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ABSTRACT
Android apps are prone to crash. This often arises from the mis-
use of Android framework APIs, making it harder to debug since
official Android documentation does not discuss thoroughly poten-
tial exceptions.Recently, the program repair community has also
started to investigate the possibility to fix crashes automatically.
Current results, however, apply to limited example cases. In both
scenarios of repair, the main issue is the need for more example
data to drive the fix processes due to the high cost in time and
effort needed to collect and identify fix examples. We propose in
this work a scalable approach, CraftDroid, to mine crash fixes by
leveraging a set of 28 thousand carefully reconstructed app lineages
from app markets, without the need for the app source code or issue
reports. We developed a replicative testing approach that locates
fixes among app versions which output different runtime logs with
the exact same test inputs. Overall, we have mined 104 relevant
crash fixes, further abstracted 17 fine-grained fix templates that are
demonstrated to be effective for patching crashed apks. Finally, we
release ReCBench, a benchmark consisting of 200 crashed apks and
the crash replication scripts, which the community can explore for
evaluating generated crash-inducing bug patches.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software libraries and repositories.
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1 INTRODUCTION
Nowadays, computing on Android-powered devices is pervasive
across all age and status segments in society. A concern that is
commonly shared by the whole user base, however, is that Android
apps are prone to crash [45]. This is due to many reasons, including
compatibility issues with devices, poorly tested functionalities, etc.
A number of studies [25, 45] on the reviews that users provide on
Google Play even list this proneness to crash as one of the most
recurrent complaints about apps, especially in comparison with
apps on the main concurrent system, namely iOS.

A major advantage of Android in attracting developers is that
its maintainers provide a Software Development Kit (SDK) which
builds on familiar programming concepts, languages and tools. An
extensive open source Application Programming Interface (API) is
further provided to facilitate the exploration of device resources,
and programming features are regularly extended for building ever-
fancy mobile apps. In this context, and given time-to-market pres-
sure, most apps are shipped to the market without being fully tested.
A situation that is exacerbated by the fragmentation of the Android
operating system: a given app may eventually have to run on over
20, 000 unique device models [14] functioning at different API lev-
els [45]. This, added to the fact that most Android app developers
are not professional developers, leads to the situation where apps
inevitably crash during operations.

Android app crashes yield stack traces pointing to a raised ex-
ception that developers must address. Framework crashes are the
most difficult to debug, because the exception is thrown within the
Android framework code, and developers can easily get lost in the
enormous code maze. Although detailed documentation on API
usage is provided by Google, and many testing platforms, as well
as stack analysis tools, have been proposed by the research com-
munity, it is still far from being trivial to fix a crash. Nevertheless,
with the huge interest in automated program repair in the soft-
ware engineering community, there is an opportunity for building
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and applying some simple but effective online repair approaches
targeted at Android recurring crashes.

Unfortunately, as Fan et al. [12] recently pointed out, there is a
lack of comprehensive datasets of true crash fixes. This is a major
obstacle which has prevented extensive research on crash analysis
within the mobile community. Currently, authors turn to open
source development code bases to track crash fixes based on the
crashes reported in issue tracking systems. Fan et al. managed to
identify 194 such issues for conducting a seminal study on Android
crash fixes [12]. Such a process, along with the resulting dataset,
presents several major limitations:

• There is a threat to external validity as only open source apps can
be concerned. The dataset is not representative since a number
of crashes may never be reported in issue tracking systems, and
yet fixes have been applied to address them.
• The collection process of crash fixes is not scalable. Authors
build crawlers to analyze GitHub repositories and select potential
closed issues. Then, they must manually verify in the code that
the issue is real and that the provided fix is indeed related to the
announced crash.
• Open source apps often deal with simple functionality scenarios,
and generally, have a smaller code base compared to commercial
ones. Thus there may be fewer occurrences of crashes.
• Finally, this process cannot be replicated in commercial devel-
opment settings, which do not provide useful information on
bug reports, or means to reproduce bugs, and information on
how they were eventually fixed. The limited information avail-
able is often within release notes where developers may vaguely
mention that a bug fix was performed.

