
Mobile App Squatting
Yangyu Hu

Beijing University of Posts and
Telecommunications, China

Haoyu Wang∗
Beijing University of Posts and
Telecommunications, China

Ren He
Beijing University of Posts and
Telecommunications, China

Li Li
Faculty of Information Technology,

Monash University, Australia

Gareth Tyson
Queen Mary University of London,

United Kingdom

Ignacio Castro
Queen Mary University of London,

United Kingdom

Yao Guo
MOE Key Lab of HCST, Peking

University, China

Lei Wu
Zhejiang University, China

Guoai Xu∗
Beijing University of Posts and
Telecommunications, China

ABSTRACT
Domain squatting, the adversarial tactic where attackers register
domain names that mimic popular ones, has been observed for
decades. However, there has been growing anecdotal evidence that
this style of attack has spread to other domains. In this paper, we
explore the presence of squatting attacks in the mobile app ecosys-
tem. In “App Squatting”, attackers release apps with identifiers (e.g.,
app name or package name) that are confusingly similar to those of
popular apps or well-known Internet brands. This paper presents
the first in-depth measurement study of app squatting showing
its prevalence and implications. We first identify 11 common de-
formation approaches of app squatters and propose “AppCrazy”,
a tool for automatically generating variations of app identifiers.
We have applied AppCrazy to the top-500 most popular apps in
Google Play, generating 224,322 deformation keywords which we
then use to test for app squatters on popular markets. Through this,
we confirm the scale of the problem, identifying 10,553 squatting
apps (an average of over 20 squatting apps for each legitimate one).
Our investigation reveals that more than 51% of the squatting apps
are malicious, with some being extremely popular (up to 10 million
downloads). Meanwhile, we also find that mobile app markets have
not been successful in identifying and eliminating squatting apps.
Our findings demonstrate the urgency to identify and prevent app
squatting abuses. To this end, we have publicly released all the
identified squatting apps, as well as our tool AppCrazy.

CCS CONCEPTS
• Security and privacy → Software and application security;
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing.

KEYWORDS
app squatting, typosquatting, fake app, Android, malware
∗Haoyu Wang and Guoai Xu are co-corresponding authors.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380243

ACM Reference Format:
Yangyu Hu, Haoyu Wang, Ren He, Li Li, Gareth Tyson, Ignacio Castro, Yao
Guo, Lei Wu, and Guoai Xu. 2020. Mobile App Squatting. In Proceedings of
TheWeb Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380243

1 INTRODUCTION
In domain squatting, attackers register domain names that resemble
legitimate ones to capture traffic intended for the original domain.
The most popular domain squatting attack is typosquatting [30],
where attackers target mistakes (e.g., common misspellings). These
mistakes may lead users to malicious/phishing websites, potentially
scooping upmillions of unwary visitors. Indeed, a recent report [11]
suggested that a simple form of website typosquatting (e.g., chang-
ing dot-com to ‘dot-cm’) attracted roughly 12 million visits in just
a quarter of 2018. The effectiveness of domain squatting has led
attackers to apply similar attacks to other areas, e.g., to capture
emails (due to incorrectly typed recipient addresses) [103], and
install malicious code via the famous PyPI (Python Package Index)
repository [22].

Following the same postulation, we wonder if similar kinds of
squatting attacks have migrated into the mobile app ecosystem. Anec-
dotal evidence suggests that the answer is yes, with a number of
popular media articles discussing the threat [14, 15, 35]. For exam-
ple, attackers managed to distribute their fake “WhatsApp” app to
millions of mobile users via the official Google Play Store by simply
adding a Unicode-encoded space at the end of WhatsApp’s ID [15].
Similarly, a fake app named Teligram sneaked into the Google Play
pretending to be a new version of the real Telegram app [35]. Natu-
rally, the fake versions often look identical to the legitimate ones,
making it extremely difficult for users to distinguish. Although
official platforms may provide users with additional warnings, re-
cent studies have suggested that app squatting might be easier to
perform on less regulated platforms [72, 77, 84, 85, 93, 106].

To illustrate how app squatting attacks might be effective against
a typical user, Figure 1(a) shows an example of a real squatting app
which appeared in 6 hosting markets (e.g., Google Play and Myapp).
It targets Facebook by sharing a similar app name, package name,
and icon. This is not an isolated case. Figure 1(b) and Figure 1(c)
present word clouds of a variety of confusingly similar app names
and packages that target the Facebook app on Google Play: even

1727

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hu and Wang, et al.

(a) Example of a squatting app (b) App name wordcloud (c) Package name wordcloud

App Name:
Faceboook
Package Name:
com.bryan.faceboook
Hosting Markets:
Google Play, Myapp,
Wandoujia, AnzhuoApk,
OPPO, 25PP

Figure 1: Examples of squatting apps: (a) A real-world squatting app that targets Facebook; (b) The word cloud of squatting
app names of Facebook; (c) The word cloud of squatting package names of Facebook (com.facebook.katana).

for experienced eyes, it can be difficult to pinpoint the differences
between the original and the squatting ones.

With this motivation in mind, we present the first detailed study
of App Squatting in the Android app ecosystem. We start by per-
forming a preliminary study of app squatting on 10 popular apps
(Section 3). We generate 3,283 potential “squatting names” for
these 10 apps, employing the rules of existing domain squatting
tools. We then verify whether the potential squatting apps exist in
the wild (using Koodous [20], a mobile app corpus containing more
than 50 million Android apps). We find that app squatting abuse is,
indeed, highly prevalent for Android apps. Based on the verified
squatting apps, we then identify the common patterns that attack-
ers leverage in app squatting (Section 4). We then use these rules to
design and implement AppCrazy, a tool to systematically generate
squatting identifier names for mobile apps. Given an Android app
as the input, AppCrazy automatically generates confusingly similar
app names and package names that could be leveraged by attackers.
Exploiting the capabilities of AppCrazy, we then conduct a large
scale empirical analysis: we apply it to 426 additional apps crawled
from Google Play and generate more than 200K potential squatting
names (Section 5). From these, we discover 10,553 squatting apps,
confirming that this threat far exceeds the top 10 apps alone. Finally,
we characterize the impact introduced by app squatting (Section 6),
including the prevalence of squatting apps in major app markets,
and the number of app installs of the squatting apps. To summarize,
we make the following main contributions:

(1) We demonstrate that squatting attacks are prevalent in the
mobile app ecosystem. To the best of our knowledge, this
is the first comprehensive study of the characteristics and
implications of App Squatting attacks.

(2) We identify 11 common patterns leveraged by app squat-
ting attackers, and design AppCrazy, a tool to automatically
generate squatting variations for Android apps.

(3) Using AppCrazy, we perform a large-scale empirical study to
understand the squatting app phenomenon and investigate
the lexical characteristics and malicious behaviors. We gen-
erate 224,332 potential squatting names for 426 apps, and
discover 10,553 squatting apps. Worryingly, 51% are classi-
fied as malicious by VirusTotal.

(4) We study the impact of app squatting, discovering that squat-
ting apps have been found in 33 app markets, including the
official Google Play. Many squatting apps have gained a large
number of app downloads (up to over 10 million).

We hope that our efforts can positively contribute to raise aware-
ness among relevant stakeholders (including mobile users, app

developers, and app market maintainers). Hence, we have open-
sourced AppCrazy and the identified squatting apps at:

https://github.com/squattingapp/AppCrazy

2 BACKGROUND AND RELATEDWORK
Domain Squatting. Domain squatting [9] is a well established
attack vector. It is the act of registering a domain name very similar
to an existing legitimate domain, in an effort to capture some of the
(web) traffic going to the original domain. Domain squatting can be
grouped into different categories based on different squatting tech-
niques [101], e.g., typosquatting [30] (squatting via typographical
errors), bit-squatting [96] (squatting via accidental random bit flips),
homograph-based squatting [79, 83] (domains that abuse charac-
ters from different character sets), soundsquatting [95] (domains
that abuse the pronunciation similarity of different words), and
combo-squatting [88] (combination of a recognizable brand name
with other keywords).

Typosquatting is the most popular squatting technique, and has
been well studied by the research community. Wang et al. [117] pro-
posed a general andwidely adopted approach to generate typosquat-
ting domain names. Given a target domain (e.g., www.facebook.com),
various typo-generation models could be applied. The commonly
used typo-generation models include “Missing-dot typos” (e.g.,
wwwfacebook.com), “Character-omission typos” (e.g., www.faceook.
com), “Character-permutation typos” (e.g., www.faecbook.com),
“Character-substitution typos” (e.g., www.facebooj.com), and
“Character-duplication typos” (e.g., www.faceboook.com).

