in the same method of the same class of an
app, as specified in Section 2.1) for 15,375 distinct apps.
On average, a given app is affected by 6.7 vulnerability
reintroductions. Figure 14a further breaks down reintroduc-
tion cases and their proportions among all vulnerability
alerts. Encryption-related vulnerabilities (2.97%) are the most

likely to be reintroduced, in contrast to SSL Security-related
vulnerabilities (0.77%).

(a) Vulnerability Reintroduction

0% 1% 1% 1% 1% 0% 1%

39%

16% 16%

SSL

Sec
ur

ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

% of apks

(b) Vulnerability Type Reintroduction

Fig. 14: Statistics on Reintroduction Occurrences.

We investigate whether, in some lineages, a vulnerabil-
ity type may completely disappear at some point and later
re-appear. Figure 14b provides statistics on proportions of
lineages where a given vulnerability type is reintroduced
(note that this type-based vulnerability reintroduction is
only discussed here, for the rest of the paper, without
specification, the reintroduction should be location-based).

0%

25%

50%

75%

100%

SSL_
Sec

ur
ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

Local Code ChangeNew File Change

(a) Vulnerability Removal

0%

25%

50%

75%

100%

SSL_
Sec

ur
ity

Com
m

an
d

Per
m

iss
ion

W
eb

View

Key
Sto

re

Fra
gm

en
t

Enc
ry

pt
ion

Le
ak

In
te

nt

In
te

nt
Filte

r

Local Code ChangeNew File Change

(b) Vulnerability Introduction.

Fig. 15: Statistics on How Vulnerabilities Are Removed (during
file deletion or code change within vulnerability location file)
or Introduced (during new file insertion or code change within
vulnerability location file).

Figure 15 details, for each vulnerability type, the propor-
tion of cases where a vulnerability was removed in an apk
version following a complete deletion of its location file, or
following code changes in its location (at method level or
file level depending on the vulnerability type). File deletion
and new file insertion occupy a big portion suggests that

13

vulnerabilities are probably fixed or introduced with third-
party code. Our in-depth analysis reveals that those deleted
and inserted files are indeed mostly from libraries. For ex-
ample, we have found that file com.tencent.open.SocialApiIml
has been deleted and newly inserted 3,730 and 6,012 times
respectively.

Insights from RQ3: Vulnerability reintroductions occur in
Android apps and Encryption-related vulnerabilities are
the most like to be reappeared with the possibility of
around 3%.

3.4 Vulnerability Introduction Vehicle
We answer RQ4: Where are vulnerabilities mostly located
in programs and how do they get introduced into apps? By
first providing a characterization of code locations where
vulnerabilities are found. We focus on two main location
categories: library code and developer code. We attempt to
provide a fine-grained view on vulnerable-prone code by
distinguishing between:
• Developer code, approximated to all app components that

share the same package name with the app package (i.e.,
app id).

• Official libraries, which we reduce in this work to
only Android framework packages (e.g., that start with
com.google.android or android.widget).

• Common libraries, which we identify based on whitelists
provided in the literature [79].

• Reused or other Third-party code, which we defined as all
other components that do not share the app package
name, but are neither commonly known library code.

Fig. 16: Distribution of Vulnerable Code in Developer Code,
Official Libraries, Common Libraries and Reused/Third Party Code.

Figure 16 details the distribution of vulnerable code in
different locations. For most vulnerability types, it stands
out that third-party code (including common libraries) is the
main carriers of app vulnerabilities. Developer code is more
affected by ICC data handling vulnerabilities. Android “of-
ficial”19 libraries are however affected by Fragment vulner-
abilities. This could be explained by the fact that several of
such libraries are widely used to implement ads display in
app foreground UIs. Although such vulnerabilities may be

19. Our heuristics are solely based on package name and thus may
actually include abusively named packages. See package list on artefact
release page.

fixed by Google library maintainers, it is commonly known
that update propagations can be slow in Android [39].

We investigate the correlation between the size of apps
and the number of vulnerabilities to assess a literature
intuitively-acceptable claim that larger apps are more vul-
nerable. Then, we study how this reflects in evolution via
apk updates, by checking whether the number of new code
packages added in an app during an update correlates
with the number of newly appearing vulnerabilities. Table 3
provides Spearman correlation computation results. All cor-
relation appear to be ‘Negligible’. IntentFilter shows the
highest correlation close to being categorized as ‘Moderate’
w.r.t. the size of the apps.

TABLE 3: Spearman Correlation Coefficient (ρ) Values. With
experiments Exp.1: # of packages vs. # of vulns. per apk; Exp.2:
of new packages vs. # of vulns. per update.

Type SSL Security Command Permission WebView KeyStore
Exp.1 0.08 0.07 -0.11 0.08 0.08
Exp.2 0.14 0.06 -0.02 0.07 0.02
Type Fragment Encryption Leak Intent IntentFilter
Exp.1 0.19 -0.02 0.05 0.06 0.22
Exp.2 0.17 -0.00 0.04 0.10 0.12

Interestingly, computation of LOESS regression [80]
shown in Figure 17 further highlights that while a positive
correlation, although ‘negligible’, may exist between added
packages and the number of added vulnerabilities, no cor-
relation can be observed between removing packages and
variations in vulnerability numbers.

● ●

●

●●●●●● ● ●● ●●

●

●●●●●●●●●

●

●●
●

●●●●●●●●●● ●
●
●

●

●
●● ●●
●
●●●●●
●

●

●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●

●
●●
●

●

●●
●●
●

●
●●● ●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●

●

●
●

● ●

●

●

●

●
●

●
●

●●●●
●

●●●●
●●●●●

●

●

●●●●

●

●

●

●

●●●●●

●
●

●

●

●

●● ●● ●●●●●●●●●
●

●●●
●

●●●●●●●
●

●●
●

●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●

●
●
●●●●●●

● ●●●

●

●●●
●

●
●●●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●●●●●●

●
●● ●

●
●● ●● ●●●●●●●

●

●●●●●●●
●●●●
●
●●
●
●●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●

●

●

●

●

●

●

●
●●●●

●

●●●
●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●● ●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●

●

●●●●●
●

●●
●●●

●
●●
● ●●

●

●
● ●●●●●●●●●●

●
●

●● ●

●

●●●● ●●●●
●

●●

●

● ●●

●

●
●●●●●●●●● ●●●●

●

●●

●

●●● ●●●
●

●●●●●●●●●

●
● ●●●●●

●●● ●

●

●●●

●

●
● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●
●

●●
●

●

●●●● ●●●

●

●●
●●● ●●
●●●●●●●●●●●
●
●●●● ●●●● ●●●

●
●●

●

●
●●

●

●
●
●●

●
●●

●
● ●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●
●

●

●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●● ●●●● ●

●

●●

●

●●●●●●●●
●

●●
●

●
●●●●●●●●●●

●●●

●

●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●●
●
●●

●

●●●●●●●●●●●●
●

●●

●

●●●●●●●●●
●
●●

●
●●●●●●● ●

●
●●● ●●● ●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●●
●

●

●●
●●●

●

●
● ●● ●●●●●●●●●●●●●●●●●●●●●●

●
●●● ●●

●

●● ●●●●●●●●●●●●

●

●

●

●●●●●

●

●
●●●

●

●

●

●●●●●●

●

●●
●

●●●● ●●●●●●●●● ●●●● ●●●●●● ●
●● ●●

●

●

●●●●●●●
●

●●●●●

●

●
●

●

●

●

●●●● ●●●● ●●

●

●●● ●●●●●

●

●● ●
●

●●

●
●

● ●
●
●●●●●

●

●●●

●

●
●●●●●●●●●

●
●●●●●●●●●●●●
●

●●●● ●●
●

●
●●● ●●

●

●●●●●●●
●●

●

●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●
●

●

●

● ●●

●
●

●
●

●●●● ●● ●●●● ●●●●●●●●
●●●●●● ●●● ●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●●●● ●●●● ●●●● ●
●

●

●

●
●

●●●●●

●

●●●
●

●
●

●

●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●

●

●
●●●●●●●●●●●●●●●●●

●
●●●●●● ●●●● ●●●●●●●●

●

●
●●●●●

●
● ●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●
● ●●●●●●●●●●●●●●●● ●● ●●●●

●
●●●●●●●●● ●●●●●●

●●●

●

●

●
●

●

●

●
●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●

●

●
●

●●

●

●●●●●●●

●
●●● ●

●
●●●●●●●●

●
●●

●
●●●●●●●●●●

●
●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●

●

●●●●●●●●

●

●●

●

●

●

●
●

●●
●

● ●●●●●●●●●●● ●● ● ●
●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●●●●●●● ●
●●●●●●●●●

