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Abstract—Android developers are known to frequently update
their apps for fixing bugs and addressing vulnerabilities, but
more commonly for introducing new features. This process leads
a trail in the ecosystem with multiple successive app versions
which record historical evolutions of a variety of apps. While the
literature includes various works related to such evolutions, little
attention has been paid to the research question on how quality
evolves, in particular with regards to maintainability and code
complexity. In this work, we fill this gap by presenting a large-
scale empirical study: we leverage the AndroZoo dataset to obtain
a significant number of app lineages (i.e., successive releases
of the same Android apps), and rely on six well-established,
maintainability-related complexity metrics commonly accepted in
the literature on app quality, maintainability etc. Our empirical
investigation eventually reveals that, overall, while Android apps
become bigger in terms of code size as time goes by, the apps
themselves appear to be increasingly maintainable and thus
decreasingly complex.

I. INTRODUCTION

Android has been attracting the interest of developers since

its early days. This also creates the situation of high compe-

tition in Android app development. Consequently, to keep up,

developers are engaged in a frenzy of updates [1], [2], [3],

[4]. In general, developers update their apps for (1) keeping

up with the evolution of Android APIs (e.g., discarding the use

of deprecated ones [5] while accessing early-release ones [6]),

(2) adapting to new requirements or providing new features

to keep the app competitive, (3) fixing bugs that may cause

runtime crashes, or that make the app vulnerable to security

threats, (4) improving the performance or maintainability,

either by removing unnecessary code or by refactoring existing

functionalities.

Standing out among other apps requires app developers to

guarantee a level of quality in their app code. Unfortunately,

in the absence of a concrete guideline for maintaining quality,

it is difficult to measure to what extent quality is taken into

account with respect to update changes. Instead, and as the

first step towards building such a guideline, it is important

to investigate some quality properties of various app versions

in order to draw insights from the practice of real-world app

development. Our objective is thus to conduct a large-scale

empirical study on the quality evolution of Android apps.

To that end, we focus on measuring maintainability of app

code. Software maintainability is indeed considered today as

one of the most important concerns in the software indus-

try [7], [8]. Corbi, a recognized expert in the field, has even

elevated maintainability as a major challenge for program

understanding since the 1990s. Generally, code complexity is

accepted to provide a good proxy for measuring maintain-

ability [9]. Given the pervasiveness of mobile software in our

daily life today, it is important to study how complexity has

evolved in order to build knowledge towards improving quality

in software development.

In this work, we leverage an unprecedented large dataset

of 28,564 app lineages and investigate evolution trends of

complexity, relying on six metrics proposed by Chidamber

et al. [10]. We implement a process where each app is

analyzed and six renowned maintainability-related complexity

metrics are computed, trends are highlighted and outliers are

summarized.

To summarize, this paper makes the following contributions:

• We share with the community all complexity metric

values for a large dataset of Android apps where each

app is associated with several of its release versions.

• We present an empirical study on the evolution of com-

plexity in Android apps based on six well-established

metrics (such as NOC, Number of Children or LCOM,

Lack of cohesion in Methods), and from different per-

spectives such as median and standard deviation values.

• We discuss insights from our study and enumerate its

implications as well as the limitations.

• We make our toolset publicly available to readily compute

complexity metrics for Android app APKs.

The remainder of this paper is organized as follows. Sec-

tion II presents background information on Android devel-

opment as well as on the metrics leveraged in our work.

Section III overviews the experimental setup for answering

the research questions. Section IV details the results of our

study while Section V discusses some insights as well as the

limitations. Finally, we discuss related work in Section VI and

the conclusion of this paper in Section VII.

II. BACKGROUND

To ease the understanding of our work, we provide some

necessary background information about Android app devel-

opments and app complexity metrics.

A. Android Framework

The Android mobile operating system is built on top of

the Linux kernel and provides a framework to facilitate the

development of Android apps. As the framework evolves,

the provided Software Development Kit (SDK), including

the Application Programming Interfaces (APIs), is regularly

updated. To better track and reflect those changes, each major
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release of the Android framework is tagged with multiple

names: (1) its version number (e.g., Android 4.4); (2) its

API level (e.g., 19); and (3) a name of sweet (e.g., KitKat).

Figure 1 presents an example of API levels with respect to

their adoption by millions of Android-powered devices using

the official Google Play store as of May 2018.