This paper. Our work in this paper deals with the automation
of mining Android crash fixes in the wild. We propose to undertake
an expensive testing campaign in a dataset of 450 thousand apks
to replicate crashes in app lineages and retrieve fixes. Overall, the
contributions of this paper are as follows:

(1) We design a workflow for collecting crash fix datasets in
a fully automated and scalable manner in the absence of
issue-tracking systems.

(2) We implement the necessary toolset and experiment on a
large-scale dataset of apps from the AndroZoo repository [1]
and benefit the community with a benchmark comprised of
app crashes and scripts for automatic test input replication.

(3) We show that the fix templates mined are effective in patch-
ing crashed Android apps.

The remainder of this paper is organized as follows. Section 2
motivates this work with a concrete example. Section 3 presents the
overall methodology of this work. Section 4 depicts the dataset we
adopt and the results our approach obtains. We then evaluate our
approach in Section 5, followed by a discussion and related work in
Section 6 and Section 7, respectively. Finally, Section 8 concludes
this paper.

2 MOTIVATING EXAMPLE
To better motivate this work, we now provide a concrete example
demonstrating a crash and its fix that is, eventually, automatically
obtained by our approach presented in this paper.

When random testing the WhatsApp app (release version of
30-09-2013), our approach observes a runtime crash. Listing 1 il-
lustrates the crash message that can be retrieved (e.g., via the log-
cat command) from the device running the app. The crash mes-
sage starts with an exception type, here java.lang.SecurityException
(cf., line 1), which is thrown by the security manager to indicate
that there is a security violation. Then, a detailed message will
be given to explain the possible reason behind the crash. In this
example, the reason is that neither user 10074 nor the current
process has been granted with the following Android permission:
READ_ PRECISE_PHONE_STATE (cf., line 2). After this detailed explanation,
a call chain (cf. lines 3-8) will be listed showing the crash point
(which is normally the first method in the call chain, cf. line 3)
and the methods that are successively called until reaching the
crash point. Observant readers might have already noted that the
methods in the call chain include framework APIs (e.g., line 6, an-
droid.telephony.TelephonyManager.listen) and app methods (e.g., line
7, com.whatsapp.RegisterPhone.onCreate) that are actually written
by app developers.

Listing 1: Crash Message ofWhatsApp.
1 java.lang.SecurityException: Neither user 10074 nor current process

has android.permission.READ_PRECISE_PHONE_STATE

2 at android.os.Parcel.readException

3 at android.os.Parcel.readException

4 at com.android.internal.telephony.

ITelephonyRegistry$Stub$Proxy.listenForSubscriber

5 at android.telephony.TelephonyManager.listen

6 at com.whatsapp.RegisterPhone.onCreate

7 at android.app.Activity.performCreate

After observing the aforementioned crash, one can apply the
same testing strategy (i.e., the same test inputs) to a later version
(released on 30-04-2014) of the WhatsApp app. Interestingly, the
app does not crash anymore. Hence, we can suppose that the later
version of the WhatsApp app has somehow fixed the crash issue
illustrated in Listing 1. To further verify the existence of modifi-
cations, we leverage SimiDroid [22] and perform a method-level
pairwise comparison of these two app versions. Because frame-
work APIs cannot be changed by app developers, we focus on app
methods appearing in the call chain. Listing 3 summarises the diff
message resulted from the pairwise comparison.