●

●●●●●●●● ●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●● ●●●● ●●

●

●

●

●●●●
●

●
●●

●●
●●●●●●●●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●
●●●

●●●●●
● ●

●
●●●●●
●

●●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●

●

●

●

●
● ●
●

●
●●●●●●

●●

●●

●
●

●
●

●
●●
●

●
●●●●●

●

●

●
●

●●●●●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●●●● ●●●●●●

●

●● ●●
●
●

●

●

●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●

●●● ●

●

●●

●

●●● ●●●●●●●●●●

●

●
●●

●
●

●

●●●●● ●●●●●●●●●●●●●●●
●●●●●●

● ●
● ●

●
●●●●

●

●
●●●●●

●●● ●●
●

●●●● ●●●●●●●●●●●●●●●
●
●●●●●●●● ● ●●●●●●●●●●●●●●

●
●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●
●

●
●

●

●

●●●●●●●●
●

●

●●●●

●

●●●●●●●●●●●●● ●
●

●
● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●

●
●

●
●●●●

●

●● ●●●●●
●
●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●

●

●

●

●● ●

●

●

●●●●●●

●

●
●

●
●●●●●●●●●●●●●●
●

●●●●● ●●
●

●● ●●●●
●●●

●

●

●● ●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●
●●●●●
●

●●●●●
●

●●●● ●●●●●●●●●●●

●

● ●●●●●●
●●
●

●●●●●●●●●
● ● ●

●

●

●

●●●●●●●●●●●●● ●●●●●●●●●●●● ●

●

●●●●●●●●●
●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●
●●

●
●●

●

●●
●

●●●●●● ●●
●

●
●●●● ●●●●● ●●●● ● ●●●●●

●●●●●●●●●●
●●●●●●●●
●

●
●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●
●● ●

●●●●

●

●●

●

●

●

●

●●

●

●●●
●
●●● ●●● ●●● ●

●

●●●●●●●●●●●● ●●●●●●●

●

●

●

●

●

●

●●●●●●●●
●● ●●●●●●●●●●●●● ●●●●●●●

●

●●

●

●●●●●●●●

●●
●

●●

●

●●●●●

●

●●

●

●●
●

● ●
●

●●

●

●●●

●

●●●●●●●●●●●●

●

●●●

●

●●

●

●●●

●

●●●●●

●

●
●

●

●

●●●
●

●●●●●
●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●
●
●●

●
●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●
●●●●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

● ●●●
●

●
●

●●●●●●

●

●●●●●●●●●● ●●●●●●
●

●

●●●●●●●●●●●

●

●●
●

●●
●●

●●●

●
●
●●

●●
●
●
●
●
●

●●●●●●●●●●●●●● ●●●●●

●

●●●●●●●
●

●
●●●●●

●
●●●●●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●

●

●●

●

●

●

●

●
●

●●●●●
●●

●

●

●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●
●

● ●●
●●●●●●●●●●●●

●
●●●●●

●
● ●●●●●●● ●●●●

●

●●●●●●● ●● ●● ●● ●●●●●●●●
●●●●●●● ●●●
●●●●●●●●●●●●● ●

●● ●
●

●

●

●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●●●●●●●● ●●●●●●●●●●●●●●●●
●●

●

●

●

●●
●

●●

●

●●●●●●●●●
●●
●

●

●●●●●●●

●●
●●●● ● ●

●

●●
●

●
●

●
●
●
●●
●●●●●●●●●

●

●

●
● ●

●

●
●
●

●
●

●●

●

●● ●●●●●●●●●●●●●●●●●●●●

●

● ●● ●

●

●●●●

●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●●

●

●

●
●●●●

●

●●●
●

●●●●●

●

●

●●●●●●●● ●●● ●●●●
●

●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●
●

●

●● ●●●●●●●●● ●●●●●●●●●●
●●●●●●●

●

●●●●●
●

●●●●●●
●

●
●

●
●● ●

●

●●●●●●●

●

● ●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●

●

●●●●● ●●
●
●●●●●●●●
●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●
●

●

●●●●●●●●●●

●

●

●

●
●● ●● ●●●●●●●

●

●●
●

●●
●
●

●●●●●●●●●●●●●●●●●●
●

●● ●●●●●●● ●●

●

●

●

●●

●

●●●●●●●●
●●●●● ●●●●●

●●●●●

●

●●●●●
●

●●●●

●
●

●●●●●●
●●●●●

●●●●●●

●

● ●
●

●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●

●

●●
●

●●●●●●●●
●

●●●●●●

●

●
●

●

●

●●●●

●

●
●

●

●

●
●

●●●●●●●●●●●●●●●● ●
●●●●●●●●●●

●
● ●● ●● ●●

●

●●●

●

●●●●●●●●●●●●
●●●●●●●●●●

●

●
●● ●

●

●
●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
● ●●●●● ●

●

●●●●
●

●

●●●●●●●●

●

●●

●

●●

●

●●

●

●●●●●●●●●●●●●●
●

●

●

●●●●●●●● ●●●●● ●●
●

●● ●
●● ●

●

●●●●●●●
●
●●●●●●● ●●●●
●

●

●

●
●

●

●● ●●●●●●●●●●●●●●●●●●●● ●●●●
●
●●●● ●● ●

●
●●●●
● ●●● ●●●

●

●

●

●

● ●●
●

● ●●●●●● ●●●●●●
●

●●●●●●
●●●●●●

●

●●●●●●● ●●●●●●●●
●●●●●●●

●

●
●

●

●●●●●●●● ●
● ●● ●

●
●

●
●●●

●

●

●

●
●●●●●●●●●●●●●●●● ●●

●
●●

●● ●●●●●

●

●

●

●

●●
●

●
●
●●●●●●

●
●●●●●●●●●●●●●●● ●● ●

●

●

●

●● ●●●
●

●

●●●●●●●●

●
●● ●●●●●●

●●●●●●●●●

●

● ●●●●●● ●●●●●● ●● ●●

●

●
●●●
●
●●● ●●●●●●●●

●

●●●
●
● ●●●

●

●●●●●●●●●●●●●●●
●●

●●●
●

●●●●●●

●

●● ●● ●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●
●

●

● ●●●●●●●
●

●
●●●
●

● ● ●●●●●●●●● ●● ●●●●●●●
●

●●
●●●●●●●●●●

●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●
●

●●
●

●●● ●●●●●

●

●●●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●
●●●

●●●●●●
●

●●

●
●

●

●

● ●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●
●
●●●●●●●●●●●●●

● ●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●

●
●

●● ●●●●●●●●●●●●●● ●●● ●●●

●

●

●
●●●●●●●●●●●●●●● ●

●●
●

● ●●●● ●

●

●●●
●
●●● ●● ●●●● ●

●

●●● ●●● ●●

●

●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●●●● ●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●● ●●●●●●●●●●●●●●●
●

●

●

●

●

●
●●

●
●●

●●● ●●●●●●●●●●●●●●●

●

●

●
●
●

●
● ●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●

●
●

●●●●

●

●●●● ●
●

●●●●●●●●●
●●●●●●●●●●●●●
●

●

●

●

●

●
●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●

● ●●●●●
●

●
●●

●● ●●●●●●● ●●●● ●
●

●

●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●

●●● ● ●●●●●●●●●●●●

●

●●●●●
●

● ●●●●
●
●●●●●●●●●●●●●●●●

●

●

●
●●●

●

●●●●●●●●●●●● ●●●●
●

●●●●●●●●● ●●
●

●
●
●

●

●●●
●●

●

● ●
● ●● ●●

●
●

●●●●●

●

●●
●
●●●●●●●●●●●●●● ●

●●
●●●●●●●●●●●

●

●
●
●●

●
● ● ●●

●●

●
●

●

●●●●●●●●●
●

● ●●●●
●

●

●●● ●●●●

●

● ●●●●●●●● ●●●
●

●

●

●●●●●
●●●●●● ●●●●●●●

●
●●●
●

●●●●●●●●●●●●●●●●●●

●

● ●●●● ●●●●●
●
●

●

●

●●●● ●
●

●●●
●

●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●●●
●
●

●●●●●
●

●●●● ●●●●●●●●●●●●●

●

●●

●

●●
●●
●● ●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●●●● ●

●

●

●

●

●●● ●●●●●●●
●

●●●●● ●
● ●●●● ●●

●

●

●

●
●●●

●

●
●
●●●●

●
●

●●●● ●●
●

●●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●●●
●● ●●●

●
●●●●

●

●●●●●

●

●●●●●●
● ●

●
● ●

●

●

●
●

●●● ●●●●●●●●●
●●●●●●●● ●
●●●

● ●
● ● ●● ●●●●● ●●

●

●

●

●●● ●●
●● ●●●●●●●●●●●●

●

●● ●●●●●●●●●●
●

●●●●●

●

●●
●
●
●
● ●

●

●●●●●●●●●●
●

●●●●●
●

●

● ● ● ●●●● ●●●
●
●●●●● ●

●
●●●●

●

●●●●●●●● ●
●

●

●

●●●●●●●●●●●●
●●●●●●

● ●

●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●
●●●●●●●●●●

●
●●●●●● ●●

●
●●

●

●
●●
●

●
●

● ●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●● ●●●

●

●●

●

●●●●●● ●●●
● ●● ●●

●

●●●

●

●

●●●●●●●●●●●● ●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●
●●●●

●

●
●

●
●

●●●●●●●●● ●

●●●●● ●●
●
●●●●●●●●●●●●● ●●● ●●●

●

●

●●●●●● ●

●
●

●●●●●●●●●
●

●
●

●

●●●● ●● ●●

●

●
● ●

●●●●●●●●●●●●●● ●●●●●●●●

●

●●●● ●●●●●●
●

●

●● ●

●
●

●

●

●

●
●

●

●●●●●●●●● ●

●

●

●●● ●●●
●

●

●

●●●●●●●●
●
●●
●

●
●●●●●●● ●

●
●●●●●●●●●●●●●●●

●
●●●●●

●

●

●

●

●●

●

●●●● ●● ●●
●

●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●

●

●

●●

●

●●●● ●●
●
●●●

●

●●●●●

●

●

●
●

●

●

● ●

●

●●●●●●●●●
●

●●●●●●●
●

●

●●●●●●●● ●
●

●
●

●●●●●●●

●

●●

●

●

●

●

●

●

●
●

●

●●● ●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●● ●●●●
●●
●●●● ● ● ●●●●●● ●●●●●●●●●●●