Jelly Bean
4.3%

Android 4.1/4.2/4.3
Level 16/17/18

KitKat
10.3%

Android 4.4
Level 19

Lollipop
22.4%

Android 5.0/5.1
Level 21/22

Marshmallow
25.5%

Android 6.0
Level 23

Nougat
31.1%

Android 7.0/7.1
Level 24/25

Oreo
5.7%

Android 8.0/8.1
Level 26/27

Fig. 1: Distributions of API levels supported by current Android-
powered devices (versions with less than 1% are not shown).

B. Android Apps

Android apps are generally written in Java. During com-

pilation, the Java code is then transferred into Dalvik/ART

bytecode (in DEX format). Together with other resource

files such as the AndroidManifest configuration and images,

the bytecode is then assembled into an Android Application

Package (APK), which can then be distributed on app mar-

kets. When developing an Android app, developers have to

specify the ideal API level that the app supports, i.e., the

app needs to be thoroughly tested against devices running a

framework at that level. This ideal API level is stored in the

app as an attribute named targetSdkVersion, where the value

of this attribute can be programmatically extracted. Hence,

each Android app can be associated with an integer number

indicating the targeted API level that the app is implemented

upon.

C. Terminology

APK (Application Package Kit) is the Android application

package for distribution and installation of Android apps.

Moreover, to update an Android app, an APK of the new

version needs to be provided. Therefore, an app lineage is

recognized as the consecutive series of its APKs and each of

the APK is also called an app version. Hereafter, we then use

app lineage and app version to distinguish these two different

concepts,

D. Complexity Metrics

Chidamber et al. [10] have introduced six metrics to “mea-

sure the complexity in the design of classes”. Since Android

apps, as mentioned before, are written in Java and thereby have

extended Java’s object-oriented features, the proposed six met-

rics should also be able to reliably improve the development

processes of Android apps. State-of-the-art studies such as Jost

et al. [11], [12] have also leveraged those metrics for Android

app developers to consider so as to write high-quality code.

We note that these metrics are highly related to complexity

concerns, and thus, we adopt them to measure the complexity

of Android apps.

1) Weighted methods per class (WMC) is the sum of the

complexities of all methods in a class. It is used to mea-

sure the effort required for developing and maintaining a

particular class as well as the inheritability and reusability

of a class. A high WMC score of a class means that

the class is complex that hence is difficult to reuse and

maintain. To simplify the calculation, in this work, we

consider the complexity of all methods to be unity. Then

WMC is simply a method counter of each class.

2) Depth of inheritance tree (DIT) is used to measure

the depth of a given class based on the inheritance tree.

Ideally, the value of DIT metric should be kept low as the

complexity of developing, testing and maintaining a class

would significantly increase if the depth of inheritance

tree increases. As DIT defined, the inheritance tree of

each class is calculated and the maximum length is set

as the value of DIT.

3) Number of children (NOC) is another metric leveraged

to measure the “width” of a given class (i.e., the number

of direct sub-classes) based on the inheritance tree. The

value of NOC approximately indicates the reuse degree of

a given class. While the reusability of a class increases if

more children are introduced, the responsibility required

to maintain the class not to break the children’s behavior

also increases.

4) Lack of cohesion in methods (LCOM) is a metric

used to measure the cohesiveness between methods and

attributes of a given class. A higher LCOM value in-

dicates a low cohesion between the methods and data,

which hence increases the complexity of the class and

subsequently increasing the possibility of introducing

errors during the development of software. There are two

ways to calculate the value according to Linda et al. [13]

and in this work, we choose the first one which is based

on the average percentage of each data field used by the

methods of a class.

5) Coupling Between Object classes (CBO) measures

the dependency of a class on other classes. High CBO

value indicates excessive dependency which means lower

reusability and higher testing complexity. It is calculated

by counting the number of other classes used by a class.

6) Response For a Class (RFC) reflects the potential invo-

cation of methods of a class on responding to a message.

A low value of RFC is preferred since it indicates short

possible invocation chain which makes debugging and

testing easier. RFC is calculated by counting all the

methods invoked in a class. For methods invoked more

than once, only the first time will be counted.

Initially, we have considered the 22 quality metrics proposed

by Mercaldo et al. [14]. However, our preliminary experiments

have revealed that many of them are highly correlated with

each other as demonstrated in Figure 2. Moreover, because of

space limitations to present the results of all the 22 metrics,
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Therefore, for this study, we decide to focus only on the six

classic metrics. We believe that the other metrics, especially

the ones that are recently introduced, are also worth to explore

and hence we will consider them in our future works.