Whereas domain squatting is primarily associated with web-
based attacks, there has been a recent spate of attacks applied to
other areas. Szurdi et al. [103] studied email typosquatting. Several
studies [1–4, 28] have also observed attacks in programming pack-
age managers, e.g., PyPI, RubyGems, and NPM (popular among
developers of Python, Ruby, and JavaScript respectively). For ex-
ample, malicious typosquatting libraries have been found on PyPI
repository [2, 3, 28]. Tschacher [108] studied the feasibility of ty-
posquatting attacks in package managers. Our work takes inspira-
tion from these studies but differs fundamentally: we explore the
presence of squatting attacks within the mobile app ecosystem.
Fake Apps and Repackaged Apps. Although many research ef-
forts have been focused on security and privacy issues in the mobile
app ecosystem [87, 91, 92, 110, 113, 114, 114, 119], prior work on
squatting attacks in app stores is rather limited. There have been a
number of studies on fake apps and repackaged apps (app clones). A
“fake app” masquerades as the legitimate one by mimicking the look

1728

Mobile App Squatting WWW ’20, April 20–24, 2020, Taipei, Taiwan

or functionality [13]. As suggested by previous studies [112, 116],
fake apps usually have identical app or package names to the origi-
nal ones. While a “repackaged app” often shares a large portion of
the code with the original app [74, 124] (e.g., by decompiling the
original app and inserting a malicious payload), they are obviously
signed by different developers.

Wang et al. [116] proposed a clustering approach on app names
to detect potential fake apps. Tang et al. [105] collected over 150K
fake apps that have same package names or app names with popular
apps. Kywe et al. [89] proposed a technique to detect fake apps based
on the external features of apps, e.g., icons, app names. Zhou et
al. [87] found that more than 80% of malicious apps are distributed
in the form of repackaged apps (with same package name). Besides,
a number of studies proposed methods to detect repackaged apps
based on simple hashing [82, 124], static semantic features [90, 94,
109, 123], resource signatures [99, 121], graph similarity [74–76]
and UI birthmark [80, 100, 120], etc.

The focus of this paper differs from the above: whereas the
previous work study fake apps, where the app identifiers are unal-
tered, we shed light on app squatting, where the attackers modify
the app identifiers to trick users. Thus, we are agnostic to the im-
plementation of the apps themselves and, instead, focus on how
attackers strive to gain installations. To the best of our knowledge,
there is no prior study on this topic despite significant media atten-
tion [14, 15, 35].

3 MOTIVATING STUDY
The aforementioned studies suggest that app squatting might be a
serious problem. Accordingly, we perform a preliminary motiva-
tional study to (1) confirm the presence of squatting-like threats in
the app ecosystem, and (2) test if existing domain squatting gener-
ation techniques correctly identify them. We do this to provide a
ground truth that can help inform our later methodology design.

3.1 Methodology
To test for the presence of typosquatting we generate variations of
several popular app and package names, and check whether they
exist in app repositories.
Generating squatting names. We begin by selecting 10 popular
apps from Google Play, each of which has over 100 million installa-
tions (see Table 1). For each app, we manipulate the app name and
app ID (package name) to generate deformed names that could be
leveraged by attackers to mislead users. Unfortunately, the num-
ber of deformed strings increases exponentially with the length
of the original string. For example, if we take 36 characters (26
letters and 10 numbers) as substitutes, then a 5-letter word will
generate thousands of deformed words (by changing just one or
two characters).

To copewith this problem, we leverage existing efforts in generat-
ing squatting domains. State-of-the-art tools such as URLCrazy [31]
and DNSTwist [10] are widely used for generating domain name
typos to detect and perform domain squatting [78, 97, 107, 125].
These tools use similar generation models to produce deformed
strings, covering most kinds of domain squatting attacks.

We perform this study using a representative tool, URLCrazy,
which covers 15 generation models. As URLCrazy is specialized

for domain squatting (ı.e., the input must be a qualified domain
name), we perform a number of steps before inputting app names
to enable compatibility. We first add a top-level domain at the
tail of the app name and package name, e.g., “com.facebook” is
changed to “com.facebook.com”. Further, as app names can contain
a space (but a domain cannot), we replace any spaces with dots
(e.g., “Youtube music” becomes “Youtube.music”). To increase the
number of generated strings, we also input multiple orderings, (e.g.,
Youtube.music.com, music.Youtube.com). Using this approach, we
create 3,283 deformed names (including 1,125 app name variations
and 2,158 package name variants) for the 10 apps considered.
Verifying squatting names. To verify whether any of the newly
generated names exist in the wild, we take advantage of Koodous,
a collaborative platform focused on the detection of fraudulent
patterns in Android apps [20], which is widely used in previous
work [73, 81]. Koodous is an APK repository hosting more than
50 million Android apps, by far the largest accessible Android app
repository to the best of our knowledge.

We run an automated crawler to searchAndroid apps onKoodous
using the 3,283 generated names. This returns more than 2,136 re-
sults. We then filter these results to only leave those apps with exact
string matches. This is necessary because Koodous returns many
“related” apps that do not necessarily match our string query. Our
filtering leaves 138 apks (125 package names and 98 app names). We
then use search engines (including Google and Baidu) to remove
false positives, by searching the app or package names directly to
find whether the app is legitimate or not. This turned out to be a
critical step, as we found 49 false positives. For example, for the
social-networking app “Wechat”, one of the generated app names by
URLCrazy is “Wochat”. However, this is another popular Android
app [37] that should not be labelled as a squatting app.

3.2 Motivating Results
Through the above process we identified 89 squatting apps. We
show detailed results in Column 2-4 of Table 1. Note that Table 1
also includes the results for our tool AppCrazy (later presented in
Section 4). Although our approach is straightforward, we still man-
age to identify squatting apps for all 10 apps studied. For instance,
we discover 28 squatting apps targeting Facebook; for context, Ta-
ble 2 lists 5 app squatting examples. That said, for the 15 generation
models used in URLCrazy, only 6 of them are shown to be effective
in generating squatting apps. For the generated 3,283 name strings,
only 26 of them are matched, which means that more than 99.2%
of the generated strings are not effective in identifying squatting
apps. Interestingly, through this process, we also encountered a
number of squatting apps that were not identified using the strings
generated by URLCrazy. For instance, as previously stated, Koodous
returns “related” apps for each query; within these, we manually
identified 827 further squatting apps (not listed in Table 1) that did
not directly match the strings generated by URLCrazy.

3.3 Observations
The above study confirms our hypothesis that squatting attacks are
prevalent in the mobile ecosystem. However, we find a number of
limitations in domain generation approaches (i.e., URLCrazy):

1729

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hu and Wang, et al.

Table 1: Results of the motivating study.

App Name (# of installations) Domain Squatting Generation Models AppCrazy
of generated
app names

of generated
package names

of identified
squatting apps

of generated
app names

of generated
package names

of identified
squatting apps

Instagram (1B) [18] 125 239 13 17 62 89
Pinterest (100M) [21] 133 156 1 22 32 16
Twitter (500M) [29] 108 252 7 16 55 97
Facebook (1B)[12] 109 231 28 30 67 205
Wechat (100M) [34] 88 156 6 12 39 310
Tumblr (100M) [27] 88 112 6 10 19 22
Telegram (100M) [24] 113 247 9 20 61 160

Youtube Music (100M) [38] 160 430 1 44 826 3
Tinder (100M) [25] 94 117 11 15 24 16

Snapchat (500M) [23] 107 218 7 16 55 28
Total 1125 2158 89 202 1240 946

Table 2: Example of five squatting apps targeting Facebook.
We underline the difference with the legitimate app.

App Name Package Name Developer Name APK_MD5

Facebook com.facebook.katama BombSoft b4fcc28f58880f5592b63eac0c05e088
Facebooks com.hdc.bookmark235646 truecaller 3f320887bba20d311c0fb399260c984c
facbook net.droidjack.server 4PDA 601dfb76ba0f257103bcb78c4f4b3fc8

Facebookk net.droidjack.sandrorat Google a9f0efd56cf4c1aaa6ae0f11e1a6d3cb

faceboook my.app.client Google 5d350a75d2938091066c8cb132ac140e

• Most of the generated variants did not identify any squatting-
like apps. This creates a significant wasted overhead when
testing for their presence in app stores.

• URLCrazymisses many squatting apps. As Koodous presents
a list of related apps to the input keywords, we discovered a
number of fake apps that did not match strings generated by
URLCrazy. For example, some squatting apps targeting Face-
book include thosewith the package name “com.facebook.litf”,
or with the app name “Facebook 2”. These strings were not
generated by URLCrazy.