Fortunately, in this example, there is only one appmethod appear-
ing in the call chain, which is com.whatsapp.RegisterPhone.onCreate.
In this method, a framework API is used. The invoked API method
is android.telephony.TelephonyManager.listen. This method regis-
ters a listener object to receive notification of changes in speci-
fied telephony states. In the crashed version, int −1 is passed as
the second parameter while in the fixed version the value of the
second parameter changed to 1535. By investigating the Android
API documentation, we understand that the second parameter is
the outcome of the bitwise OR operation of multiple LISTEN_Flag,
representing the code for the state change that the app wants to
listen to. As specifically mentioned in the documentation, some
state changes are protected by permissions, i.e., developers need
to declare the appropriate permission in order to access the state
change information. The value, −1, is actually the outcome of the
combination of all the possible state changes, where permission
READ_PRECISE_PHONE_STATE is required. Unfortunately, this permission
is not declared in the AndroidManifest configuration file, leading to
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crashes as expected. In the fixed version, the value of the second
parameter is changed to 1535, after decoding it to binary, repre-
senting a combination of four flags, where none of them requires
permission READ_PRECISE_PHONE_STATE.

Listing 2: Illustration of Mined Fix fromWhatsApp.
void onCreate(android.os.Bundle $Bundle){

...

- $TelephonyManager.listen($PhoneStateListener, -1)

+ $TelephonyManager.listen($PhoneStateListener, 1535)

..

}

This motivating example demonstrates that it is possible to learn
practical fixes to Android runtime crashes by learning from the
code contributed by app developers (e.g., during the evolution of
a given Android app). In this work, we call the two app versions
(Apk30.09.2013,Apk30.04.2014) as a crashed-fixed pair. Our objective
in this work is hence to mine crashed-fixed pairs from real-world
Android apps so as to learn fix hints from them and benefit the
research community with such dataset.

3 APPROACH
Figure 11 presents an overview of the proposed CraftDroid ap-
proach. It is composed of two phases.
Phase 1: The Fix Mining phase consists of 3 steps. The objective of
this phase is to mine fixes to Android crash-inducing bugs through
a carefully designed approach leveraging both testing and static
analysis.
Phase 2: The Fix Grouping and Fix Template Abstraction phase
utilizes another 2 steps, to group the aforementioned fixes based
on testing results feature identification and a manual abstraction
method to abstract fix templates.
The crashed apks set as well as the test inputs replication scripts
from the FixMining phase further form a benchmark called ReCBench,
and will be utilized to showcase the effectiveness of our approach,
as well as a contribution to the community.
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Figure 1: Overview of CraftDroid.

1Icons from www.flaticon.com

3.1 Phase I: Fix Mining
The first phase unfolds in three steps: (1) App Lineage construction,
(2) Crash Exploration and (3) Fix Verification. Each of these steps is
implemented in a module whose details are provided below.

Step 1 - App Lineage Construction. The concept of app lineage
(i.e., a series of apk releases of a given app) was first introduced by
Gao et al. [13]. In this step, we use the same approach to construct
app lineages from AndroZoo apps. Overall, the app lineages are
constructed via the following process: (1) identify unique apps,
where APKs sharing the same package name are considered to be
the same app, and (2) link and order the different app versions of
the same app. As a result, an app lineage contains a set of Android
apps that share the same package name while are totally ordered
based on their release time. Note that a lineage can be sparse given
that AndroZoo is not exhaustive in the collection of app versions.
Nevertheless, as we will show in the next phases, this does not
impact the soundness of CraftDroid.

Step 2 - App Crash Exploration. This step aims to pinpoint real-
world apps that crash at runtime. The most straightforward and
reliable approach to achieve that objective is to launch a testing
campaign on the apps. In our case, we generate diverse UI inputs,
aiming to automatically and dynamically explore Android apps.
Ideally, in order to cover as many crash cases as possible, we should
employ different testing strategies. However, as dynamic analysis
tools are known to be time-intensive, it is practically hard to adopt
all possible random testing tools available in the Android commu-
nity. Moreover, during our testing step, we need (1) to ensure that
the testing tools generate the same sequence of testing inputs, (2)
to ensure that the testing environment, i.e., the Android device
emulator and the state of the operating system are identical for
the apks of the same lineage (3) to ensure that our approach is
scalable in order to quickly explore all apks for a huge amount of
lineages within a limited time budget. We now detail these three
requirements.