Fig. 2: Metrics Correlation Map

III. EXPERIMENT SETUP

To set up the empirical experiments related to the complex-

ity evolution of Android apps, we present the main research

questions this work explores and the dataset this work stands

upon in Section III-A and Section III-B, respectively.

A. Research Questions

Our objective is to understand the evolution of Android

apps’ complexity and hence to empirically observe practical

insights for guiding the evolution of Android apps towards

engineering more reliable apps. To fulfill this objective, we

plan to perform an exploratory study to answer the following

research questions:

• RQ1: How does the code of Android apps generally

evolve? As the first research question, in order to have an

overall understanding of the general evolution of Android

apps, we empirically investigate the changes in terms of

code size (i.e., DEX size and class number) of Android

apps over time.

• RQ2: How does the complexity of Android apps evolve

as time goes by? The complexity evolution within this

research question will be investigated year by year. For

each app lineage, we choose one app version for each

year: the latest one released in that year. The chosen

apps from the same year (different lineages) will be

considered as a whole and the extracted metric values will

be leveraged to represent app complexity of that year.

• RQ3: How do Android API level updates impact on app

complexity? Android framework is recurrently updated

to introduce new features or fix critical bugs. To benefit

from these updates, Android apps need to be correspond-

ingly changed. Hence, the complexity evolution within

this research question will be investigated based on the

targeted API levels of the considered apps.

• RQ4: What are the patterns of complexity evolution? By

defining feature patterns, the evolution of complexity will

be investigated in the manner of individual app lineage.

Then, how Android apps evolves normally as well as what

is the uncommon pattern during complexity evolution can

be spotted.

B. Dataset

To answer the aforementioned research questions, we resort

to so far the largest app collection, namely AndroZoo [15],

[16], to prepare the experimental environment. AndroZoo1 is

a growing collection of Android apps collected from various

sources, including the official Google Play app market and

third party alternative markets such as AppChina. So far,

AndroZoo repository contains over 5 million Android apks

and has been successfully applied to support the analysis of

various research studies [17], [18]. For this study, based on

AndroZoo, we eventually re-construct 28,564 app lineages of

app versions no less than 10, which contains 465,037 app

versions. Figure 3a shows the distribution of the releasing

years of the apks. The releasing time is obtained from the last

modification time of the “classes.dex” files decompressed from

apks. While, Figure 3b exhibits its target API level distribution.

(a) Year Distribution

(b) API Level Distribution

Fig. 3: Statistics of Lineage Dataset

C. Re-construction of App Lineages

We re-construct app lineages based on AndroZoo’s data

heap and according to the procedure proposed by Gao et

al.[19] as illustrated in Figure 4.

1) Application ID Extraction: name is required to be given

for every Android app by following Java package naming

convention. It needs to be unique for each app and used

as the ID of the app. We group together APKs with same

name as candidate app versions of an app lineage.

2) App Certificate Clustering: to be sure that all app versions

are from the same developer, the developer signature

is considered. APKs with the same application ID but

the different signature will not be classified in one app

lineage.

1https://androzoo.uni.lu
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3) App Market Clustering: we assume that developers al-

ways distribute their apps on the same market. Then we

further constraint that our app lineages need to contain

APKs from the same market.

4) App Version Sorting: to reflect the evolution process, the

app versions of a given app lineage are ordered according

to their versionCode which is declared in their APKs.

Extraction of 
App IDs

App Clustering
by Certificate

App Clustering 
by Market

Sorting Apps 
by Version

…
…

..

Fig. 4: App Lineage Re-construction Process

D. Metrics Computing

In this work, the metric values are computed at the smali
code level. All the considered lineage apps are disassembled

by Apktool, a well-known static analysis tool for reverse

engineering Android APK files.2 Apktool will translate the

executable part of an app, namely the DEX bytecode into the

so-called smali code.

Because the considered complexity metrics are measured

at class levels, while Android apps normally are made up of

multiple classes, for a given metric, we regard its value for

a given Android app as the median and standard deviation

value among that of all the classes of the app. Statistically

speaking, these two values have characterised the majority of

the sample population (i.e., median) and their spreads (i.e.,

standard deviation). Indeed, for a certain app, the median value

can represent the app in most of its classes while the standard

deviation reflects the extent the complexity of the classes can

go, e.g., either better or worse.