• Existing generation models produce many false positives.
Although in thismotivating studywe couldmanually remove
false positives, this approach is not scalable.

Next, we seek to design a specific approach for generating and
characterizing app squatting attacks. On the one hand, we must
improve existing domain name generation models to reduce inaccurate
deformed strings (Section 4). But, on the other hand, we must also
filter out false positive apps automatically (Section 5).

4 APP SQUATTING-GENERATION MODELS
The straightforward approach demonstrates that squatting is indeed
prevalent in themobile app ecosystem, but that the existing tools are
not adequate. This section presents AppCrazy, a tool for generating
squatting app and package names with higher accuracy and recall
(than existing tools designed for domain names).

4.1 Terminology
We define App Squatting as a type of squatting behavior where
attackers release apps with identifiers that are confusingly simi-
lar to those belonging to popular apps or large Internet brands.
Based on the target of the squatting, we classify apps into app
name squatting and package name squatting. As mentioned

in Section 2, fake apps have been widely studied; we differentiate
squatting apps with traditional fake apps as follows:

(1) Fake Apps: Apps with an identical app or package name to
legitimate apps, but with different developer signatures.

(2) Squatting Apps: Apps whose app or package name is con-
fusingly similar (but unidentical) to the legitimate app.

Squatting-generationmodels are used to generate various de-
formed strings for a given input.We refer to the generated deformed
strings as “squatting names”.

4.2 Squatting Generation Models
AppCrazy consists of a set of models for generating potential squat-
ting app names and package names. Here we present these models.
Critique of URLCrazy. Before we present the generation models
for AppCrazy, we briefly revisit the limitations of existing models
used for domain names. Although URLCrazy produces promising
initial results, our motivating analysis identifies two problems:

Low Accuracy. URLCrazy generates many types of name varia-
tions that are never matched. Although URLCrazy provides 15 kinds
of generation models for domain squatting, most of them are not
suitable for mobile apps. For instance, “Bit Flipping” implements
manipulation of binary digits, which will lead to large changes in
the string appearance (e.g., “Facebook’ into “nacebook”). As a result,
most of the generated squatting names are ineffective.

Low Recall. URLCrazy ignores common patterns in app naming
(because it is designed for generating domain names). During the
search process on Koodous, we found many deformed strings not
covered by URLCrazy. For example, many squatting names insert
characters at the tail of the original string (e.g., Facebook 2 and
Facebook Update), and some squatting package names partially
replace the string (e.g., com.facebook.litf).
Our Generation Models. Thanks to our preliminary investiga-
tion, we have identified 11 squatting generation models for app
identifiers. As shown in Figure 2, these models can be classified
into two categories: (1) mutation-based squatting generation models,
and (2) combosquatting generation models. To better illustrate the
characteristics of the different models, the rest of this section exam-
ines the strings generated using these 11 techniques for Facebook
(with package name com.facebook.katana as an example).

1730

Mobile App Squatting WWW ’20, April 20–24, 2020, Taipei, Taiwan

App Squatting

Mutation-
based Models

Combosquatting
Generation

Models

string expansion

String
Rearrangement

Character
Insertion

Character
Substitution

Character
Deletion

case substitution

double character
insertion

vowel character
deletion

vowel character
substitution

vowel character
insertion

Double character
deletion

punctuation
substitution

punctuation
deletion

misspelling
mistakes

substitution

Faceebook

Faceboook

facebook

fecebook

com.facebook_katana

Faceb00k

Facbook

facebk

com.facebookkatana

Facebook 2

com.facebook.litf

ExamplesModel Type Models

Figure 2: The 11 kinds of app squatting-generation models
identified in this paper.

Mutation-basedModels. These models generate squatting names
based on either typographical errors or abusing the pronunciation
similarity of different words. We now summarize 9 mutation-based
models as follows:

(1) Case Substitution: Replacing an uppercase character with a
lowercase one (or vice versa), e.g., “Facebook” into “facebook”.
Note that the package names in most app markets (e.g.,
Google Play) are case sensitive.

(2) Vowel Character Insertion: Inserting another vowel character
after a vowel character, e.g., “Facebook” into “Faceebook”.

(3) Vowel Character Deletion: Deleting one or more vowel char-
acters, e.g., “Facebook” into “Facbook”.

(4) Vowel Character Substitution: Replacing a vowel character
with one of the other four vowel characters, e.g., “Facebook”
into “Fecebook”.

(5) Double Character Insertion: Inserting the same character be-
tween two consecutive identical characters, e.g., “Facebook”
into “Faceboook”.

(6) Double Character Deletion: Deleting one or two characters
that are consecutively identical, e.g., “Facebook” into “Face-
bok”, and “Facebook” into “Facebk”.

(7) Punctuation Substitution: Replacing punctuation marks with
other ones (including space, underscore and dot), e.g.,
“com.facebook.katana” into “com.facebook_katana”.

(8) Punctuation Deletion: Deleting a punctuationmark (including
space, underscore and dot), e.g., “com.facebook.katana” into
“com.facebookkatana”.

(9) CommonMisspelling Mistakes Substitution: Replacing specific
characters with 9 common misspelling mistakes[104]. e.g.,
“Facebook” into “Faceb00k”.

Combosquatting Generation Models. These models rely on the
combination of recognizable brand names with other keywords
(as originally proposed in [88]). For instance, URLs such as paypal-
members[.]com and facebookfriends[.]com could lead a user to
believe the domains belong to PayPal and Facebook, respectively.
In the case of apps, examples include “Paypal App 2”, or “PayPal

6
16

124

14
0 7 15 1 2

192

1 0 5 0 2 1 0
48

0

161

387

0
50

100
150
200
250
300
350
400
450

o

f
ap

p
s

app name package name

Figure 3: The distribution of squatting apps across models.

Update”. App combosquatting differs from other forms of app squat-
ting in two fundamental ways: (1) combosquatting does not involve
any spelling deviation from the original app, and (2) it requires
the original app identifier names to be intact within a set of other
characters. As a result, we define two kinds of combosquatting
generation models in this paper.

(1) String Expansion: Inserting characters before or after the
identifier names, e.g., “Facebook” into “Facebook1”.

(2) String Rearrangement: Splitting the string into elements based
on the “dot” character, and rearrange the elements, e.g.,
“com.facebook.katana” into “com.katana.facebook” and
“com.facebook”. To improve accuracy, we discard rearranged
strings that are composed of common names in Android (we
collect 6 common strings).

We embed the above generation models in our tool, AppCrazy,
which we have open-sourced. For an input of an app or package
name, AppCrazy returns a list of potential squatting names.

4.3 Evaluation of the Generation Models
Methodology. To evaluate the efficiency of the squatting gener-
ation models, we compare its results with the traditional domain
squatting approaches used in the motivating study (see Section 3).
We use the same set of 10 popular apps listed in Table 1. By feeding
the 10 apps to AppCrazy, we generate 1,442 squatting names (202
deformed app names and 1240 deformed package names), as shown
in Column 5-6 in Table 1.

We then proceed as in the motivating study by searching for
the squatting names in Koodous. We download any returned apps
(apks), and remove false positives (using search engines and app
stores again). Note that for the combo squatting attacks (ı.e., “String
Expansion”, “String Rearrangement”), we flag the apps as squatting
candidates if their corresponding identifier names have an inclusion
relationship with the input strings. This process identifies 5,315
squatting app candidates (with different MD5 hash value): 415 dis-
tinct app names and 872 distinct package names. After the manual
removal of false positives, we identify 946 squatting apps.
Results. Roughly half of the squatting apps (452) correspond to
the combo squatting attacks, and the other half (494) belong to
mutation-based squatting attacks. Out of the 946 apps, 377 apps
leverage app name squatting and 605 apps take advantage of pack-
age name squatting to mislead users. Figure 3 shows the number of
squatting apps conforming to each of the the 11 generation models.
All the models in AppCrazy are effective in detecting squatting-like

1731

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hu and Wang, et al.

apps. Combosquatting is the most effective model, i.e., “String Ex-
pansion” and “String Rearrangment”, with 353 and 387 squatting
apps belonging to those categories, respectively.

The key advantages of AppCrazy:

• Model Efficiency. All of the 11 generation models proposed in
AppCrazy are effective in detecting squatting apps, whereas
only 6 out of 15 models in URLCrazy are successful.

• Keyword Efficiency. Out of 1,442 deformed strings generated
by AppCrazy, 46 strings are effective in discovering squatting
apps, whereas there are only 26 effective strings among the
3,283 deformed strings, which are generated by URLCrazy.