ReplicativeTesting Inputs. In order to achieve optimized crash
exploration and to apply the same execution scenario, we utilized
3 testing policies from 2 testing tools. Monkey is a built-in random
testing generation tool for Android emulators. The testing proce-
dure will be reproducible if the selected seed is identical. Droid-
bot [28] is a light-weight test input generation tool for Android
apps. It generates input events based on the analysis of Android-
Manifest.xml and runtime objects. However, Droidbot currently
does not have an option for reproducibility. For the purpose of this
work, we contribute to DroidBot by implementing a reproducibility
module. This module essentially records the sequence of events
generated for the first app version of any lineage. If needed, the
module can apply the recorded events to new app versions so as to
reproduce the events fired previously. We utilized two of Droidbot’s
testing strategies, dfs_greedy and bfs_greedy for better coverage.

Restored Testing Environment. To ensure that each app ver-
sion is tested in an identical environment, we used the same emula-
tor instance for all app versions of any lineage. In order to mitigate
the potential influence of remnant files and caches from both app
installation time and runtime, we uninstall the previous app ver-
sions and carefully clear all temporal files prior to new app version
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testing steps. To make sure the test log collected is confined for
each testing procedure, we also clear the buffer for the logging
system in the emulators.

Scalable Testing Process. Since the testing process across dif-
ferent lineages is fully parallelized, we leverage the abilities of
multi-core computing machines. CraftDroid detects the number
of CPU cores on the computing device and starts as many Android
emulator instances. Each lineage will be tested on a single instance
and the whole process will scale to the number of available cores.

After the test procedure finishes on each apk (for each different
test strategy/tool), we use the built-in logging tool Logcat from
Android emulator to filter out the testing information. The log will
contain basic information about the app, e.g., app package name,
process id, etc. Especially, when the app crashes during the testing
procedure, the crash log, including the exception type, crash mes-
sage and stack trace will also be logged. Furthermore, we collected
200 crashed apks, each from a unique lineage, together with the
scripts to reproduce them to form a benchmark called ReCBench
(Reproducible Crash Bench). ReCBench will be used in below sec-
tions to the evaluation of the effectiveness of our approaches, and
also to benefit the community.

Step 3 - App Fix Verification. After the testing process finishes
in Step 2, we then start to look for app crash-inducing bug fixes.

AnalyzingTesting Logs. First, we analyze the test logs. To start,
we give the definition of fixes present in lineages. Given an Android
appa1 that crashes following test inputs t , ifa1’s subsequent version
a2 does not crash following the same test inputs t , we hypothesize
that a2 has been released with fixes to the crash appearing in a1.
In other words, a2 contains practical code changes addressing the
crash issue observed in a1. Given an Android app a1 with its crash
information (i.e., stack trace), the objective of this step is to identify
app a2, which must thus satisfy two conditions:

• a2 is released after a1.
• a2 no longer crashes following the same test input.

If such an app is identified, we mark it as the fixed version and
hence put it with app a1 into a pair, i.e., the potential "crashed-
fixed" app pair (a1,a2). To avoid flaky cases, we further impose
restrictions on our approach to only consider such cases where the
subsequent app versions throughout the end of the current lineage
do not crash anymore under the same tests.

Inspecting Code Changes. Then, with the potential crashed-
fixed app pair identified, our approach performs a pairwise compar-
ison between the two apps and records all the changes as potential
fix changes. Unlike when working with change-tracking systems,
app version updates represent a series of changes performed for
various reasons, including adding new functionality to the app,
fixing various functional and non-functional bugs, etc. Thus, not all
recorded changes are relevant as crash fix modifications. Therefore,
we limit ourselves to such changes that are made to the methods
appearing in the stack trace of the runtime crash.

A stack trace, as illustrated in Listing 1, includes details on the
method during whose execution the crash occurs, as well as the
path (i.e., call chain) of execution flow that led to this point.