In this work, we rename these two values (median and stan-

dard deviation) as feature and variation3, which are explained

as follows:

Given an app a, C = {c1, c2, . . . , cn} is the set of its

classes, for a certain metric m, the value of ci is vm(ci),
where ci ∈ C, then

• feature value: feature(a) = M , where M is the median

value of {vm(c1), ..., vm(cn)}.
• variation value: variation(a) = σ, where σ is the

standard deviation of {vm(c1), ..., vm(cn)}.
During our experiments, we have found that the an-

droid.support package has been widely presented in some

Android apps. Since this package is provided by Google as an

official library for resolving issues such as compatibility4, we

do not take this package into consideration when computing

the values of metrics.

2https://ibotpeaches.github.io/Apktool/
3The rationale behinds this renaming is to avoid confusions about expres-

sions such as “median of the median values”.
4https://developer.android.com/topic/libraries/support-library/index.html

It is also worth to mention that not all lineage apps can

be successfully reverse engineered by our tool for computing

the values of our selected metrics. The main reasons led to

the failures are 1) Apktool crashes due to exceptions such as

no smali code generated, (2) null values are returned by our

tool because the number of classes is too small (e.g., less

than three for some app versions) or there is no field defined

by some classes (i.e., this will lead to null value for metric

LCOM). Moreover, since date information is also important

to this study, (e.g., we leverage it to perform the year-based

evolution study), we further remove such app lineages that

have incomplete DEX date associated, i.e., we cannot extract

a validated assembly time from the app.

To conclude, among the 28,559 lineages (464,649 app

versions in total), 1,389 app lineages (23,451 apps versions)

that have confronted the aforementioned issues are ignored in

this study. In other words, our study is conducted based on

27,170 app lineages (441,198 app versions).

IV. RESULTS

We now present our investigation details towards answering

the aforementioned research questions.

A. RQ1: General Evolution of Android Apps

Fig. 5: Cumulative distribution function (CDF) of the update fre-
quency of selected lineage apps. Given a frequency (e.g., x = 365
days), the probability for an app to have an update within x = 365
days can be quickly observed from the CDF (i.e., the corresponding
value in the Y-axis).

Since it is non-trivial to select the time interval for re-

aligning lineage apps, we resort to a simple empirical study

to select such time interval. The study looks into the update

frequency of all the selected lineage apps. Figure 5 illustrates

the Cumulative Distribution Function (CDF) of the update

frequency, where the frequency is counted in days (as shown

in the X-axis). For about a year (e.g., 365 or 366 days),

more than 95% of considered apps have been updated at least

once, presenting a great time interval to build our time-based

evolution dataset. Therefore, we select a year as the time

interval to investigate the complexity evolution of Android

apps.

To understand the general evolution of Android apps, we

first look into the evolution of size and the number of Java

classes of Android apps. Figure 6 shows how are the median

value of app size and the number of classes evolved as time
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goes by. For each median value, it is calculated based on all

apps of that year.

Fig. 6: App Size and # Classes Evolution in Time

Quite clearly, both app sizes and class numbers were in-

creasing, especially, from 2014 to 2015, the rise was dramatic.

This evidence suggests that Android apps become bigger and

bigger in both size and the number of classes.

Fig. 7: Scatter Plot of App Size and # Classes

Furthermore, as demonstrated in Fig. 7, there is also a

strong correlation between app size and the number of classes.

This strong correlation is also confirmed to be statistically

significant via the Pearson’s correlation coefficient (ρ > 0.9,

showing a strong positive correlation). This strong positive

correlation implies that app updates are more likely to add

new classes than simply add codes to existing classes. Indeed,

in our selected app lineages, 80.73% of them have their apps

eventually become bigger (comparing the last app version with

the first one) in terms of the number of classes, while the

percentage is even higher when talking about the app size:

83.4% of selected lineages.

As app size and the number of classes getting bigger

and bigger, intuitively, apps are becoming more complex and

more difficult to maintain. Consequently, a detailed study on

app complexity evolution is expected. This research question

actually motivated us to perform an in-depth analysis of the

complexity evolution of Android apps.

During the evolution, app developers are more likely

to introduce new classes rather than adding code to

existing ones, as shown by the strong correlation of

changing in app size and number of classes.