●

●

●

●●●●●●
●●●

●
● ●●●●●●●●●●●●●●●●●●

●

●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●
●

●

●

●

●

●●

●

●

●

●

●●●●●●
●

●

●

●●●●●●

●

●●●●
●

●●●●●●●●●●●●●
●●

●

●●

●

●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●
●

●

●

●● ●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●

●● ●●●●
●
●●

●

●●●●●
●

●●●●●●
●

●
●

●

●●● ●
●

●●● ●●● ●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●
●

●●●
●

●●
●●

●

●●

● ●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

● ●●●● ● ●●●●●●●●●●●
●
● ●●●●●●●●●●●●●●●●●●●

●
●●●●●● ●●●●●●●●

●

●●

●

●●●●●●●●●●●●●● ●
●●●●●●

●

●●●●●●
●

●

●

●
●

●●●●●●●●●●●●●●●●●
●

●●

●

●

●●●●●

●

●

●●

●

●●●●●●●

●

●

●

●

● ●●

●

●●●●●●●●●●●●●●
●

●
●●

●

●
●●●●●●
● ●
●●●●●●●●●●●●●●●●●●● ●
● ●●●

●●●●

●

●

●

● ●●●●●●●●●●●●●●
●

●

●
●●

●●●●●●

●

●
●●●●●●●●●● ●●

●

●●● ●
●

●●
●●

●
●●

●
●●

●

●

●●●●●●●●●●●●

●

●●● ●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●

●

●
●

●

●

●
●

●

●

● ●
●

●●●● ●

●

●● ●●●● ●
●

●●
●
●● ●●

●
●●●●●
●

●● ●

●

●

●●●
●
●●●

●

●
●●●●●●●●●●●●●●● ●●●●

●
●●●●●●● ● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●
●
●●●●●●●

●
●●●●●●●●●●●●●

●

●

● ●●

●

●
●

●
●

● ● ●●

●

●● ● ●●●● ●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●

●

● ●

●

●●●●●●●●●

●

●●●●●●
●
●

●● ●● ●●●●●●●●●●●●●●●●

●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●
● ●● ●●●

●

●
●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●

●

●●
●
●
●●●
●●
●●●●●●●●●●

●

●
●

●● ●●●●●●●●●● ●
●

●●●
●

●●●

●

●

●
●

●

●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●●●● ●●●●●●●
●

●●●● ●●●●●●●●●●●●●●●

●
●●●●

●
●

●
●

●●●
●

●

●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●
●
●
●●●●●

●
●●●●●●●●●●●●● ●●●●●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●●●
●

●●●●●●●●
●● ●●●●●●●●●●●● ●●

●

●
●●●●●●

●

●●●●●●●●●●●●●

●

●

● ●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●●● ●●●
●

●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●
●

●●●● ●●● ●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●
●
●

●

●●●●●●●●●●●●●●●●

●

●●●●●
●
●

●

●●
●

●●

●

●
●●●● ●●●●

●

●●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●

● ●

●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●● ●
● ●● ●● ●● ●●●●

●
●●●●●●●●

●

●

●

●●
● ●●●●●●

●
●

●●

●

●●●●●●● ●●●
●

●●●●●●
●

●
●●●●●●●

●
●●●●● ●●●●● ●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●

●
●●●

●

●●●●●●●●●●●●●●● ●

●

●●●

●

● ●●
●

● ●
●●●●●●●●●● ●

●

●●●●●●●●●●●

●
●●●●●●●●●●●●● ●
●●●●●●●

●
● ●●●●●●

●

●

●
●●●

●

●

●
●●●●● ●
●

●●●●● ●●
● ●●●●

●
●●
●
● ●●

●

●●● ●●●●●
●●●●●●●
●

●●●●

●

●
●●

●
●●●

●
●●

●

●

● ●●●●●●
● ●

●●●● ●
●

●●●●
●

●●●●●●●●● ●
●●

●●
●

●
●

●

●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●

● ●
● ●●

●

●●● ●●
●

●

●

●
●
●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●

●

●
●●
●●

●

●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●
●

●

●●●●
●

●●●●●●●● ●
●●●●
●

●●●●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●● ●●● ●●●
● ●●

●

●●●● ●● ●
● ●●●●●●●●●●●●●●

●●●
●

● ●
●

●●●●●
●
●●●
●●
●

●●●●●●●●
●
●●●●
●
●
●
● ●

●

●

●

●

●●

●

●●●●●● ●●●●●

●

●●●●●●●●

●

●
●

●●●●●●●
●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●

●

●

●

●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●● ●●●●●●● ●●●●●●●●
●

●●●●●●
●
●●●●●●●●●●

●

●

●●

●

●●

●●

●●●●●●

●

●

●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●● ●●●●●●

●

● ●
●

●

●● ●●

●

●
●

●
●● ●●● ●●●●●●

●

●

●●●● ●●●●●●●●●● ●●●●●●●
●

●

●
●

●●
●

●
●●●●●●●●●

●

●

●

●

●● ●
●

●●●●●●●
●

●●●●
●

●●●●●●●●
●

●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●● ●● ●●● ●●

●●●●
●

●●●

●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●●

●

● ●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●
●●●

●

●●●●● ●●●●●●●●●●
●●●●

●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

● ●
●●●●●●

●●●●●●●
●
●●●
●

●●●●● ●●●●●●●●●●● ●●●●● ●
●

●

●●●●●●●●●● ●● ●●●●●●●●●●
●●●●●

●

●

●●

●

●●●●●●●●●●●●●● ●●
●●

●
●●●●●
●●●●●●

●
●●●

●

●

●

●●●● ●

●

● ●
●

●●●●●●
● ●●●●●●

●● ●●

●

●●
●

●

●

●

●●●
●

●
●
●
●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●● ●
●

●● ●

●

●● ●
●

●●●●● ●●●

●

●●

●

●●●●●●●●● ●●

●

●●

●

●

● ●●
●

●●
●
●

●

●
●●●●●● ●●●●● ●●
●

●

●
●

●●
●

●●●
●

●
●●●● ●●●●●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●

● ●●
●●

●●●●●●●●●●
●

●
●

●
●●

●
● ●●
● ●
●●●●● ●●●●●●

●

●●●●●●●●●
●
●●●
●
●
●●●●●

●

●●●●●

●

●

●●●
●

●●●●●●●
●●

●

●●●●●
●

●●●●
●

●
●●●●●●●

●

●

●●●●●●● ●●●●●
●

●●●● ●●●

●

● ●
● ●●●●

●

●
●●●

●

●
●●

●

●

●
●

●●●●●
●
●●●●

●

●●●● ●●●●●●●●●●●●●●●

●

●●●●●●●●
●●

●●

●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

●●
●

● ●
● ●

●
● ●●●●●●●●●●●● ● ● ●

●

●●●●●●●●●●
●

●●●

●

●●●●● ●●
●●●●●●●●●

●●●●●
●●●●●● ●● ● ●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●● ●●● ●
●●

●
●●

●

● ●●●●●●●●●● ● ●●●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●
●●

●

●●●●●● ●
●

●●●●●●●
●

●●●●●●
●

●●●●●

●

●

●
●

●●●●●●●●
●●●●

●
●●●
●

●
●●●●●●

●●
●

●

●

●
●
●●●●
●

●

●
●●●●●●●●●●●●●●● ●●●●

●
● ●

●

●● ●●●●●●

●

●

●●●
●

● ●● ●●
●
●●●●●●●●●

●

●
●

●● ● ●●●●●●

●

● ●●●●●●●●●●●

●

●
●●●●

●

●●●
●
●●●● ●●●●●●●

●
●●●●●●●
●
●
●
● ●●

●
●

●●●●
●
● ●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●
●

●●●

●

●● ●●●●●●●●●●●●●
●●

●
●

●●●●●●●●●●●● ● ●●●●●●●●●●●●●●

●

●●●●●
●

●
●

●
●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ●

●

●

●

●

●●●●

●

●●●●●●●●●●●●
●

●
●

●● ●
● ●●

●●●●

●

●●●●●●
●

●●
●

●
●●●●●●●●●

●

●

●

●●●

●

●●●

●

●●●●●●● ●●●●●
●

●

●

●● ●
●●●●●●●

●
● ●●● ●●

●

●
●●

●

●●● ● ●●● ●●●●●● ●●●●●●●●●●
●

●
●●●●

●

●
●
●●●●● ●●●●●●

●
●●●●●

●

●●●●

●

●●●●●
●

●●●●●●●●●

●

●

●●●●
●

●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ● ●●●
●● ●●●●●●●●●●●●●●●●●

●

●
● ●●

●

●

●
●

●●●●●
●

●
●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●
●

●●●●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●● ●●●●● ●●
●
●●●●● ●
●
●●● ●●●●●
●●