In this work, we consider all the methods that are from the An-
droid framework as framework methods, and those that are not

from the Android framework as app methods which should be con-
sidered to look for modifications that fix crashes in apps. Depending
on the signaler, i.e., the framework method which instantiates and
throws the exception type, app crashes are divided into framework-
specific crashes and app-specific crashes. In this paper, we only study
framework-specific crashes. We consider app-specific crashes to be
out of the scope of our research interest, given that they mainly fall
into below three categories, which can be readily diagnosed and
whose fix patterns are straightforward to craft:
(1) Most exceptions thrown are NullPointerException. This excep-

tion happens when the program tries to invoke a method on a
null object reference, it often arises because of the developers
forget to initialize variables or adding null checkers.

(2) ClassCastException is thrown when developers try to cast a
runtime instance to a nonmatching type.

(3) Exceptions created and thrown by app methods. This means
that the developer is aware of the condition when the exception
is thrown and the fix will be very much app specific.
On the contrary, we find that framework-specific crashes and

their fixes are more challenging and valuable for mainly 3 reasons:
(1) The signalers that throw the exception instance are system

methods, and are unseen to developers unless developers are
very aware of AOSP (Android Open Source Project).

(2) There might be long call layers between the signaler and the
API that developer called, making the condition for triggering
the exception more complicated.

(3) The Android documentation is never fully clear about when
and how an exception will be thrown upon using an API.
Since our apps are all tested on the same Android emulator in-

stance, we consider that the framework method implementations
are identical among stack traces, and thus we only need to com-
pare the app methods. For each app method (e.g., DevMethod1 in
Figure 1), we perform a pairwise comparison at the code level be-
tween the two apps in the crashed-fixed pair and generate a diff
snippet representing the changes made by the fixed app version. If
any modification is present, we will manually check whether the
modification is a true fix to the prior crash.

3.2 Phase II: Fix Grouping and Fix Template
Abstraction

After collecting true fixes in Phase I from CraftDroid, we extract
features from the stack trace of crashes, and group the fixes into
buckets based on the features. Subsequently, we shall abstract fix
templates from the groups. These fix templates are patterns of code
change actions that can be applied to crashed apks in the cases of
specific crash types.

Step 4 - Fix Grouping. For each crashed-fixed app pair (a1,a2),
we analyze the crash stack trace from a1 and collect 3 feature in-
formation: Exception is the exception class thrown that caused the
crash; Signaler is the topmost system method that created and
threw the exception; CrashLoc is the framework API that the app
method called and which passed back the exception. Let us take List-
ing 1 as an example. The extracted features are (SecurityException,
readException, listen). Note that in this example, for better writing
structure we used only method names, wherein actual work we use
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full-length identifiers. Fan et al. have also constructed similar tuple
for grouping and finding the root causes for Android crashes. How-
ever, our tuple is different since we adopted CrashLoc instead of
crash message. Because we consider the fixes are closely related to
the context of the usage for the APIs. With the features extracted for
each crashed-fixed pair, we then group fixes simply based on com-
paring their feature tuple and build buckets for these fixes. In other
words, all fixes with the same extracted features from the crash
stack traces (i.e, the three elements Exception, Siдnaler ,CrashLoc
are identical) are grouped into the same bucket.

Step 5 - Fix Template Abstraction. For each bucket, we follow
the below protocols to manually look for fixes.

(1) Based on the stack trace, we start from studying the code
changes in the developer method which calls the crashed An-
droid framework API, i.e., the crash location.

(2) If fix is not found, we turn to the next developer method towards
the bottom of the stack trace. We repeat this, until we find a fix
or we reach the last developer method.

(3) Once we find a fix, we turn to official Android development
documentation, as well as online discussion forums to validate
our finding.

(4) If no fix is validated after studying all developer methods, we
consider in this work that the code changes are irrelevant.

From the validated fixes, we summarize the most common fix
template. These templates are fine-grained since they target to
only solve crash-inducing bugs related to the misuses of specific
framework APIs. Although automatically mining of templates is
researched in the literature (cf. recent work of Koyuncu et al. [19])
they often lead to noises about patterns unrelated to repair changes
due to the issues of tangled commits [9, 15, 30, 40]. We leave au-
tomation in this part as future work.