B. RQ2: Complexity Evolution via Time

We investigate the complexity evolution of Android apps via

their release time5. State-of-the-art approaches for time-based

evolution normally choose random apps for different time-

points. As a result, the apps chosen in different time-points

could be different. On the contrary, our lineage based time

evolution approach is expected to always select app versions

from same app lineages. By doing this, the consistency of

samples between different time-points can be well reserved,

which makes the final result more reliable. To support this

kind of investigation, we need to re-construct a fine-grained

dataset where the considered lineage apps are aligned via time.

To this end, we re-align our lineage apps by selecting the last

app version of each year from each app lineage.

Figure 8a presents the evolution of the metrics feature value

from 2011 to 2016. The median value of metrics NOC, DIT,

WMC and CBO exhibit as horizontal lines with very low

values, which indicates that app complexity in terms of these

4 metrics has kept very low and constant for past 6 years.

These values tell us that for most classes of an app, they were

not sub-classed (i.e., 0 of NOC), they had shallow inheritance

trees (i.e., 1 of DIT), their method complexities are low (i.e.,

3 of WMC) and they were not coupled with other classes (i.e.,

0 of CBO). Regarding the standard deviations shown as the

ribbons, NOC, DIT and CBO show no ribbon at all while

WMC shows an observable ribbon with a narrow-down trend.

Since the standard deviations reflect the difference between

different apps, we can say that the vast majority of apps exhibit

no difference of complexity in terms of NOC, DIT and CBO.

Meanwhile, in terms of WMC, there are apps with different

feature values, but the difference is not big (±1 on average)

and getting smaller.

On the other hand, RFC and LCOM show more changes

as they evolving. The drop of RFC in 2012 indicates a clear

improvement of this metric for most of the apps. While a slight

deterioration of LCOM happened in 2013 can be observed

as well. Furthermore, the difference between apps in these 2

metrics was getting narrower too.

Because the feature values only reflect app complexity in

major situations as explained in Section III-D. To have a more

comprehensive understanding of apps complexity evolution,

we further resort to an investigation into the evolution of

variation values of Android apps.

Figure 8b shows the evolution of app variation values. From

the median value perspective, 4 of the metrics show a clear

decline trend which are NOC, DIT, RFC and LCOM. While for

CBO and WMC, they were slightly increased over the years.

As the variation of a metric measures the differences of the

metrics among different classes of an app, Thus, a decreasing

in trend is preferred. On the other hands, the differences

of variation values between different apps are exhibited by

5Since AndroZoo does not collect the release date metadata for Android
apps, and it is virtually impossible to retrieve such metadata for previous
app versions, as these metadata have already been overwritten by the data of
updated app versions, in this work, we consider the assemble DEX time as
the app release time.
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(a) Feature Values

(b) Variation Values

Fig. 8: Lineage based evolution with the central lines depict the trend of median value while the ribbons show the changing of standard
deviation and the boxplots illustrate the distribution of each year

the ribbons in the figure. Therefore, for past 6 years, the

differences of NOC and CBO have been increased while DIT

and LCOM have been decreased. For RFC and WMC, the

differences kept almost the same.

As time goes by, the complexity in terms of RFC

has been mitigated but deteriorated in LCOM. Out

of the six metrics, nature updates (update via time)

have only impacted these two metrics, although the

impacts are quite limited. It is worth to highlight that

the complexity difference between different apps is

getting closer during the evolution.

C. RQ3: Complexity Evolution via API Level

In order to understand the possible impact of API levels

on the evolution of app complexity, we conduct another study

that specifically looks into the complexity difference between

such apps that target different Android API levels. To this end,

for each app lineage, we pair up adjacent app versions, which

target different API levels, for difference examination. Given

a pair of app versions (ai, ai+1) and their targeted API levels

(Li, Li+1), we define level skip as the difference between the

two targeted API levels (i.e., level skip := Li+1 − Li). Fig-

ure 9 illustrates the distribution of API level skips summarized

from our app lineage dataset. The level skips vary from −16
to 19 while the majority app pairs fall into the category of

level skip equals to 1, followed by 2 and 3 skips respectively.