●

●●●●●●●●●●●●●●●●
●

●●●●●
● ●●

●

●●

●

●●●●●●●●
●●●●

●

●●●
●

●
●

●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●● ● ●●

●

●●●●●●●●●●●●●●
●

●

● ●
●●●●●

●

●

●●

●

●●●●●●●

●

●●●●

●

●●
●●●●
●

●

●
●

●

●
●

●
●●

●

●

●
●

●●●● ● ●
●●●●●

●
●●● ●●●● ●

●

●

●●
●
●●

●

●●●●●●●●●●●●●●
●

●●●●●●● ●●●●
●

●

●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●
●

●
●●●●●●

●

●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●
●

●●●

●

●●●●●●●●●●●●

●

●●
● ●

●

●

●●●●●●●●●●●●●●● ●
●
●●● ●● ●
●●●●●●●●●
●●●●●●●●●●●●●

●●

●
● ●●
● ●
●

●●●
● ●
●

●
● ●●●●●●● ●●

●●

●

●
●

●●
●

●

●

●
●

●
●
● ●●
●●●●●●

●
●●●● ●●●●● ●●● ●

●

●
●

●

●

●
●

●

●
●
●

●
●●●●●●●●●●

●

●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●
●

●●●●

●

●

●●●●●●●●●● ●●●

●

●● ●

●

●

●

●
●
●●

●

●

●● ●●●●●

●

●●●●●●●●●●●

●

●●● ●● ●●●

●

●●●●●●●

●

●●●●●●● ●●

●

●●

●

● ●
●

●●●●●●●●●●●●●● ●●●●●

●

●

●

●
●

●

●●●●

●

●● ●●●●
●●● ● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●

●
●●●●

●

●

●● ●● ●●●
●

●

●

●● ●●●●●
●
●●●● ●●●●●●●●●●●● ●

●

● ●●●●●●●
●

●●●●●●●●●

●

●

●

●

●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●
●
●●●
●

●●●●
●●●●

● ●

●
●●

●
●●●●●
● ●

●●● ●●● ●
●

●●●●

●

●
●

●●
●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●
●

●

●
●●●●●●●●●●●●●●●●●●●

●
●●●

●
● ● ●●

● ●
●●

●

●
●

●●
●

●●●●●●●●●●●●●
●

●

●

●

●

●●●●●
●
●●●●●●●●●●●●●●●●
●

●
●●●●●●●● ●●
●●●●●●●

●

● ●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●

●

●
●
●● ●
●●●● ●

●

●
●
●● ●

●● ● ●●●●● ●●●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●● ●●
●

●●●●●●●●●●●●●●● ●● ●

●

●● ●●●●●●●●●●●●
●
●●●●●●●●● ●●●

● ●
●●●●●● ●●●●●●●●●●●

●

●

●●●
●

●
●●●●●●●●●

● ●●
●●
●

●●

●

●●●●●●●●

●

●●

●

●●● ●●● ●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●
●

●

●● ●●●●●●●

●

●
●
●
●●●

●

●

●●●●●●●●●●

●

●
●●●●

●

●
●●●●● ●●●●●●●●●●● ●●●●●●●●●

●
●

●

●●●●●●●●●●●● ●
●
●

●●●●● ●●●●●●●●

●

●●
●

●
● ●●●●●●●●●●●●●●●●

●
● ●●●●●●●
●
●●●●●●●●●●●●●●

●

●
●●

●●

● ●

●

●

●●●●
●

●●●● ●
●

●● ●●●●●●●●●●●●
●●

●

●● ●●●●●●●●●●●●●

●

●

●

● ●●●●●●●●●●

●

●●●●
●

●●
●●●●●●●●●

●

●●● ●● ●●●●●● ●●●
●
●●●● ●

●●●●●●

●

●●●
●

●●●●●●●●

●

●●

●
●
●●●
●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●

● ● ●●
●●●

●
●● ●●●●●●●●

●

●●●●●●● ●●●●●●●●

●

●●● ●●●●

●
●●
●●●●

●

●●●●●●●●●●

●

●●●●

●

● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●

●

●
●
●

●

●● ●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●● ●●●
● ●

●
●

●●●●●●●
●●●●●●●

●
●

●
●

●
●● ●

●
●●● ●●●●●●
●

●●●● ●
●

●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●● ●●
●

●●

●

●

●●●●●
●
●●●●●●●●●●●●

●
●

●
●

●●●●

●

●●●●●●●
●

●●●●●●●●●●
●●
●

●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●●● ●●●●●●●●●●●●●●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●
●
●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

● ●
●●●●●●

●
●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●

●●●

●

●●●●●●●●●●● ●●●●●●●●

●

●●
●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●● ●●●●●●●●●● ●●

●●●● ●● ●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●

●

●●●●●
●

●●
●●●●

●
●●●

●

●●●●● ●●●●●●● ●●
●

●
●●●●

●● ●●●●●● ● ●

●

●●●●● ●●

●

●●●

●

●●●

●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●

●

●

●
●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●

●
●

●
●

●

●

●●
●

●
●●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●●●●

●

●●● ●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●
●● ●●●●●●●●●●

●

●

●
●●●●

●
●●
●● ● ●

●

●

●

●

●●

●

●
●●●●●●●●●●●●●●●● ●

●
●●●

●

●●●●●●●
●

●●

●

●●●●●●●●●●●●●

●

−100 −50 0 50 100

−
40

0
0

20
0

40
0

Changes of Package

C
ha

ng
es

 o
f V

ul
ne

ra
bi

lit
y

Fig. 17: Overall Regression.

As numbers of the vulnerabilities are not correlated with
both apk size and package numbers. We can deduce that not
all packages commonly introduce vulnerabilities yet only
for certain packages.

Insights from RQ4: Although third-party libraries are the
main contributor of vulnerabilities, it is quite possible that
the major contribution is only from part of these libraries.
Therefore more focus should be given on the analysis
of libraries and market maintainers could draw policies
rejecting apps using non-vetted libraries. Moreover, the
claim made in [71] that more code and libraries imply
more vulnerabilities may not be always true.

3.5 Vulnerability and Malware

To answer RQ5: Do vulnerabilities foreshadow malware?
We investigate relationships between app vulnerabilities

14

and malware. One way for malware to achieve their mali-
cious behaviors is by leveraging vulnerabilities. Reasonably,
malware can deliberately implement vulnerabilities for their
own use as presented in [81]. Moreover, to distinguish
malware from benign apks, the common practice is using
anti-virus(AV) flagging reports. AndroZoo provides these
reports 20 as metadata for all its apks and in this study, we
treat an apk as malware as long as one or more AVs gave
positive reports.

TABLE 4: Benign and Malware in Vulnerable APK Sets

SSL Security Command Permission WebView KeyStore
Malware 42.17% 56.00% 62.90% 44.73% 35.79%
Benign 57.83% 44.00% 37.10% 55.27% 64.21%

Fragment Encryption Leak Intent IntentFilter
Malware 14.28% 58.82% 38.12% 37.96% 43.85%
Benign 85.72% 41.18% 61.18% 62.04% 56.15%

Table 4 reports the proportion of benign and malware
which are detected as vulnerable for each vulnerability type.
Malware are not more likely to contain a given vulnera-
bility than benign apps. We further perform a correlation
study on these malware to assess whether the number of
vulnerabilities in an apk can be correlated to the number
of AVs that flag it. This is important since AVs are known
to lack consensus among themselves [82], [83]. For every
vulnerability type we found that the Spearman’s ρ was
below 0.30, implying negligible correlation.

0

25

50

75

100

Command KeyStore Fragment Encryption

#
 o

f

benign adware trojan

 V
ul

ne
ra

bi
lti
es

Fig. 18: Vulnerability VS Malware21

We now carry an evolution study to investigate whether
certain vulnerabilities may foreshadow certain type of An-
droid malware. To this end, we rely on type information
provided in AndroZoo based on the Euphony tool [84].
A malware can be labeled with various types, including
trojan, adware, etc. Given an app lineage, when a single
apk is flagged by AVs, we consider its non-flagged prede-
cessors in the lineage and count cumulatively how many
vulnerabilities were included in them. For each lineage
where all apks are benign we also count the number of
vulnerabilities per vulnerability types. We then perform the
MWW test, for each vulnerability type, to assess whether the
difference between, on the one hand, the median number of
vulnerabilities for malware of a given type, and, on the other
hand, the median number of vulnerabilities in benign apps,
is statistically significant. In most cases, this difference is not
statistically significant, suggesting that most types of An-
droid malware cannot be readily characterized by vulnera-
bilities within the malware itself. Nevertheless, we find four
interesting cases of vulnerability types (namely, Command,
KeyStore, Fragment and Encryption), where vulnerabilities

20. AndroZoo provides, for each apk, AV reports of dozens of AV
engines hosted by VirusTotal (https://www.virustotal.com)

21. Other vulnerabilities are ignored due to insignificant differences
observed between benign, adware and malware samples. Hence, they
are omitted from the figure to give a clear exhibition.

are suggestive of malicious behavior. Figure 18 illustrates
the distribution of vulnerabilities across benign, trojan, and
adware. Vulnerabilities of these types are significantly less
in benign lineages than in earlier apks of lineages where
malware of type trojan or adware will appear as shown in the
figure and further proved by the 0 valued p-values between
benign and adware and between benign and trojan of all 3
types except Encryption, while the absence of benign of type
Encryption in the figure reflects that benign apks does not
contain any of such vulnerability.

Insights from RQ5: Our study finds similar rates of vul-
nerabilities in malware as well as benign apps. However,
we uncovered cases where vulnerable apks were updated
into malicious versions later in the app lineage.

4 DISCUSSION

We now discuss the potential implications and future works,
as well as the possible threats to the validity of this study.