• The number of identified squatting apps. By applying App-
Crazy to the same 10 apps, we could identify 946 squatting
apps (apks), i.e., about 10 times more than using URLCrazy.

In summary, these initial experiments confirm that our tool is
more effective in pinpointing squatting names than traditional
domain squatting generation tools. In the following sections, we
leverage AppCrazy to perform a large-scale measurement study of
app squatting abuse in the wild (Section 5), then we characterize
the impact of app squatting (Section 6).

5 MEASURING SQUATTING APPS
In this section, we exploit AppCrazy to broaden our analysis and
perform a large-scale measurement of app squatting abuse in the
wild. We therefore integrate AppCrazy into a measurement pipeline
and collect a dataset covering attacks against 426 apps. Our mea-
surement study is driven by the following research questions:

RQ1 What is the distribution of squatting apps in compar-
ison with fake apps? What are the most popular gen-
eration techniques of app names? While fake apps have
been widely studied, the presence of app squatting is not
understood yet. We seek to investigate how widespread app
squatting is, the differences with fake apps, and understand
which squatting generation models are most popular.

RQ2 Does app squatting tend to target more popular apps?
We seek to explore whether adversaries predominantly tar-
get apps with greater popularity.

RQ3 How many of the squatting apps are used for deliver-
ing malware? As previous work on domain squatting have
suggested that phishing or spreading malicious contents is
frequently the underlying motive [79, 83, 96], we seek to
verify whether this threat is common in app squatting as
well.

5.1 Methodology & Data Collection
To answer the above questionswe integrate AppCrazy into a pipeline
(see Figure 4) that: (1) Takes a series of app names as input, (2) Uses
AppCrazy to generate a series of potential squatting names, (3)
Queries Koodous to find matching apps, and (4) Filters false posi-
tives. We now describe these four steps and the collected dataset.
(1) Target App Selection. We first compile a list of legitimate
app names, which may be subject to squatting attacks. As we
mentioned earlier, while all mobile apps could be the subject of
squatting abuse, it is arguably not in the best interest of an ad-
versary to target a less known app. Consequently, we use the top

500 popular apps recommended by Google Play.1 Note that Google
Play recommends these apps based on app popularity in a given
time slot, thus app downloads for these apps vary greatly, rang-
ing from roughly 0.1 million (e.g., com.sports.real.golf.rival.online)
to 1 billion (e.g., com.facebook.katana). We built this dataset in
August 2018. Note that we discarded apps whose name contains
non-English characters (e.g., “com.epi” uses a name with various
non-English characters2) or specific non-standard characters (e.g.,
“com.konylabs.capitalone”3 uses a name with ®). In the end, 426
apps are used.
(2) Keywords Generation & Searching. We next leverage App-
Crazy to generate all the potential squatting strings for the app and
package names. We then query Koodous with the squatting strings.
Note that, to compare with the status of traditional fake apps, we
also feed the original app and app package names to Koodous, in
order to identify any fake apps that have identical app or package
names with original ones.
(3) Model Matching. As mentioned, the search results returned
by Koodous do not always match our input keywords accurately.
Therefore we enforce a strict comparison to extract apps that have
app or package names exactly matching our generation models. For
mutation-based generation models, if the app or package name is
identical to the generated strings, we flag the corresponding app as
a squatting app candidate. For combosquatting generation models,
we flag any apps that contain the name or package name (after
the string rearrangement) of the target apps. For traditional fake
apps, we flag any apps that have an app name or/and package name
identical to the original ones as fake app candidates.
(4) App Filtering. We next discard any false positive squatting
app candidates. Inspired by traditional domain squatting detection
approaches [102], we propose a three-phase heuristic method to
automatically remove false positives:

SameDevelopers.A developer might name the apps differently
across platforms or devices. For example, the app “com.supercell.
clashroyale” and app “com.supercell.clashroyale.samsung” are both
legitimate apps (i.e., “Clash Royale”), released by the same developer
but designed for different devices. Accordingly, we discard those
squatting app candidates that having different names from the
original apps, but are signed by the same developer.

Common Names. Some apps share widely-used names (e.g.,
Video Player [32] and Flashlight [16]), which are neither brand
names (e.g., WhatsApp [36]) nor company names (e.g. Adobe [5]).
This might introduce false positives. As a result, for an app whose
name is composed of common English words, we consider it as a
fake/squatting app only when its package name matches our pre-
defined rules (i.e., we do not search for its app name). Our such
words-list is collected from a public English common word list [8].

App/Developer White List. To further remove false positives,
we create and use a reliable app/developer whitelist. To the best
of our knowledge, no such datasets are available. Thus, we seek
to build our own white list of apps and developers. We first rely
on two datasets to collect the historical data of Google Play: (1)
AndroZoo [7], a dataset with over 8 million apps and growing

1https://play.google.com/store/apps/top
2https://play.google.com/store/apps/details?id=com.epi
3https://play.google.com/store/apps/details?id=com.konylabs.capitalone

1732

Mobile App Squatting WWW ’20, April 20–24, 2020, Taipei, Taiwan

squatting
app names

Pkg Name
Typos

original
app names

original
pkg names

Keywords

App Filtering

developer analysis

md5 white-list

Keywords Generation Model Matching

identical

inclusion
relationship

Squatting/Fake
App

Candidates

Squatting/Fake
Apps

Keywords
Searching

Koodous

Target
App

Selection

rearrangement

common words

Figure 4: Our approach to identify squatting apps.

(mainly from Google Play), and (2) two historical snapshots of
Google Play created in 2015 (over 1.5 million app) and 2017 (over
2.1 million app) by Wang et al. [111, 112, 115]. Additionally, we
crawl a snapshot of Google Play ourselves in January 2019 (over
2.1 million apps). Using this data, we then compare the historical
snapshots with the one we recently crawled, and populate the white
list with any app/developer that has not been removed by Google
for over 1 year. Although malware and fake apps are recurrently
found on Google Play, they are removed once discovered. We later
confirm that Google is extremely effective at removing these apps,
validating this assumption (Table 8). By the time of our study, we
have created a list of over 743K apps and 230K developer signatures.
Results. Using the pipeline, we have generated 224,322 squatting
names for 426 target apps. We have fed these strings into Koodous
to identify 106,316 squatting/fake app (apk) candidates that matched
our rules. Our three-phase heuristic approach discarded 74,273 false
positives, with each phase filtering about 2K, 30K and 40K apps,
respectively. This left 32,043 fake or squatting apks. This confirm
that fake/squatting apps are prevalent for the 426 target apps.
Accuracy. We randomly sample 10 target apps from the 426 apps
for verification. These 10 apps have been targeted by 980 squat-
ting apps and 1,242 fake apps in total. Although we have adapted
the widely used approach (in domain squatting) of white listing
to filter out false positives automatically, the list may be incom-
plete. To confirm whether the sampled apps in our dataset are truly
fake/squatting apps, the first two authors verify these apps manu-
ally based on search engines to see whether the apps are legitimate
or not. For the apps with disagreement or we cannot make sure, we
label them as “potentially false positives”. Eventually, we identify 9
false positives (0.9%) and 109 potentially false positives (9%) from
the 980 squatting apps, and 66 potentially false positives (5%) from
the 1,242 fake apps. This result suggests that, our approach with
the automated app filtering can achieve at least 90% of accuracy.

5.2 RQ1: Distribution of Squatting Apps
We first investigate the distribution of squatting apps in the wild
compared to fake apps, and the most popular app squatting patterns.
Fake vs. Squatting. For the 32,043 apps flagged, 27,103 are fake
apps that have at least one identifier name (app name or package
name) matching the original app. 10,553 match our squatting gen-
eration model, i.e., using confusingly similar identifier names. Note
that an app could match both the rules of fake and squatting apps
(e.g., using an identical package name and a confusingly similar

43 20

1839

486

1794

109 281
710

1207 1317

8 2 20 10 26 9 4 109 15

669

3214

0

500

1000

1500

2000

2500

3000

3500

o

f
ap

p
s

app name package name

Figure 5: Distribution of squatting generation models.

app name). The large number of squatting apps found suggests that
squatting apps are rife and should be a cause of concern.