The reasons causing minus level skips could be: (1) to support

previous users or features requiring old API, (2) version code

assigned reversely, (3) some other unknown purposes. As these

cases are rare and abnormal, in this paper, they will not be

considered. In this work, we take into account all the app

pairs that have API level skip between 1 and 3. Based on this

criterion, we form a new dataset containing three types of app

pairs: S1, S2 and S3 for app pairs with one, two and three

level skips, respectively,

Fig. 9: Distribution of API level skips for every two adjacent app
versions while x = 0 is not shown as it means no skip

Fig. 10: API Level based Evolution of Feature Values

Figure 10 illustrates the distribution of feature value dif-

ferences of app pairs via level skip. Since metrics NOC,

DIT, WMC and CBO are quite stable during the evolution

of Android apps, as shown in Section IV-B, we only present

the distribution of metrics RFC and LCOM in the figure.
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Interestingly, the median values stay closely to 0 suggests

that the changes are quite small despite the targeted API level

is updated. The fact that the major parts of the boxes fall into

the negative side of Y-axis and larger level skips seem to yield

larger ranges of the negative parts indicates that the changes

do not seem to increase the app complexity (at least for RFC

and LCOM).

Figure 11 illustrates the distribution of variation value

differences via level skip. Similarly, except for metric WMC,

where the median values are generally decreasing when level

skip increases, the median values of other metrics are very

close to 0. Regarding the body of the boxes, the major parts

for metrics DIT, WMC, RFC and LCOM fall into the negative

side of Y-axis while for metrics NOC and CBO, they fall

into the positive side. The body size is increased as level

skip increasing. For NOC and CBO, they increase mainly on

the positive side of Y-axis. But the rest four metrics increase

mainly on the negative side.

Fig. 11: API Level based Evolution of Variation Values

As the interpretation of these patterns, updates of API

levels may effect on different metrics differently. A bigger

level skip normally causes a larger increase in the complexity

difference within an app from the aspect of NOC and CBO

(remind that the definition of variation value in Section III-D).

However, from the aspect of DIT, WMC, RFC and LCOM,

the complexity difference shrinks mostly.

API level updates could cause the complexity of An-

droid apps to decrease, although the extent is quite

limited. Also, for most of the metrics, API level

updates shrink the complexity difference within apps.

D. RQ4: Patterns of Complexity Evolution
We remind the readers that in this work we use lineage apps

rather than randomly selected apps to investigate the complex-

ity evolution of Android apps, where the dataset allows us to

have a deeper look at how each app lineage evolves. Consider

an app lineage with n app versions app1, app2, . . . , appn. Let

set M = {m1,m2, . . . ,mn} stand for the feature or variation

values of a metric of these app versions and σ be the standard

deviation of set M . The possible evolution patterns that each

app lineage may fall into are defined as follows:

• overall patterns

– flat: |m1−mn| < σ, which means the difference between

the first and last app version is less than the standard

deviation of the app lineage.

– decrease: m1 −mn ≥ σ, which means the value of the

first app version is greater than the value of the last one

and the difference is bigger than the standard deviation.

– increase: mn − m1 ≥ σ, which means the value of the

last app version is greater than the value of the first one

and the difference is bigger than the standard deviation.

• detail patterns

– constant: patterns between adjacent app versions are con-

sistent with the overall pattern. For flat pattern, it means

mi = mj . For decrease pattern, mi ≥ mi+1. For increase

pattern, mi ≤ mi+1. Where i, j ∈ {1, . . . , n}.
– hill: maxM ∈ {m2, . . . ,mn−1} and maxM −

max {m1,mn} > σ, which means maximum value hap-

pens in an app version which is not the first or the last

app version. Additionally, the maximum value needs to

be greater than the maximum value of the first and the

last app version and the difference need to be bigger than

the standard deviation of the app lineage.

– valley: this is the opposite situation of hill and it expresses

as minM ∈ {m2, . . . ,mn−1} and min {m1,mn} −
minM > σ

– wave: other cases where no constant, hill and valley

patterns can be observed.

TABLE I: Possible Patterns & Abbreviation

Pattern Abbreviation
Flat Constant fc
Increase Constant ic
Decrease Constant dc
Flat Wave fw
Increase Wave iw
Decrease Wave dw
Flat Hill fh
Increase Hill ih
Decrease Hill dh
Flat Valley fv
Increase Valley iv
Decrease Valley dv
Flat Hill & Valley fhv
Increase Hill & Valley ihv
Decrease Hill & Valley dhv

The overall patterns are the patterns defined by the starting

and ending points. They are designed to give a brief concept

of what is the evolution trend. While detail patterns are
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Fig. 12: Real world examples of patterns of complexity evolution with the name of patterns as x-axis labels and application names as y-axis
labels

meant to reflect the feature patterns during the evolution. To

give a complete evolution pattern, one of the overall patterns

combined with one or two detail patterns is required and the

possible combination patterns are shown in Table I. Figure 12

further shows the real world examples of each defined pattern

from our dataset.