4.1 Implication and Future Work
The datasets and empirical findings in this work suggest a
few research directions for implications and future works in
improving security in the Android ecosystem.

• Understanding the genesis of mobile app vulnera-
bilities. Since app lineages represent the evolution of
apps, they could contain the information about “when”
and “how” is a given vulnerability initially introduced.
This information could then be leveraged to understand
the genesis of the vulnerability and thereby help re-
searchers and developers invent better means to locate
and defend such vulnerabilities.

• Tools to address vulnerability infections. By leverag-
ing app lineages, the corrected pieces of code of a vul-
nerability happened in a certain app version could be
spotted and extracted from its subsequent app versions
with the fixes. Indeed, the vulnerable code snippets
disclosed in this work could be leveraged to mine fix
patterns for certain vulnerabilities and subsequently
enable the possibility of automated vulnerability fixes.

• Reintroduction analysis for app updates. As revealed
in the answer to RQ3, the fact that vulnerabilities can
be reintroduced into apps during their updates, it is
essential to perform reintroduction analysis (either stat-
ically or dynamically) for Android apps. These analyses
later could be immediately adopted by app markets
to guarantee that app updates do not introduce more
(known) vulnerabilities.

• Library screening strategies. As concluded in Sec-
tion 3.4, third-party libraries are the main contribu-
tor of vulnerabilities in an app. Thus, when libraries
containing serious vulnerabilities get to be popular,
the aftermath will be difficult to estimate. Such inci-
dent happened once on August 21, 2017, Bauer and
Hebeisen [85], from the Lookout Security Intelligence
team, have reported that their investigation of a suspi-
cious ad SDK (i.e., ad library) revealed a vulnerability
that could allow the SDK maintainer to introduce ma-
licious spyware into apps. After it was alerted, Google

15

has then removed from the market over 500 apps con-
taining the affected SDK: those apps were unfortunately
already downloaded over 100 million times across the
Android ecosystem. Therefore, strategies of selective
screening of libraries could be investigated to clean app
markets with apps which unnecessarily ship vulnerable
libraries.

• Understanding the pervasiveness of vulnerabilities.
According to this study, each apk contains more than 60
vulnerabilities on average. Although intensive studies
have been done on different kinds of vulnerabilities, no
vulnerability “bubble” explosions have been observed
as we studied in RQ1. However, detection tools target-
ing on these vulnerabilities have been made publicly
available and free for quite a long time such as the tools
we used in this study. Therefore, why developers did
not using these tools to protect their apps could be an
interesting question to answer in future work.

• A correlation study of vulnerabilities and malware. In
this study, the cases where APKs containing certain vul-
nerabilities were updated into malware have been spot-
ted. Khodor et al. [81] also observed similar cases that
malware deliberately implements vulnerabilities for its
malicious purpose. This phenomenon implies that there
could be correlations between certain vulnerabilities
and malware. Nonetheless, more thoroughly defined
experiments are needed to confirm this hypothesis. We
believe that app lineages, introduced in this work, can
be leveraged to implement such studies.

4.2 Threats to Validity

Like most empirical investigations, our study carries a num-
ber of threats to validity. We now briefly summarise them in
this subsection.

Threats to external validity are associated with our study
subjects as well as to the vulnerability detection tools that
are selected. To provide reasonable confidence in the gen-
eralizability of our findings, this study leverages the most
comprehensive dataset of Android apps. Threats to external
validity are further minimized by considering a variety of
vulnerability detection tools (hence of vulnerability types)
for our study.

The main threat to internal validity is related to the pro-
cess that we have designed for re-constructing app lineages.
To minimize this threat, we have implemented constraints
that are conservative in including only relevant APKs in a
lineage.

In terms of threats to construct validity, our analyses as-
sume that all vulnerability types are of the same importance
and that every APK can be successfully analyzed. Yet, since
the IC3 and FlowDroid successfully analyzed fewer APKs
than AndroBugs, the scale of the significance of the findings
may vary. Nevertheless, we have focused more on assessing
proportions related to available data per vulnerability types
(instead of immediate averages).

Also, code obfuscation is not considered in this study.
As it is more and more common for developers to obfuscate
their code because of security or malicious consideration.
This could introduce some impacts on our results. However,
many of our analyses are naturally obfuscation immune

(e.g., leak analysis checks the data flows from sources to
sinks, while sources and sinks are normally Android API
calls which cannot be obfuscated.). Therefore, the impact of
code obfuscations should be limited.

Furthermore, the experimental results may be impacted
by the validity of the results of the selected vulnerability
detection tools. Given that these are static analysis tools, it
is known that they may yield false positives. We attempt
to mitigate this impact by performing a manual verification
to some of the randomly selected vulnerabilities yielded by
the three analyzers. As discussed in Section 4.1, the naive
verification process does not spot any clearly false positive
results (i.e., the vulnerabilities are at least in conformance
with the definition of vulnerabilities as proposed in the
tools documentation). However, since the verification was
implemented by 2 PhD students, their experiences could
have a direct impact on the verification result. Thus, lack
of proof of the authenticity of the vulnerabilities is the main
threats to the validity of this study. Moreover, during the
manual verification, vulnerabilities of non-HTTPS links are
not considered. The main reasons are: 1) they are quite
straightforward to be identified, and 2) these links can be
changed over time and thereby are difficult to be verified
(e.g., for an HTTP link, if an HTTPS page and redirect were
added just before the verification, should we consider it as
a false positive?). The pervasiveness of such vulnerabilities
also makes it hard to be manually checked. But we still have
to be aware of the possibility of the impact on the results.

2010 2011 2012 2013 2014 2015 2016
original dataset

0.0

0.2

0.4

0.6

0.8

2010 2011 2012 2013 2014 2015 2016
common sampled dataset

0.0

0.2

0.4

0.6

0.8

1.0

SSL Security
Command

Permission
WebView

KeyStore
Fragment

Encryption
Leak

Intent
IntentFilter

Fig. 19: Trends Comparison between the Original Dataset (im-
balanced) and the Common Sampled Dataset (balanced).

Finally, due to constraints such as time budgets and com-
putation resources, the results yielded by the three selected
static analyzers are for a different number of apps. Since
the results obtained by the static analyzers are not always
from the same samples, different vulnerabilities could be
collected from different datasets. Therefore, our empirical
observations could have been impacted by such inconsistent
datasets. However, as we have not attempted to compare
the results between different static analyzers, we believe
that such an impact should be negligible Nevertheless, to
empirically demonstrate this, we go one step deeper to

16

revisit the aforementioned studies with a common corpus.
Specifically, we conduct our revisit study on 356 app lin-
eages, which correspond to 3984 APKs, having all these
apps successfully analyzed by the three tools. Our revisit
study reveals that the empirical findings observed from a
common app lineage set are more or less similar to that of
imbalanced datasets. For example, regarding the evolving
patterns of vulnerable apps, as illustrated in Figure 19, the
results observed from the imbalanced dataset (above sub-
figure) and the common corpus (bottom sub-figure) more
or less follow similar trends, indicating that the empirical
results observed will unlikely be impacted by the dataset
chosen in this study.

5 RELATED WORK

Our work is related to several contributions in the literature.
In previous sections, we have discussed the case of data
leaks vulnerability in Android investigated by the authors
of TaintDroid [76], FlowDroid [13] and IccTA [14]. Other
analyzers have been proposed based on static analysis [6],
[53], [86], dynamic analysis [87], [88], [89], [90], [91] or a
combination of both [12] to find security issues in apps. In
view of the amount of literature that relates to our work, we
focus on three main topics:

5.0.0.1 Android security studies: Subsequent to the
launch of Android, several comprehensive studies have
been proposed to sensitize on security issues plaguing the
Android ecosystem. Enck et al. [77] have provided the
first major contribution to understanding Android applica-
tion security in general with all potential issues. However,
compared to the dataset used in this study, the number of
their samples was limited. Felt et al. [3] have then focused
on permission re-delegation attacks while Grace et al. [5]
focuses on capability leaks. They unveiled vulnerabilities
related to permissions. While this paper studied different
kind of vulnerabilities from the evolution aspect. Zhou et
al. [59] have later focused on manually dissecting malicious
apps to characterize them and discuss their evolution. The
MalGenome dataset produced in this study has since been
used as a reference dataset by the community. We mainly
focus on the vulnerabilities of Android. More recently, Li
et al. [58] have performed a systematic study for under-
standing Android app piggybacking: they notably pointed
out libraries as a primary canal for hooking malicious code.
Although piggybacking is different from updating, as it is
a tempering by other developers, there are some similar
mechanisms and we borrowed some ideas from their study.

5.0.0.2 Vulnerability studies: Vulnerabilities, also
known as security-sensitive bugs, have been extensively
studied in the literature [92] for different systems [93],
[94], [95], [96], [97] and languages [44], [98], [99], [100].
Camilo et [29] have recently investigated the Chromium
project to check whether bugs foreshadow vulnerabilities.
Researchers have also proposed approaches to automati-
cally patch them [101], [102].