Table 3: Legitimate apps targeted by fake and squatting apps.

apps (%) targeted by at least
1 10 100

fake apps 343(80%) 216(51%) 66(15%)
squatting apps 274(64%) 106(25%) 20(5%)
Total 375(88%) 236(55%) 69(16%)

Table 3 presents the distribution. Out of these 426 target apps,
343 of them have at least one fake app and 274 apps have at least one
squatting app targeting them. Specifically, 51% of them (216 apps)
have more than 10 fake apps and 15% of them (66 apps) have more
than 100. 25% of the apps (106 apps) have more than 10 squatting
apps and 5% apps (20) have more than 100 squatting apps. Table 6
lists the top 5 apps with the most fake and squatting apps (over
1000 per app). Note that three of them are game apps and two of
them are social apps, which suggests these are key targets.
Most Popular Squatting Patterns. Figure 5 shows the distribu-
tion of the 11 proposed matching models in the collected 10,553
squatting apps. We make three key observations. First, these apps
tend to rely more on app name squatting (6,306 apps) than package
name squatting (3,936 apps). This is intuitive as typical users are
likely to only inspect the app name when selecting apps. Second, for
app name squatting, adversaries are more likely to modify the app
name using “Case Substitution”, “String Expansion” and “Punctua-
tion Substitution”. Third, for package name squatting, adversaries
generally rely on the pattern of “String Rearrangement”, e.g, we
found a squatting app with package name “com.android.twitter”,
which is originated from “com.twitter.android”. This can add insight
for markets seeking to identify offending apps.

1733

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hu and Wang, et al.

Fake app

Squatting app

0

10

100

200

400

600

800

1100

1400

0.1 million 10 million 50 million 100 million 1 billion

o

f
A

p
p

s

Figure 6: The distribution of app downloads vs. the number
of fake (blue)/squatting (red) apps per target app.

1.8

8.5

1.4 2 1.4
0.1

1.4
0.8 1.2 1

21.7

7.6
4.5

2.9 3.7 4.1

0.5
1.6

0.1 0.2
0

5

10

15

20

25

%
 o

f
A

p
p

s

AVClass Tag

Fake app

Squatting app

1.8

8.5

2.4
0.1 1.4 0.1 1.4 2 0.8 0.7

21.7

7.6 6.1 5.8 4.5 4.1 3.7 2.9
1.6 1

0

5

10

15

20

25

%
 o

f
A

p
p

s

AVClass Tag

Fake app

Squatting app

Figure 7: Top 10 AVClass families of squatting apps.
Table 4: Distribution of potential malware.

Not-legitimate # apps (%) with AV-rank
≥ 1 ≥ 10 ≥ 20

Fake apps 21371(79%) 5781(21%) 3686(14%)
Squatting apps 7919(79%) 5736(57%) 4716(47%)
Total 25525(80%) 9892(31%) 7312(23%)

5.3 RQ2: App squatting vs. App Popularity
We next ask if attackers target more popular apps. We first rank the
426 apps by the number of downloads and compare the distribution
of fake and squatting apps across these 426 apps (see Figure 6).
Fake and squatting apps are prevalent for all the apps we studied,
although apps with more downloads are likely to have more fake
and squatting apps. Roughly 83% of fake apps (22,495 apps) and
76% of squatting apps (8,020 apps) are targeting the top third of
apps (141 apps) who have over 50 million downloads. Roughly 22%
of fake apps (5,963 apps) and 18% of squatting apps (1,902 apps) are
targeting the top 5% of apps (22 apps) whose downloads is higher
than 500 million. This intuitive finding indicates that adversaries do,
indeed, focus on popular apps when performing squatting attacks.

5.4 RQ3: Malware Presence
Finally, we examine how many of the squatting apps are used for
delivering malware. Hence, we uploaded all the apps to VirusTo-
tal [33], a frequently used online analysis service that aggregates
more than 60 anti-virus engines. As previous studies [71, 118] have
suggested that some anti-virus engines may not always report reli-
able results, we analyze the results grouped by how many engines

(AV-rank) flag an app as malware. Previous work [86, 122] has
suggested 10 engines as a robust threshold.
Malware Presence. Table 4 shows that around 80% of the collected
apps are flagged by at least one anti-virus engine. When using the
threshold of “AV-Rank>=10”, around 31% of the apps are labelled
as malware. However, the malicious behavior of fake and squatting
apps is remarkably different. More than 57% of the squatting apps
are identified as malware with “AV-Rank>=10”, while the percent-
age for fake apps is only 21%. This result suggests that squatting
apps tend to be more malicious than fake apps. Table 5 lists the
top 5 squatting-based malware according to their AV-Ranks. For
example, the app “com.software.android.install” was flagged by 45
engines (“fakeinst” family), which is actually a Trojan appearing as
installers for other apps [26].
Malware Category. We next analyze the distribution of malware
categories and families reported by VirusTotal engines. The mal-
ware signatures for these apps mainly correspond to 5 general
categories of malware: PUP/PUA (52.5%), Trojan (34.4%), Malware
(27.4%), Adware (17.1%) and Riskware (14%).We also useAVClass [98],
a widely used malware labeling tool to obtain the family name of
each identified malware. Figure 7 presents the top 10 malware fam-
ily of squatting apps, Families “fakeinst” [26] and “mobidash” [6]
are the most popular: more than 21.7% (2290 squatting apps) and
7.6% (802 squatting apps) of flagged malicious apps belong to them.
Furthermore, the distributions of malware families differ greatly
between fake and squatting apps, confirming again that these two
types of malicious app are distinct.

6 CHARACTERIZING THE IMPACT
We now further characterize the wider impact of app squatting by
exploring the following research questions:

RQ4 How prevalent is the problem in major Android app
distribution channels? Although Koodous is by far the
largest Android app repository, the apps collected may come
from different app distribution platforms that are not explic-
itly identified in Koodous (there is no source information).
Thus, it is interesting to further explore the presence of
squatting apps in major markets.

RQ5 Howmanyuserswould be tricked into installing these
apps? Although we have identified a large number of squat-
ting apps, the impact it causes to thewidermobile app ecosys-
tem is still unknown. One of the most explicit ways to mea-
sure this is the number of app downloads.

6.1 Methodology & Data Collection
To answer the aforementioned RQs, we first harvest a dataset with
app market information. We leverage three up-to-date and large-
scale app datasets to identify squatting apps in major app markets:

• Dataset from Wang et al. [116], created in August 2017
and with over 6.2 million app items collected from Google
Play and the 17 most popular Chinese app markets.

• AndroZoo Dataset [7], an academic effort focused on com-
piling a large-scale dataset of APKs. We use the dataset from
March 2019. It contains more than 8.8 million apks from 16
app markets. Roughly 80% are from Google Play.

1734

Mobile App Squatting WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 5: Top 5 squatting-based malicious apps according to AV-Rank.

App Name Package Name MD5 AV-Rank malware family

Angry_Birds com.software.android.install 81ab22a9700f3db8f3a22cb6544a9166 45 fakeinst
Angry_Birds com.software.application 2258bd0efa20e732fa7df1442d6f3f08 45 boxer
Angry_Birds com.software.app 465f95ef5e703a76722252a377ac10ce 45 fakeinst
Spider Man powerstudio.spiderman f770fbf102d1d980515c8a6af4ef5c24 44 lotoor
Angry_Birds com.googleapps.ru 0317519f2f2d7b11eba9edeff45f2967 44 fakeinst

Table 6: Top 5 apps with the most number of fake and squatting apps.

App name Package name # of Fake Apps # of Squatting Apps # of App Name
Squatting Apps

of Package Name
Squatting Apps Total

Angry Birds com.rovio.angrybirds 616 1314 1313 26 1928
Skype com.skype.raider 1284 164 22 148 1376

Clash of Clans com.supercell.clashofclans 1113 270 255 15 1362
8 Ball Pool com.miniclip.eightballpool 1296 23 22 1 1319
WhatsApp com.whatsapp 996 814 221 524 1162

Table 7: Coverage of the App Store Datasets.

Dataset Period # Apps # App Stores
Wang et al. [116] 2017 5.6M 18
AndroZoo [7] 2016-2019 8.8M 16
Janus [19] 2014-2019 15.2M 23

• Janus Dataset [19], a growing mobile security data corpus
containing more than 15 million Android apps. The apps in
the Janus dataset were explicitly labeled with their source
markets (over 22 app markets).

We list the details of these three dataset in Table 7. Overall, we
cover 33 different app markets.

6.2 RQ4: Presence of Squatting in App Markets
We first investigate how prevalent the problem is in major An-
droid app distribution channels. We repeat the process introduced
in Section 5 to check the presence of squatting apps in the above
three datasets. The only difference is that we replace the app corpus
(Koodous) with the three app market datasets mentioned above.
This is because the three datasets have the added benefit of includ-
ing metadata about which market the app is hosted in. Table 8
summarizes the number of squatting apps across the 33 markets.
There are squatting apps in all markets. We find 1,794 apps with
3,930 different versions across the markets. 1,500 squatting apps
(with 897 distinct package names) have even been published in the
official Google Play. Besides Google Play, third-party app markets
are the main distribution channels for the spreading squatting apps.