According to the patterns defined, we analyze each app

lineage to obtain their evolution patterns and then calculate

the frequency of each pattern. The final result is displayed by

a heat map in Figure 13. Likewise, frequencies of NOC, DIT

and CBO feature values are removed from the figure because

all their values keep constant (cf. Section IV-B).

Fig. 13: Frequency distribution of patterns of complexity evolution
with feature and variation value parts divided by a red horizontal
dash line

Regarding the evolution pattern summarized via feature val-

ues (the part under the red horizontal dash line), undoubtedly,

fc is the most evident column, followed by column dc and ic
sequentially. On the other hand, in the variation value part

(the part above the red horizontal dash line), although the

column of fc is still noticeable, there are only 2 tiles (which

are DIT and NOC) with a very dark color, while the rest

tiles are quite bright. Meanwhile, column dw and iw are also

very distinguishable and with much even darkness. Moreover,

3 brightest columns are also spotted which are dhv, fw and

ihv and both median value and standard deviation parts are

consistent in these 3 brightest columns.

So far, we can observe that the complexity of major Android

apps tends to stay constant (do not forget that the median

values of the 3 removed metrics are even more constant).

Nonetheless, there are still many apps tend to decrease con-

stantly in complexity while others may increase constantly.

However, except for metrics DIT and NOC, where the evolu-

tion pattern of most apps is still, the complexity difference

within an app lineage is more likely to either decrease or

increase wavily.

According to the patterns of complexity evolution,

wavily increasing and decreasing have dominated the

trend of complexity difference during the evolution of

Android apps. This empirical evidence suggests that

app developers might not really be aware of controlling

the complexity of their apps.

V. DISCUSSION

In this section, we discuss several implications that this

study can lead to and disclose the potential threats to the

validity.

A. Implication

a) Towards Engineering Better Metrics: Our experimen-

tal results suggest that app complexity does not significantly

change during app updates. This evidence can be explained by

the fact that, as shown in Section IV-A, Android app updates

usually do not simply add codes to existing classes but are

more likely to add new classes. Unfortunately, the six metrics

we used in this study are all based on classes. They might not

be representative to fully capture the complexity of Android

apps. Therefore, we argue that there is still a lot of space to

improve towards engineering better metrics for characterizing

the development of mobile apps. To this end, designing

a new set of complexity-related metrics (e.g., to take into

account invocation chains) is needed. Moreover, neglecting

the complexity conducted by the interaction between classes

is not reasonable, so comprehensive application level metrics

are also needed.

b) Best Practice to Guide Future Quality Evolutions:
Generally, preserving and improving software quality is a

long-time challenge that is difficult to resolve. Due to soft-

ware aging, without active countermeasures, the quality of

applications slowly degrades during their evolutions [20], [21].

As argued by Mens et al., there is a need to provide tools

and techniques that preserve or even improve the quality
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characteristics of software systems [22]. In this study, around

9% of our selected app lineages are always in line with that

of the mainstream. For our future work, good practices could

be learned based on these apps. If so, we subsequently present

automated tools to apply the obtained good practices, e.g., by

instrumenting directly the bytecode of Android apps [23].

c) Observing differences between developer capabilities:
Since an Android app is likely developed by multiple devel-

opers, who might have different abilities to control the quality

of their implemented code, we believe that standard deviation

value could be a good means to capture the differences among

developers in a team which can further provide insights to

optimize development teams.

B. Threats to Validity

The study conducted in this work has presented several

threats to the validity.

First, the considered six metrics may not be fully represen-

tative of the quality of Android apps. For example, compared

to the six metrics proposed by Jost [11], we have missed

four of them although have additionally considered 2 metrics.

Also, many metrics are highly correlated with others. Hence,

as suggested by Mourad et al. [24], there is a need to invent

new quality metrics that attempt to unify similar metrics so as

to simplify further analysis and make interpretation concise.

We consider this as our future work.