In the Android literature, several studies have already
been performed: Bagheri et al. [103] have recently ana-
lyzed the vulnerabilities of the permission system in An-
droid OS; Huang et al. [104] have studied so-called Stroke
vulnerabilities in the Android OS which can be exploited

for DoS attacks and for inducing OS soft-reboot; Similarly
Wang et al. [105] have analyzed Android framework and
found 6 until-then unknown vulnerabilities in three com-
mon services and 2 shipped apps, while Cao et al. [106]
focused on analyzing input validation mechanisms. Qian et
al. [16] have developed a new static analysis framework for
vulnerability detection. Thomas et al. [39] have analyzed
102k+ apks to study a CVE reported vulnerability on the
JavaScript-to-Java interface of the WebView API. Jimenez et
al. [107] have attempted to profile 32 CVE vulnerabilities
by characterizing the OS components, the issues, the com-
plexity of the associated patches, etc. Linares-Vásquez et al.
[108] have then presented a larger-scale empirical study on
Android OS-related vulnerabilities. OS vulnerabilities have
also been investigated by Thomas et al. [109] to assess the
lifetime of vulnerabilities on devices even after OS updates
are provided. Closely related to our work is the study by
Watanabe et al. [71] where authors investigated the location
of vulnerabilities in mobile apps. Our work extends and
scales their study to a significantly larger dataset. Finally,
Mitra and Ranganath recently proposed the Ghera [110]
repository with a benchmark containing artifacts on 25
vulnerabilities. Our work is complementary to theirs as we
systematically collect thousands of pieces of code related
to a few vulnerabilities, from which researchers can extract
patterns, and help validate detection approaches.

TABLE 5: Related Works in Vulnerability Study

Work APK # Type # Detail Year
Fahl et al.
[10]

13,500 1 Studied only SSL se-
curity vulnerabilities

2012

Jiang et al.
[11]

62,519 1 2 vuls stem from con-
tent provider com-
ponents which are
called passive con-
tent leaks and con-
tent pollutions

2013

Sounthiraraj
et al. [12]

23,418 1 Studied SSL security
by using both static
and dynamic analy-
sis

2014

Watanabe et
al. [71]

30,000 4 3 vuls of information
disclosure, 6 vuls of
SSL security, 5 vuls
of inter-component
communication and
4 vuls of webview

2017

Taylor et al.
[26]

30,000 5 Studied 3 vuls of in-
formation disclosure,
3 vuls of insecure
network communica-
tion, 2 vuls of cryp-
tography, 2 vuls re-
lated to intent spoof-
ing and debuggabil-
ity and 1 vuls of bi-
nary protection and
did and evolutionary
study based on 1 up-
date comparison.

2017

Table 5 lists the works which are similar to this study. It is
noteworthy that the number of APKs considered in these re-
ported studies is much less (by an order of magnitude) than
the number of APKs considered in this paper. Moreover,
most of the studies focused on one specific vulnerability
type. Although, the latest two works studied Android vul-

17

nerabilities more generally and the last one even considered
about app updates. None of them studied vulnerabilities
from the aspect of app lineages. Therefore, some evolution
patterns of vulnerabilities can only be found in this study
such as vulnerability reappearing.

5.0.0.3 Software evolution: The software engineer-
ing literature includes a large body of work on software
maintenance and evolution [111], [112], [113], [114], [115].
We focus our discussion on recent Android-related work.
In one of the latest work, Coppola et al. have investigated
the fragility in Android GUI testing by utilizing 21 metrics
to measure the adoption tools and their evolution [116].
Differently, our work is more focused on Android app vul-
nerability analysis. Calciati and Gorla [24] have leveraged
the AndroZoo dataset to investigate the evolution of permis-
sion requests by Android apps. Taylor and Martinovic [26]
also investigated how permission usage by apps, as well as
security and privacy issues, have changed over a two-year
period. Our work scales their approach with a larger set
of apps, spanning a larger timeline, and considering entire
lineages instead of only a pair of app versions. Evolution
of Android OS code has also been investigated. McDonnell
et al. have empirically studied the stability of Android
APIs [117] while Li et al. focused on the evolution of in-
accessible Android APIs [25]. Thanks to the lineage dataset
that we have collected, further studies can be performed
to check the alignment between OS API evolution and API
usage evolution in app code.

6 CONCLUSION

Evolution studies are important for assessing software de-
velopment process and measure the impact of different
practices. However, such studies, to be meaningful, must
scale to the size of the artifact. For Android apps, this was
so far a challenge due to the lack of significant records on
market apps. Our work first addresses these challenges by
re-constructing 28,564 lineages formed in total by 465,037
apks. We have then run computationally expensive vulnera-
bility scanning experiments on these app lineages providing
a view vulnerability evolution, which is so far the largest
scale of this kind studies. Moreover, investigating Android
vulnerabilities from app lineage point of view is the major
novelty of this study, which allows us to yield several newly
spotted findings: 1) most vulnerabilities can survival at less
3 updates; 2) part of third-party libraries are the major
contributors of the most vulnerabilities; 3) vulnerability
reintroduction occurs for all kinds of vulnerabilities while
Encryption-related vulnerabilities are the most reintroduced
within all types of this study; and 4) some vulnerabilities
may foreshadow malware. In addition to new findings, this
large scale study also confirms most of the conclusions from
previous studies with relatively small datasets. However,
the result of this study also suggests that the recent claim
made by Watanabe et al. [71] that more code and libraries
imply more vulnerabilities may not be always true. Finally,
3 valuable artifacts produced by this study: 1) app lineages,
2) the complete dataset of vulnerability scanning reports,
3) recorded vulnerable pieces of code, are shared.

ACKNOWLEDGMENT

This work is supported by the Luxembourg
National Research Fund (FNR) through grant
PRIDE15/10621687/SPsquared and project CHARAC-
TERIZE C17/IS/1169386.

REFERENCES

[1] Craig Smith. 75 amazing android statistics and facts
(august 2017). http://expandedramblings.com/index.php/
android-statistics/. Accessed: 2017-08-20.

[2] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves
Le Traon. Static analysis for extracting permission checks of a
large scale framework: The challenges and solutions for analyz-
ing android. IEEE Transactions on Software Engineering, 40(6):617–
632, 2014.

[3] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve
Hanna, and Erika Chin. Permission re-delegation: Attacks and
defenses. In USENIX Security Symposium, volume 30, 2011.

[4] Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your
droid are belong to us: A survey of current android attacks.

[5] Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang.
Systematic detection of capability leaks in stock android smart-
phones. In NDSS, volume 14, page 19, 2012.

[6] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang.
Chex: statically vetting android apps for component hijacking
vulnerabilities. In Proc. of the 2012 ACM conference on Computer
and communications security, pages 229–240. ACM, 2012.

[7] Yvo Desmedt. Man-in-the-middle attack. In Encyclopedia of
cryptography and security, pages 759–759. Springer, 2011.

[8] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David
Wagner. Analyzing inter-application communication in android.
In Proc. of the 9th international conference on Mobile systems, applica-
tions, and services, pages 239–252. ACM, 2011.

[9] Jeremy Clark and Paul C van Oorschot. Sok: Ssl and https:
Revisiting past challenges and evaluating certificate trust model
enhancements. In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 511–525. IEEE, 2013.

[10] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgärtner, Bernd Freisleben, and Matthew Smith. Why
eve and mallory love android: An analysis of android ssl (in)
security. In Proc. of the 2012 ACM conference on Computer and
communications security, pages 50–61. ACM, 2012.

[11] Jiang Xuxian and Yajin Zhou. Detecting passive content leaks
and pollution in android applications. In Proc. of the 20th Network
and Distributed System Security Symposium, 2013.

[12] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang
Lin, and Latifur Khan. Smv-hunter: Large scale, automated
detection of ssl/tls man-in-the-middle vulnerabilities in android
apps. In In Proc. of the 21st Annual Network and Distributed System
Security Symposium (NDSS14). Citeseer, 2014.

[13] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[14] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick McDaniel. Iccta: Detecting inter-
component privacy leaks in android apps. In Proc. of the 37th Intl.
Conference on Software Engineering-Volume 1, pages 280–291. IEEE
Press, 2015.

[15] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha,
and Patrick McDaniel. Composite constant propagation: Appli-
cation to android inter-component communication analysis. In
Proc. of the 37th Intl. Conference on Software Engineering-Volume 1,
pages 77–88. IEEE Press, 2015.

[16] C. Qian, X. Luo, Y. Le, and G. Gu. Vulhunter: Toward discovering
vulnerabilities in android applications. IEEE Micro, 35(1):44–53,
Jan 2015.

[17] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-
party library detection in android and its security applications.
In Proc. of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 356–367. ACM, 2016.

18

[18] David Kantola, Erika Chin, Warren He, and David Wagner.
Reducing attack surfaces for intra-application communication in
android. In Proc. of the second ACM workshop on Security and
privacy in smartphones and mobile devices, pages 69–80. ACM, 2012.

[19] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu,
Cong Zheng, Ruian Duan, Yeongjin Jang, Byoungyoung Lee,
Chenxiong Qian, et al. Toward engineering a secure android
ecosystem: A survey of existing techniques. ACM Computing
Surveys (CSUR), 49(2):38, 2016.

[20] Wei You, Bin Liang, Wenchang Shi, Shuyang Zhu, Peng Wang,
Sikefu Xie, and Xiangyu Zhang. Reference hijacking: Patching,
protecting and analyzing on unmodified and non-rooted android
devices. In Proc. of the 38th Intl. Conference on Software Engineering,
pages 959–970. ACM, 2016.

[21] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu.
Adaptive unpacking of android apps. In Proceedings of the 39th
International Conference on Software Engineering, ICSE ’17, pages
358–369, Piscataway, NJ, USA, 2017. IEEE Press.