Whereas the largest portion of squatting apps can only be found
in a single market, we observe that the majority are actually repli-
cated across multiple markets. For context, we list the top 3 apps
with the largest number of squatting attacks across the markets
in Table 9. Each of these heavily targeted apps have hundreds of
squatting apps in at least 20 markets. From the 426 popular target
apps, 55% of them (236 apps) have suffered squatting attacks in at
least one market. For example, the squatting apps of Angry Birds
have been published on 29 different markets. We have identified
various aggressive cases. For example, “Faceboook” with the squat-
ting package name “com.bryan.faceboook”4 was found in Google
4MD5:0a69fa5aa4d99328d49a99aa327f0023

Table 8: Distribution of Squatting Apps across app stores.
In each dataset column we list the number of apps with
unique package names, and the number of distinct APKs
with unique MD5 hashes (in parentheses).

App Store Wang et al.
(APK/APP)

AndroZoo
(APK/APP)

Janus
(APK/APP) Total

EOE Market [52] – – 322(242) 322(242)
25PP [40] 810(198) – 368(269) 1153(450)
Baidu Marjet [48] 419(66) – 1191(768) 1449(810)
Coolpad [50] – – 133(110) 133(110)
Huawei Market [55] 154(8) – 234(176) 447(207)
Flyme Market [58] 310(33) – 252(189) 553(215)
Appchina [47] 270(16) 428(74) 1106(718) 1497(774)
AnzhuoApk [45] – – 983(646) 983(646)
360 Market [41] 258(47) – 727(485) 975(525)
Google Play [17] 125(57) 799(469) 736(163) 1500(897)
Apkpure [46] – – 290(218) 290(218)
Wandoujia [68] 700(124) – 648(432) 1317(540)
Liqu [57] 344(38) – 116(97) 458(133)
Uptodown [67] – – 319(232) 319(232)
ZOL [70] 144(8) – 58(53) 202(61)
MyApp Market [62] 467(104) – 319(225) 780(323)
Lenovo Market [56] 237(14) – 100(79) 334(90)
Xiaomi Market [69] 284(20) 218(13) 79(54) 372(76)
SouGou Market [66] 401(42) – 187(143) 582(179)
Mumayi [61] – – 74(63) 74(63)
Anzhi [44] 339(44) 624(102) 163(116) 779(211)
Mobiseclab [60] – – 50(47) 50(47)
Angeeks [43] – 253(27) – 253(27)
1mobile [39] – 27(13) – 27(13)
Freeware Lovers [53] – 37(3) – 37(3)
91 Assistant [42] 165(8) – – 165(8)
Dangle [51] 88(21) – – 88(21)
OPPO Market [64] 369(73) – – 369(73)
PCOnline [65] 257(39) – – 257(39)
NDuo [63] 93(5) – – 93(5)
MGYApp [59] 122(17) – – 122(17)
GFan [54] 60(5) – – 60(5)
CNMO [49] 120(7) – – 120(7)
Others – – 665(447) 665(447)
Total 1162(342) 1869(617) 2291(1305) 3930(1794)

Play, MyApp, Wandoujia, AnzhuoApk, OPPO and 25PP. “What-
sApp” with the squatting package name “com.gbwhatsapp”5 was
5MD5:8c3281591f99d81615edac56e8f04ea2

1735

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hu and Wang, et al.

Table 9: Top 3 targeted apps according to the number of
squatting apps across stores.

App Name Package Name # Sqt Apps # Stores
Angry Birds com.rovio.angrybirds 557 28
Spider-Man com.gameloft.android.ANMP.GloftSIHM 248 29
Youtube com.google.android.youtube 232 24

found in Google Play, Baidu, AnzhuoApk, MyApp, Sougou, Huawei,
CoolPad, Meizu, 25App, Mumayi, Uptodown and Apkpure. This
confirms that some attackers extensively replicate their squatting
apps across many markets to gain greater visibility. This also sug-
gests that the markets do not perform name or app typosquatting
checks, and could potentially benefit from sharing information.

6.3 RQ5: Impact on App Downloads
We now move our attention to the impact of squatting apps. In
particular we wish to understand how successful these squatting
apps are in tricking users into installing them. Note that for the
three datasets used, only [116] contains the number of app installs.
Thus, we further refer to this dataset where we have identified 342
squatting apps with unique package names (1,162 apk versions),
which target 67 legitimate apps. Note that for the remaining 359
legitimate apps, we did not identify their corresponding squatting
apps in this dataset. Table 8 summarizes these results.
Downloads of Squatting Apps.We first analyze the distribution
of app downloads for all the 342 identified squatting apps. 34% of
them (117 apps) have over 1K downloads, and 8% of them (28 apps)
have more than 100K downloads, with the largest one reaching
over 10 million. Overall, they have been downloaded 59 million
times. This result confirms the efficacy of the app squatting attacks.
Downloads of Legitimate vs. Squatting app. We further study
how popular the squatting apps are in comparison to the legitimate
ones. For 12 out of the 67 legitimate apps, over 1% of the downloads
corresponds to the squatting versions rather than the legitimate
app. Interestingly, for a subset of 8 apps, the number of squatting
app downloads goes beyond 10% of the downloads of the original
apps. We also identify one extreme case (app “com.squareup.cash”)
where the number of downloads of the squatting version equals
those of the legitimate app. These results suggest that squatting apps
do have a meaningful impact on the original apps, which might lose
potential users, and suffer a negative impact on their brand.

7 DISCUSSION
7.1 Mitigation & Implications
We identify a number of methods to mitigate the severity of app
squatting; we discuss them with three stakeholders in mind.
AppMarket Maintainers. We argue that there is a need to design
policies to regulate app naming schemes. For example, if a given
app named Telegram exists already in the market, other apps using
similar names (such as Teligram) should be disallowed, or exten-
sively scrutinized. AppCrazy can assist in this process. Equally, if
policy violating apps are found in search results (e.g., Bing), the
search engine should highlight such violations (and report them to
the market).

App Developers. App developers should also be made aware of
squatting abuse so as to invent a name that is not similar to other
(existing ones). They should also take the responsibility to search
for and identify squatting that target their apps. In such cases,
developers could then take actions to mitigate possible abuses (e.g.,
by reporting them to the market maintainers).
Mobile Users. Awareness should also be raised among users. For
educational purposes, we commit to post regular tutorials and re-
ports on our website to provide a means for market maintainers,
app developers as well as app users to learn more about app squat-
ting attacks. We have also released our tool to the community, and
will further introduce an online web service that takes as input
an app (or package) name and outputs a list of name variants that
could be leveraged to check for app squatting attacks. The web
service will also illustrate if the given name variant has actually
been adopted by an existing app.

7.2 Limitations
Our study carries certain limitations. First, we have identified 11
squatting generation models for app identifiers based on our moti-
vating study (implemented within AppCrazy). Although far more
accurate than URLCrazy, it is still possible that the generation
models are incomplete, and other sophisticated methods exist. To
alleviate this, we have designed AppCrazy as an easy-to-extend
tool, where new patterns can be readily added. Second, when filter-
ing false positives, we have adapted the widely used approach (in
domain squatting) of white listing. Accordingly we have created
and released a large white list of apps and developer signatures
to filter false positives. While this proved effective, we acknowl-
edge that the list may be incomplete. To the best of our knowledge,
it is non-trivial to discard false positives (both for URL and app
squatting) and we could identify no better alternatives. Finally, we
also note that our study has primarily focused on popular apps. We
argue this is appropriate as we found that attackers primarily target
these well known apps. Despite this, our future work will explore
how our findings generalize across the full popularity spectrum.

8 CONCLUDING REMARKS
This paper has presented the first in-depth measurement study of
app squatting attacks. Our study has revealed that squatting attacks
are prevalent in the mobile app ecosystem, thereby motivating the
need for more efforts to identify and prevent potential abuses. We
have identified common patterns that adversaries leverage to per-
form app squatting attacks, and developed a tool (AppCrazy) for the
automatic generation of squatting names. By applying AppCrazy
to 426 popular apps, we have discovered more than 10K squatting
apps, many of which are used for delivering malware.

ACKNOWLEDGMENTS
This work was partly supported by the National Key Research and
Development Program of China (No. 2018YFB0803603), by the Na-
tional Natural Science Foundation of China (No. 61702045 and No.
61772042), by the Australian Research Council (ARC) under projects
DE200100016 and DP200100020, by the Alan Turing Institute (EP-
SRC EP/N510129/1) and grant EP/P025374/1.