For an app lineage, some versions could be missing without

our awareness. Also, the order of app versions may not

be correct if the version code in the manifest is assigned

randomly. However, the impact of missing versions on this

study is limited while given random version is not common

practice.

Finally, our time-based evolution study is at year level,

although we have empirically shown that a year is actually

a reasonable interval, it might still be too long for this study

as in practice popular apps are updated more frequently. To

mitigate this potential threat, we plan to design and implement

a generic framework for supporting more advanced evolution

analyses of mobile apps, where different parameters such as

time interval, level skips and metrics can be easily configured

and adjusted.

VI. RELATED WORK

In this section, we discuss related work on quality metrics

and evolution-related studies.

A. Quality Metrics

Various studies have investigated the problem of observing

reliable metrics for characterizing the quality of mobile apps.

Chidamber and Kemerer [10] introduce six metrics for guiding

the design of object-oriented programs and four of them

have been considered by Jost et al. [11] and hence by this

work. Thomas McCabe [25] further introduced Cyclomatic

Complexity (CC) for measuring the complexity. Fenton and

Neil [26] argued that the future for software metrics lies in

using them to develop decision-support tools to support risk

assessment.

Several researches have focused on quality metrics related

to Android apps. Tian et al. [27] investigated the characteristics

which make Android apps high-rated. They found that metrics

such as app size, target SDK version are influential factors

contributing to the success of Android apps. Protsenko et

al. [28] also leverage software metrics to detect Android

malware. Experimental results show that software metrics

are reliable for distinguishing malware and resilient against

common obfuscation.

B. Evolution Study

There are several researchers studied the general laws of

software evolution [29], [20], [30], which show that software

will continuously change and so does its complexity, demon-

strating that software evolution analysis is essential in our

community.

Software evolution analysis has been widely adopted to

understand the evolutionary process of a software system and

hence to predict its future evolution [31], [32], [33]. Gen-

erally, software evolution analysis investigates the evolution

of a software system to identify potential shortcomings in

its architecture. Those identified shortcomings can then be

addressed specifically to improve the quality of the software

system.

Neamtiu et al. [31], by studying nine open-source projects

covering 705 official releases, they confirmed Lehman’s two

laws of software evolution (i.e., software continuing change

and continuing growth). Behnamghader et al. [33] argued that

studying software quality before and after each commit can

reveal how each change impacts the overall quality.

However, Android apps are generally released as APKs

which do not contain commit messages. Therefore, researches

leveraged the difference between two subsequent app releases

to investigate the evolution of Android apps [34], [6], [35],

[4]. Calciati et al. [35] have investigated the evolution of

permissions. Taylor et al. [4] investigated the evolution of

app vulnerabilities. The most closed work to ours is the one

presented by Hecht et al. [36], who investigate the evolution

of Android poor design choices based on 3,568 versions of

106 Android apps. Our work, although focusing on different

metrics, is generally in line with theirs and thus can be taken

as a supplement to the state-of-the-art.

VII. CONCLUSION

In this work, we have conducted a large-scale empirical

study of the complexity evolution of Android apps. To sup-

port the study, we re-constructed 28,564 app lineages from

AndroZoo, where each app lineage is made up of at least

10 versions that record the historical releases of the same app.

Subsequently, we select six metrics that have been successfully

leveraged by literature works for quantifying the complexity of

Android apps. Based on the evolution of these six metrics, we

eventually find that (1) Android apps usually become bigger

during their evolutions and updates are tend to add new classes,
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(2) nature updates do not really impact on the complexity of

Android apps, (3) the update of Android framework could

mitigate app complexity but very limited, (4) complexity

evolution is more like to wavily increase or decrease.
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[6] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein.
Accessing inaccessible android apis: An empirical study. In The 32nd
Intl. Conference on Software Maintenance and Evolution (ICSME 2016),
2016.

[7] E Yourdon. The rise and fall of the american programmer. Yourdon
Press Computing Series, 1992.

[8] Frederick P Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition, 2/E. Pearson Education India, 1995.

[9] Vard Antinyan, Miroslaw Staron, and Anna Sandberg. Evaluating code
complexity triggers, use of complexity measures and the influence of
code complexity on maintenance time. Empirical Software Engineering,
22(6):3057–3087, 2017.

[10] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object
oriented design. IEEE Transactions on software engineering, 20(6):476–
493, 1994.
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