[22] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dexhunter: To-
ward extracting hidden code from packed android applications.
In Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors,
Computer Security – ESORICS 2015, pages 293–311, Cham, 2015.
Springer International Publishing.

[23] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin
Vechev. Statistical deobfuscation of android applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 343–355, New York, NY,
USA, 2016. ACM.

[24] Paolo Calciati and Alessandra Gorla. How do apps evolve in
their permission requests?: a preliminary study. In Proc. of the
14th Intl. Conference on Mining Software Repositories, pages 37–41.
IEEE Press, 2017.

[25] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein.
Accessing inaccessible android apis: An empirical study. In The
32nd Intl. Conference on Software Maintenance and Evolution (ICSME
2016), 2016.

[26] Vincent F Taylor and Ivan Martinovic. To update or not to
update: Insights from a two-year study of android app evolution.
In Proc. of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 45–57. ACM, 2017.

[27] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. Androzoo: collecting millions of android apps for the
research community. In MSR ’16 Proc. of the 13th Intl. Conference
on Mining Software Repositories, pages 468–471, Austin, Texas, May
2016.

[28] AndroZoo. Androzoo website. http://androzoo.uni.lu.
[29] Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan.

Do bugs foreshadow vulnerabilities? a study of the chromium
project. In Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, pages 269–279. IEEE, 2015.

[30] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, An-
dreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden.
Mining apps for abnormal usage of sensitive data. In Proc. of
the 37th Intl. Conference on Software Engineering-Volume 1, pages
426–436. IEEE Press, 2015.

[31] Johnathon Burket, Lori Flynn, Will Klieber, Jonathan Lim, and
William Snavely. Making didfail succeed: Enhancing the cert
static taint analyzer for android app sets. 2015.

[32] FlowDroid. Flowdroid website. https://blogs.uni-paderborn.
de/sse/tools/flowdroid/.

[33] Yu-Cheng Lin. Androbugs framework: An android application
security vulnerability scanner. In Blackhat Europe 2015, 2015.

[34] AndroBugs. Open source repository. https://github.com/
AndroBugs/AndroBugs Framework.

[35] AndroBugs. Hall of fame. https://www.androbugs.com/\#hof.
[36] Matthias Neugschwandtner, Martina Lindorfer, and Christian

Platzer. A view to a kill: Webview exploitation. In LEET, 2013.
[37] Y Cifuentes, L Beltrán, and L Ramı́rez. Analysis of security

vulnerabilities for mobile health applications. In 2015 Seventh Intl.
Conference on Mobile Computing and Networking (ICMCN 2015),
2015.

[38] Mohamed Sabt and Jacques Traoré. Breaking into the keystore:
A practical forgery attack against android keystore. In Euro-
pean Symposium on Research in Computer Security, pages 531–548.
Springer, 2016.

[39] Daniel R Thomas, Alastair R Beresford, Thomas Coudray, Tom
Sutcliffe, and Adrian Taylor. The lifetime of android api vul-

nerabilities: case study on the javascript-to-java interface. In
Cambridge Intl. Workshop on Security Protocols, pages 126–138.
Springer, 2015.

[40] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin.
Attacks on webview in the android system. In Annual Computer
Security Applications Conference, pages 343–352. ACM, 2011.

[41] Roee Hay. Android collapses into fragments. In IBM Security
Systems, 2013.

[42] Adam Cozzette. Intent spoofing on android. http://blog.
palominolabs.com/2013/05/13/android-security/index.html.
Accessed: 2017-08-20.

[43] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. The soot-
based toolchain for analyzing android apps. In Proc. of the 4th
Intl. Conference on Mobile Software Engineering and Systems, pages
13–24. IEEE Press, 2017.

[44] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State
of the art: Automated black-box web application vulnerability
testing. In Security and Privacy (SP), 2010 IEEE Symposium on,
pages 332–345. IEEE, 2010.

[45] Mike Bland. Finding more than one worm in the apple. Commu-
nications of the ACM, 57(7):58–64, 2014.

[46] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai,
Dan Boneh, and Vitaly Shmatikov. The most dangerous code in
the world: validating ssl certificates in non-browser software. In
Proc. of the 2012 ACM conference on Computer and communications
security, pages 38–49. ACM, 2012.

[47] Christopher Meyer and Jörg Schwenk. Sok: Lessons learned
from ssl/tls attacks. In Intl. Workshop on Information Security
Applications, pages 189–209, 2013.

[48] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright,
and Stefan Savage. When private keys are public: Results from
the 2008 debian openssl vulnerability. In Proc. of the 9th ACM
SIGCOMM conference on Internet measurement conference, pages
15–27. ACM, 2009.

[49] Chaoshun Zuo, Jianliang Wu, and Shanqing Guo. Automatically
detecting ssl error-handling vulnerabilities in hybrid mobile web
apps. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, pages 591–
596, New York, NY, USA, 2015. ACM.

[50] OWASP. Mobile top 10 2014-m2: Insecure data storage. https:
//www.owasp.org/index.php/Mobile Top 10 2014-M2. Ac-
cessed: 2017-08-20.

[51] Adam Cozzette, Kathryn Lingel, Steve Matsumoto, Oliver Or-
tlieb, Jandria Alexander, Joseph Betser, Luke Florer, Geoff Kuen-
ning, John Nilles, and Peter Reiher. Improving the security of
android inter-component communication. In Integrated Network
Management (IM 2013), 2013 IFIP/IEEE Intl. Symposium on, pages
808–811. IEEE, 2013.

[52] Dragos Sbı̂rlea, Michael G Burke, Salvatore Guarnieri, Marco Pis-
toia, and Vivek Sarkar. Automatic detection of inter-application
permission leaks in android applications. IBM Journal of Research
and Development, 57(6):10–1, 2013.

[53] William Enck, Machigar Ongtang, and Patrick McDaniel. On
lightweight mobile phone application certification. In Proc. of
the 16th ACM conference on Computer and communications security,
pages 235–245. ACM, 2009.

[54] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen.
Androidleaks: Automatically detecting potential privacy leaks in
android applications on a large scale. Trust, 12:291–307, 2012.

[55] Hoang Tuan Ly, Tan Cam Nguyen, and Van-Hau Pham. edsdroid:
A hybrid approach for information leak detection in android. In
Intl. Conference on Information Science and Applications, pages 290–
297. Springer, 2017.

[56] Sergio Yovine and Gonzalo Winniczuk. Checkdroid: a tool for
automated detection of bad practices in android applications
using taint analysis. In Proc. of the 4th Intl. Conference on Mobile
Software Engineering and Systems, pages 175–176. IEEE Press, 2017.

[57] Google. App id. https://developer.android.com/studio/build/
application-id.html. Accessed: 2017-07-16.

[58] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding
android app piggybacking: A systematic study of malicious code
grafting. IEEE Transactions on Information Forensics and Security,
12(6):1269–1284, 2017.

[59] Yajin Zhou and Xuxian Jiang. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 95–109. IEEE, 2012.

19

[60] L. Li, T. Bissyand, and J. Klein. Moonlightbox: Mining android
api histories for uncovering release-time inconsistencies. In 2018
IEEE 29th International Symposium on Software Reliability Engineer-
ing (ISSRE), pages 212–223, Oct 2018.

[61] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh,
and Lorenzo Cavallaro. The evolution of android malware and
android analysis techniques. ACM Computing Surveys (CSUR),
49(4):76, 2017.

[62] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor,
Manoj Singh Gaur, Mauro Conti, and Muttukrishnan Rajarajan.
Android security: a survey of issues, malware penetration, and
defenses. IEEE communications surveys & tutorials, 17(2):998–1022,
2015.

[63] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al. Securing
android: a survey, taxonomy, and challenges. ACM Computing
Surveys (CSUR), 47(4):58, 2015.

[64] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and
Mark Harman. A survey of app store analysis for software
engineering. IEEE transactions on software engineering, 43(9):817–
847, 2017.

[65] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek.
A taxonomy and qualitative comparison of program analysis
techniques for security assessment of android software. IEEE
Transactions on Software Engineering, 43(6):492–530, 2017.

[66] Zakir Durumeric, James Kasten, David Adrian, J Alex Halder-
man, Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann,
Jethro Beekman, Mathias Payer, et al. The matter of heartbleed.
In Proc. of the 2014 Conference on Internet Measurement Conference,
pages 475–488. ACM, 2014.

[67] Joshua Drake. Stagefright: Scary code in the heart of android.
BlackHat USA, 2015.

[68] MATT BURGESS. Millions of android devices vulnerable
to new stagefright exploit. http://www.wired.co.uk/article/
stagefright-android-real-world-hack. Accessed: 2017-08-20.

[69] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu.
Malton: Towards on-device non-invasive mobile malware anal-
ysis for art. In Proceedings of the 26th USENIX Conference on
Security Symposium, SEC’17, pages 289–306, Berkeley, CA, USA,
2017. USENIX Association.

[70] Jeff Williams and Arshan Dabirsiaghi. The unfortunate reality of
insecure libraries. Asp. Secur. Inc, pages 1–26, 2012.

[71] Takuya Watanabe, Mitsuaki Akiyama, Fumihiro Kanei, Eitaro
Shioji, Yuta Takata, Bo Sun, Yuta Ishi, Toshiki Shibahara, Takeshi
Yagi, and Tatsuya Mori. Understanding the origins of mobile
app vulnerabilities: a large-scale measurement study of free and
paid apps. In Proc. of the 14th Intl. Conference on Mining Software
Repositories, pages 14–24. IEEE Press, 2017.