1736

Mobile App Squatting WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] 2017. Attackers Use Typo-Squatting To Steal npmCredentials. https://threatpost.

com/attackers-use-typo-squatting-to-steal-npm-credentials/127235/.
[2] 2017. PyPI Python repository hit by typosquatting sneak attack.

https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-
hit-by-typosquatting-sneak-attack/.

[3] 2017. Ten Malicious Libraries Found on PyPI - Python Package In-
dex. https://www.bleepingcomputer.com/news/security/ten-malicious-
libraries-found-on-pypi-python-package-index/.

[4] 2017. This typosquatting attack on npm went undetected for 2 weeks. https:
//www.theregister.co.uk/2017/08/02/typosquatting_npm/.

[5] 2018. Adobe Scan. ttps://play.google.com/store/apps/details?id=com.adobe.
scan.android.

[6] 2018. Android/Adware.MobiDash. https://blog.malwarebytes.com/detections/
android-adware-mobidash.

[7] 2018. Androzoo. https://androzoo.uni.lu/.
[8] 2018. Common English Words. https://github.com/first20hours/google-10000-

english.
[9] 2018. Cybersquatting - Wikipedia. https://en.wikipedia.org/wiki/

Cybersquatting.
[10] 2018. DNSTwist: domain name permutation engine. https://github.com/elceef/

dnstwist/.
[11] 2018. Dot-cm Typosquatting. ttps://krebsonsecurity.com/2018/04/dot-cm-

typosquatting-sites-visited-12m-times-so-far-in-2018.
[12] 2018. Facebook. https://play.google.com/store/apps/details?id=com.facebook.

katana.
[13] 2018. Fake mobile apps, a growing threat. https://www.guardsquare.com/en/

blog/fake-mobile-apps-growing-threat.
[14] 2018. Fake Teleg’e’ram on Google Play. https://www.zscaler.com/blogs/

research/fake-telegeram-google-play.
[15] 2018. FakeWhatsApp app fooled million Android users on Google Play: Did you

fall for it? https://www.zdnet.com/article/fake-whatsapp-app-fooled-million-
android-users-on-google-play-did-you-fall-for-it/.

[16] 2018. Flashlight. https://play.google.com/store/apps/details?id=app.real.
flashlight.

[17] 2018. GooglePlay. https://play.google.com.
[18] 2018. Instagram. https://play.google.com/store/apps/details?id=com.instagram.

android.
[19] 2018. Janus. https://www.appscan.io.
[20] 2018. Koodous. https://koodous.com.
[21] 2018. Pinterest. https://play.google.com/store/apps/details?id=com.pinterest.
[22] 2018. PyPI Python repository hit by typosquatting sneak attack.

https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-
hit-by-typosquatting-sneak-attack.

[23] 2018. Snapchat. https://play.google.com/store/apps/details?id=com.snapchat.
android.

[24] 2018. Telegram. https://play.google.com/store/apps/details?id=org.telegram.
messenger.

[25] 2018. Tinder. https://play.google.com/store/apps/details?id=com.tinder.
[26] 2018. Trojan:Android/Fakeinst. https://www.f-secure.com/v-descs/trojan_

android_fakeinst.shtml.
[27] 2018. Tumblr. https://play.google.com/store/apps/details?id=com.tumblr.
[28] 2018. Twelve malicious Python libraries found and removed from

PyPI. https://www.zdnet.com/article/twelve-malicious-python-libraries-found-
and-removed-from-pypi/.

[29] 2018. twitter. https://play.google.com/store/apps/details?id=com.twitter.
android.

[30] 2018. Typosquatting - Wikipedia. https://en.wikipedia.org/wiki/Typosquatting.
[31] 2018. URLCrazy. https://www.morningstarsecurity.com/research/urlcrazy.
[32] 2018. Video Player. https://play.google.com/store/apps/details?id=com.enhance.

videoplayer.free.
[33] 2018. VirusTotal. https://www.virustotal.com.
[34] 2018. WeChat. https://play.google.com/store/apps/details?id=com.tencent.mm.
[35] 2018. What is Teligram? Fake Telegram app found serving up malware and ads

on Google Play Store. https://www.ibtimes.co.uk/what-teligram-fake-telegram-
app-found-serving-malware-ads-google-play-store-1655019.

[36] 2018. Whatsapp. https://play.google.com/store/apps/details?id=com.whatsapp.
[37] 2018. Wochat. https://play.google.com/store/apps/details?id=io.wochat.app.
[38] 2018. YouTube Music. https://play.google.com/store/apps/details?id=com.

google.android.youtube.
[39] 2019. 1Mobile. http://www.1mobile.com.
[40] 2019. 25PP Market. https://www.25pp.com/android.
[41] 2019. 360 Market. http://zhushou.360.cn/?_gtype=guagua.
[42] 2019. 91 Assistant. http://zs.91.com/resourcea-app.html?page=1&type=

android&restype=soft.
[43] 2019. Angeeks. http://apk.angeeks.com.
[44] 2019. Anzhi Market. http://www.anzhi.com.
[45] 2019. AnzhuoApk. http://www.anzhuoapk.com.

[46] 2019. Apkpure. https://apkpure.com/cn.
[47] 2019. AppChina. http://www.appchina.com.
[48] 2019. Baidu Market. https://shouji.baidu.com.
[49] 2019. CNMO. http://app.cnmo.com/android.
[50] 2019. Coolpad Market. https://www.coolmart.net.cn.
[51] 2019. Dangle Market. https://app.d.cn.
[52] 2019. EOE Market. http://www.eoemarket.com.
[53] 2019. Freeware Lovers. http://www.freewarelovers.com/apps.
[54] 2019. GFan. http://apk.gfan.com/gamess_8_1_1.html.
[55] 2019. Huawei Market. http://app.hicloud.com.
[56] 2019. Lenovo Market. https://www.lenovomm.com.
[57] 2019. Liqu Market. https://www.liqucn.com.
[58] 2019. Meizu Market. http://app.flyme.cn/apps/public/index.
[59] 2019. MGYApp. http://www.mgyapp.com.
[60] 2019. Mobiseclab. http://akana.mobiseclab.org.
[61] 2019. Mumayi. http://www.mumayi.com.
[62] 2019. MyApp Market. https://sj.qq.com/myapp.
[63] 2019. NDuo. http://www.nduo.cn/Home/Index/0/?webType=web.
[64] 2019. OPPO Market. https://store.oppomobile.com.
[65] 2019. PCOnline. https://dl.pconline.com.cn/android.
[66] 2019. SouGou Market. http://zhushou.sogou.com/apps.
[67] 2019. Uptodown. https://www.uptodown.cc.
[68] 2019. Wandoujia. https://www.wandoujia.com.
[69] 2019. Xiaomi Market. http://app.mi.com.
[70] 2019. ZOL Market. http://sj.zol.com.cn.
[71] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket. In Ndss, Vol. 14. 23–26.

[72] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. 2011. Mea-
suring pay-per-install: the commoditization of malware distribution.. In Usenix
Security Symposium. 13–13.

[73] Fabio CHAKRABORTY, Tanmoy; PIERAZZI. 2017. Ensemble clustering and
classification for predicting android malware families. In IEEE Transactions on
Dependable and Secure Computing. IEEE, 1–1.

[74] Peng Liu Chen, Kai and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on android markets. In The 36th
International Conference on Software Engineering. ACM, 175–186.

[75] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones:
Detecting cloned applications on android markets. In European Symposium on
Research in Computer Security. Springer, 37–54.

[76] Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. Scalable semantics-based
detection of similar android applications. In Proc. of ESORICS, Vol. 13. Citeseer.

[77] Feng Dong, HaoyuWang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu,
Guoai Xu, and Jacques Klein. 2018. Frauddroid: Automated ad fraud detection
for android apps. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18). 257–268.

[78] Yahia Elsayed and Ahmed Shosha. 2018. Large scale detection of IDN domain
name masquerading. In 2018 APWG Symposium on Electronic Crime Research
(eCrime). IEEE, 1–11.

[79] Evgeniy Gabrilovich and Alex Gontmakher. 2002. The homograph attack. Com-
mun. ACM 45, 2 (2002), 128.

[80] Olga Gadyatskaya, Andra-Lidia Lezza, and Yury Zhauniarovich. 2016. Eval-
uation of Resource-Based App Repackaging Detection in Android. In Nordic
Conference on Secure IT Systems. Springer, 135–151.

[81] Ali GHARIB, Amirhossein; GHORBANI. 2017. DNA-Droid: a real-time android
ransomware detection framework. In International Conference on Network and
System Security. Springer, 184–198.

[82] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn
Song. 2012. Juxtapp: A scalable system for detecting code reuse among android
applications. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 62–81.