[72] Anonymous. Double blind review policy.
[73] Haipeng Cai and Barbara G Ryder. Understanding android

application programming and security: A dynamic study. In Soft-
ware Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on, pages 364–375. IEEE, 2017.

[74] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyz-
ers: Flowdroid/iccta, amandroid, and droidsafe. In Proceedings
of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, pages 176–186, New York, NY,
USA, 2018. ACM.

[75] Fahad Ibrar, Hamza Saleem, Sam Castle, and Muhammad Zubair
Malik. A study of static analysis tools to detect vulnerabilities
of branchless banking applications in developing countries. In
Proceedings of the Ninth International Conference on Information
and Communication Technologies and Development, ICTD ’17, pages
30:1–30:5, New York, NY, USA, 2017. ACM.

[76] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick Mc-
Daniel, and Anmol N Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones.
In USENIX Security Symposium, 2010.

[77] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat
Chaudhuri. A study of android application security. In USENIX
security symposium, volume 2, page 2, 2011.

[78] Robert Lemos MIT Technology Review. Your apps could
be leaking private info. https://www.technologyreview.com/
s/420062/your-apps-could-be-leaking-private-info/. Accessed:
2017-08-21.

[79] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
An investigation into the use of common libraries in android

apps. In The 23rd IEEE Intl. Conference on Software Analysis,
Evolution, and Reengineering (SANER 2016), 2016.

[80] William S Cleveland and Susan J Devlin. Locally weighted
regression: an approach to regression analysis by local fitting.
Journal of the American statistical association, 83(403):596–610, 1988.

[81] K. Hamandi, A. Chehab, I. H. Elhajj, and A. Kayssi. Android sms
malware: Vulnerability and mitigation. In 2013 27th International
Conference on Advanced Information Networking and Applications
Workshops, pages 1004–1009, March 2013.

[82] Médéric Hurier, Kevin Allix, Tegawendé Bissyandé, Jacques
Klein, and Yves Le Traon. On the lack of consensus in anti-
virus decisions: Metrics and insights on building ground truths
of android malware. In 13th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment, pages 142–162. Springer,
2016.

[83] A. Kantchelian, M.C. Tschantz, S. Afroz, B. Miller, V. Shankar,
R. Bachwani, A.D. Joseph, and J.D Tygar. Better malware ground
truth: Techniques for weighting anti-virus vendor labels. In AISec
15, pages 45–56. ACM, 2015.

[84] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash,
Tegawendé F Bissyandé, Yves Le Traon, Jacques Klein, and
Lorenzo Cavallaro. Euphony: harmonious unification of ca-
cophonous anti-virus vendor labels for android malware. In Proc.
of the 14th Intl. Conference on Mining Software Repositories, pages
425–435. IEEE Press, 2017.

[85] Adam Bauser and Christoph Hebeisen. Igexin advertising
network put user privacy at risk. https://blog.lookout.com/
igexin-malicious-sdk, August 2017.

[86] Daoyuan Wu and Rocky KC Chang. Analyzing android browser
apps for file://vulnerabilities. In Intl. Conference on Information
Security, pages 345–363. Springer, 2014.

[87] Erika Chin and David Wagner. Bifocals: Analyzing webview
vulnerabilities in android applications. In Intl. Workshop on
Information Security Applications, pages 138–159. Springer, 2013.

[88] Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection
of inter-application communication vulnerabilities in android. In
Proc. of the 2015 Intl. Symposium on Software Testing and Analysis,
pages 118–128. ACM, 2015.

[89] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground:
automatic security analysis of smartphone applications. In Proc.
of the third ACM conference on Data and application security and
privacy, pages 209–220. ACM, 2013.

[90] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mo-
hamed Ali Kaafar. On the effectiveness of dynamic taint analysis
for protecting against private information leaks on android-based
devices. In SECRYPT, pages 461–468, 2013.

[91] Julian Schütte, Rafael Fedler, and Dennis Titze. Condroid: Tar-
geted dynamic analysis of android applications. In Advanced
Information Networking and Applications (AINA), 2015 IEEE 29th
Intl. Conference on, pages 571–578. IEEE, 2015.

[92] Ivan Victor Krsul. Software vulnerability analysis. Purdue Univer-
sity West Lafayette, IN, 1998.

[93] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole. Buffer overflows: Attacks and defenses for the vulnera-
bility of the decade. In DARPA Information Survivability Conference
and Exposition, 2000. DISCEX’00. Proc., volume 2, pages 119–129.
IEEE, 2000.

[94] Christian DOrazio and Kim-Kwang Raymond Choo. A generic
process to identify vulnerabilities and design weaknesses in ios
healthcare apps. In System Sciences (HICSS), 2015 48th Hawaii Intl.
Conference on, pages 5175–5184. IEEE, 2015.

[95] V Benjamin Livshits and Monica S Lam. Finding security vul-
nerabilities in java applications with static analysis. In USENIX
Security Symposium, volume 14, pages 18–18, 2005.

[96] Benjamin Schwarz, Hao Chen, David Wagner, Geoff Morrison,
Jacob West, Jeremy Lin, and Wei Tu. Model checking an entire
linux distribution for security violations. In Computer Security
Applications Conference, 21st Annual, pages 10–pp. IEEE, 2005.

[97] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. Authscope:
Towards automatic discovery of vulnerable authorizations in
online services. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages 799–813,
New York, NY, USA, 2017. ACM.

[98] Saurabh Jain, Deepak Singh Tomar, and Divya Rishi Sahu. De-
tection of javascript vulnerability at client agent. Intl. Journal of
Scientific & Technology Research, 1(7):36–41, 2012.

20

[99] Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and Michael D
Ernst. Automatic creation of sql injection and cross-site scripting
attacks. In Software Engineering, 2009. ICSE 2009. IEEE 31st Intl.
Conference on, pages 199–209. IEEE, 2009.

[100] Lwin Khin Shar and Hee Beng Kuan Tan. Mining input sanitiza-
tion patterns for predicting sql injection and cross site scripting
vulnerabilities. In Proc. of the 34th Intl. Conference on Software
Engineering, pages 1293–1296. IEEE Press, 2012.

[101] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Patching vulnerabil-
ities with sanitization synthesis. In Proc. of the 33rd Intl. Conference
on software engineering, pages 251–260. ACM, 2011.

[102] Mu Zhang and Heng Yin. Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijack-
ing attacks in android applications. In NDSS, 2014.

[103] H Bagheri, E Kang, S Malek, and D Jackson. A formal approach
for detection of security flaws in the android permission system.
Formal Aspects Comput, 2016.

[104] Heqing Huang, Sencun Zhu, Kai Chen, and Peng Liu. From
system services freezing to system server shutdown in android:
All you need is a loop in an app. In Proc. of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 1236–
1247. ACM, 2015.

[105] Kai Wang, Yuqing Zhang, and Peng Liu. Call me back!: At-
tacks on system server and system apps in android through
synchronous callback. In Proc. of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 92–103. ACM,
2016.

[106] Chen Cao, Neng Gao, Peng Liu, and Ji Xiang. Towards analyz-
ing the input validation vulnerabilities associated with android
system services. In Proc. of the 31st Annual Computer Security
Applications Conference, pages 361–370. ACM, 2015.

[107] Matthieu Jimenez, Mike Papadakis, Tegawendé F Bissyandé, and
Jacques Klein. Profiling android vulnerabilities. In Software
Quality, Reliability and Security (QRS), 2016 IEEE Intl. Conference
on, pages 222–229. IEEE, 2016.

[108] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-
Velásquez. An empirical study on android-related vulnerabilities.
In Proc. of the 14th Intl. Conference on Mining Software Repositories,
pages 2–13. IEEE Press, 2017.

[109] daniel r thomas, alastair r beresford, and andrew rice. security
metrics for the android ecosystem. In proc. of the 5th annual acm ccs
workshop on security and privacy in smartphones and mobile devices,
pages 87–98, 2015.

[110] Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A repos-
itory of android app vulnerability benchmarks. arXiv preprint
arXiv:1708.02380, 2017.

[111] Evelyn J Barry, Chris F Kemerer, and Sandra A Slaughter. On
the uniformity of software evolution patterns. In Software Engi-
neering, 2003. Proc.. 25th Intl. Conference on, pages 106–113. IEEE,
2003.

[112] Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical
investigation into the role of api-level refactorings during soft-
ware evolution. In Proc. of the 33rd Intl. Conference on Software
Engineering, pages 151–160. ACM, 2011.

[113] Meir M Lehman. Programs, life cycles, and laws of software
evolution. Proc. of the IEEE, 68(9):1060–1076, 1980.

[114] Tom Mens. Introduction and roadmap: History and challenges
of software evolution. In Software evolution, pages 1–11. Springer,
2008.

[115] Qiang Tu et al. Evolution in open source software: A case study.
In Software Maintenance, 2000. Proc.. Intl. Conference on, pages 131–
142. IEEE, 2000.

[116] R. Coppola, M. Morisio, and M. Torchiano. Mobile gui testing
fragility: A study on open-source android applications. IEEE
Transactions on Reliability, 68(1):67–90, March 2019.

[117] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical
study of api stability and adoption in the android ecosystem. In
Software Maintenance (ICSM), 2013 29th IEEE Intl. Conference on,
pages 70–79. IEEE, 2013.