[83] Tobias Holgers, David E Watson, and Steven D Gribble. 2006. Cutting through
the Confusion: AMeasurement Study of Homograph Attacks. In USENIX Annual
Technical Conference. 261–266.

[84] Yangyu Hu, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Ren He. 2019. Want
to earn a few extra bucks? a first look at money-making apps. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 332–343.

[85] YangyuHu, HaoyuWang, Yajin Zhou, Yao Guo, Li Li, Bingxuan Luo, and Fangren
Xu. 2019. Dating with scambots: Understanding the ecosystem of fraudulent
dating applications. IEEE Transactions on Dependable and Secure Computing
(2019).

[86] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kâafar, Noha
Loizon, and Roya Ensafi. 2019. The Chain of Implicit Trust: An Analysis of the
Web Third-party Resources Loading. Web Conference (2019).

[87] Xuxian Jiang and Yajin Zhou. 2012. Dissecting android malware: Characteri-
zation and evolution. In 2012 IEEE Symposium on Security and Privacy. IEEE,

1737

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hu and Wang, et al.

95–109.
[88] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever, Yizheng Chen, Rosa

Romero-Gomez, Nikolaos Pitropakis, Nick Nikiforakis, and Manos Antonakakis.
2017. Hiding in plain sight: a longitudinal study of combosquatting abuse. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 569–586.

[89] Su Mon Kywe, Yingjiu Li, Robert H Deng, and Jason Hong. 2014. Detecting cam-
ouflaged applications on mobile application markets. In International Conference
on Information Security and Cryptology. Springer, 241–254.

[90] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2019. On
identifying and explaining similarities in android apps. Journal of Computer
Science and Technology 34, 2 (2019), 437–455.

[91] Jialiu Lin, Shahriyar Amini, Jason I Hong, Norman Sadeh, Janne Lindqvist, and
Joy Zhang. 2012. Expectation and purpose: understanding users’ mental models
of mobile app privacy through crowdsourcing. In Proceedings of the 2012 ACM
conference on ubiquitous computing. 501–510.

[92] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu.
2019. DaPanda: Detecting Aggressive Push Notifications in Android Apps. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 66–78.

[93] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang,
Tegawendé F Bissyandé, and Jacques Klein. 2020. MadDroid: Characterising
and Detecting Devious Ad Content for Android Apps. In The World Wide Web
Conference. 1988–1999.

[94] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast and
accurate detection of third-party libraries in Android apps. In Proceedings of the
38th International Conference on Software Engineering Companion (ICSE-C ’16).
653–656.

[95] Nick Nikiforakis, Marco Balduzzi, Lieven Desmet, Frank Piessens, and Wouter
Joosen. 2014. Soundsquatting: Uncovering the use of homophones in domain
squatting. In International Conference on Information Security. Springer, 291–308.

[96] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven Desmet, Frank
Piessens, and Wouter Joosen. 2013. Bitsquatting: Exploiting bit-flips for fun, or
profit?. In Proceedings of the 22nd international conference on World Wide Web.
ACM, 989–998.

[97] Yuta Sawabe, Daiki Daiki, Mitsuaki Akiyama, and Shigeki Goto. 2018. Detecting
Homograph IDNs Using OCR. Proceedings of the Asia-Pacific Advanced Network
46 (2018), 56–64.

[98] et al Sebastián, Marcos. 2016. Avclass: A tool for massive malware labeling..
In International Symposium on Research in Attacks, Intrusions, and Defenses.
Springer.

[99] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. 2014.
Towards a scalable resource-driven approach for detecting repackaged android
applications. In Proceedings of the 30th Annual Computer Security Applications
Conference. ACM, 56–65.

[100] Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, and Lipo
Wang. 2015. Detecting clones in android applications through analyzing user
interfaces. In Proceedings of the 2015 IEEE 23rd International Conference on
Program Comprehension. IEEE Press, 163–173.

[101] Jeffrey Spaulding, Shambhu Upadhyaya, and Aziz Mohaisen. 2016. The land-
scape of domain name typosquatting: Techniques and countermeasures. In 2016
11th International Conference on Availability, Reliability and Security (ARES).
IEEE, 284–289.

[102] Janos Szurdi, Kocso Balazs, Cseh Gabor, Spring Jonathan, Felegyhazi Mark, and
Kanich Chris. 2014. The long "taile" of typosquatting domain names. In Usenix
Security Symposium. 191–206.

[103] Janos Szurdi and Nicolas Christin. 2017. Email Typosquatting. In Proceedings of
the 2017 Internet Measurement Conference (IMC ’17). 419–431.

[104] Bohm T. 2014. Letter and symbol misrecognition in highly legible typefaces for
general, children, dyslexic, visually impaired and ageing readers. In Information
Design Journal. 34–50.

[105] Chongbin Tang, Sen Chen, Lingling Fan, Lihua Xu, Yang Liu, Zhushou Tang,
and Liang Dou. 2019. A large-scale empirical study on industrial fake apps. In
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 183–192.

[106] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean Michel Picod, Cait Phillips,
Marc-André Decoste, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine
Courteau, et al. 2016. Investigating Commercial Pay-Per-Install and the Distri-
bution of Unwanted Software.. In USENIX Security Symposium. 721–739.

[107] Ke Tian, Steve TK Jan, Hang Hu, Danfeng Yao, and Gang Wang. 2018. Needle
in a haystack: tracking down elite phishing domains in the wild. In Proceedings
of the Internet Measurement Conference (IMC ’18). ACM, 429–442.

[108] Nikolai Philipp Tschacher. 2016. Typosquatting in programming language pack-
agemanagers. Ph.D. Dissertation. Universität Hamburg, Fachbereich Informatik.

[109] HaoyuWang, Yao Guo, ZiangMa, and Xiangqun Chen. 2015. WuKong: a scalable
and accurate two-phase approach to Android app clone detection. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis. ACM,
71–82.

[110] Haoyu Wang, Jason Hong, and Yao Guo. 2015. Using text mining to infer
the purpose of permission use in mobile apps. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing. 1107–
1118.

[111] HaoyuWang, Hao Li, and Yao Guo. 2019. Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play. In The World
Wide Web Conference. 1988–1999.

[112] HaoyuWang, Hao Li, Li Li, Yao Guo, and Guoai Xu. 2018. Why are Android apps
removed from Google Play?: a large-scale empirical study. In Proceedings of the
15th International Conference on Mining Software Repositories. ACM, 231–242.

[113] Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I Hong. 2017.
Understanding the purpose of permission use in mobile apps. ACM Transactions
on Information Systems (TOIS) 35, 4 (2017), 1–40.

[114] Haoyu Wang, Hongxuan Liu, Xusheng Xiao, Guozhu Meng, and Yao Guo. 2019.
Characterizing Android App Signing Issues. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 280–292.

[115] Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai Xu, and
Jason Hong. 2017. An explorative study of the mobile app ecosystem from app
developers’ perspective. In Proceedings of the 26th International Conference on
World Wide Web. 163–172.

[116] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li,
Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google Play: A Large-
Scale Comparative Study of Chinese Android App Markets. In 2018 Internet
Measurement Conference (IMC ’18).

[117] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels.
2006. Strider Typo-Patrol: Discovery and Analysis of Systematic Typo-Squatting.
SRUTI 6 (2006), 31–36.

[118] FengguoWei, Yuping Li, Sankardas Roy, Xinming Ou, andWu Zhou. 2017. Deep
ground truth analysis of current android malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
252–276.

[119] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan
Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, et al. 2019. DeepIntent:
Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in
Mobile Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2421–2436.

[120] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu.
2014. ViewDroid: Towards obfuscation-resilient mobile application repackaging
detection. In Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks. ACM, 25–36.

[121] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina, and
Ermanno Moser. 2014. FSquaDRA: fast detection of repackaged applications. In
IFIP Annual Conference on Data and Applications Security and Privacy. 130–145.

[122] Min Zheng, Patrick PC Lee, and John CS Lui. 2012. ADAM: an automatic and
extensible platform to stress test android anti-virus systems. In International
conference on detection of intrusions and malware, and vulnerability assessment.
82–101.

[123] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013.
Fast, scalable detection of piggybacked mobile applications. In Proceedings of
the third ACM conference on Data and application security and privacy. ACM,
185–196.

[124] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party android marketplaces. In Proceedings of
the second ACM conference on Data and Application Security and Privacy. ACM,
317–326.

[125] Zakiah Zulkefli, Manmeet Mahinderjit Singh, Azizul Rahman Mohd Shariff,
and Azman Samsudin. 2017. Typosquat Cyber Crime Attack Detection via
Smartphone. Procedia Computer Science 124 (2017), 664–671.

1738