3.3 Patching Crashed Apks
Towards demonstrating the usefulness of CraftDroid, as well as
the fix templates generated, we propose to apply the templates on
crashed apks and evaluate the patched apks. As shown in Figure 2,
we take crashed apks from ReCBench (cf. Section 3.1). As shown
in Figure 1, this benchmark comes from Phase I. ReCBench is built
by collecting the crashed apks and the associated testing inputs.
For a given crashed apk ac from ReCBench, to evaluate our fix
templates, we follow a three-step process: 1) First, the crashed apk
ac is categorized into one of the buckets we collected by extracting
features from the crash stack trace of ac . 2) Then we use Soot[44]
to decompile ac into Jimple files2 and retrieve the file that con-
tains the app method which called the API. We manually apply
the fix template associated with the corresponding bucket. 3) We
re-compile the files into apk and run the test with the patched apk.
This process was first introduced in [43]. If the patched apk does
not crash with the same testing inputs, we consider our template
valid.

2Jimple is the intermediate representation of Soot
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Figure 2: Patching and Evaluation.

4 DATASET AND STATISTICS
4.1 Crash Fixes from Lineages (from Phase I)
Lineage Construction. We start by retrieving a maximum num-
ber of apps from the AndroZoo repository [1] using the API key
provided by the maintainers of AndroZoo. We managed to collect
4 million apps to start our experiments. Although AndroZoo cur-
rently makes available over 8 million apps3, we believe that the
collected dataset is largely representative of this study. From the
collected app set, we eventually re-constructed 28K app lineages
containing around 450 thousand apks: although we could find many
more lineages, we focused on cases where there are at least 10 app
versions. The purpose of setting this threshold is that we want to
mine for code changes among released versions that would result
in contrary testing outcomes. Shorter length of lineage would not
be able to reflect such changes, and would pose obstacle of filtering
out flaky outcomes.

Test Environment Set-up. In order to set up the testing environ-
ment for the lineages, we instantiate multiple Android emulators
using the same image so that we can do testing parallelly and
make full use of multi-core computing machines. Note that we
have chosen x86 as ABI (Application Binary Interface) for these
emulators. Since we are running these emulators on x86-based
servers, choosing x86 over arm64-v8a as ABI makes emulators run
substantially faster, because the instruction set is shared among
the virtual machine and the host machine. The drawback is that
apps making use of the Android Native Development Kit (NDK) are
not installable and would report an installation error complaining
about non-matching ABI. During our experiment, we have also
observed other kinds of installation errors (e.g., the builds are too
old w.r.t. API level). In total, around 56% apks are installable and
later tested on the emulators. Although the percentage for the set of
installable apks over all apks are not ideal, we consider it acceptable
since emulators run much faster than real-world Android devices.
Moreover, the scalability of emulators makes it capable of running
a large collection of lineages in reasonable time budget. During
our experiments, we have observed that if one version in a lineage
cannot be installed on the emulator, its succeeding releases (app
versions) often cannot be installed as well. However, conversely,
when a version can be installed, its succeeding releases often can
be installed as well. As is illustrated in Figure 3 the median of the

3https://androzoo.uni.lu/
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total number of apks in a lineage should be close to the median of
the number of installable apks in a lineage. Note that since every
lineage contains at least 10 apks, the minimum number of apks is
10. For better illustration, lineages that contain no installable apks
or no crashes are not considered. Outliers are also removed since
in rare cases lineages have great length, i.e., the version updates
are very frequent.

Total Installed Crashed
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25
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pk

 #

Figure 3: Distribution of Total, Installed and Crashed Num-
bers of Apks in Lineages.

Test Strategy Application. For the lineages with apps that are
installable on our emulators, we launch Monkey as well as Droid-
bot (using two strategies in the case of this tool) to automatically
explore their functionalities, aiming at obtaining runtime crashes.
Figure 3 presents in the box-plot the distribution of the number of
apps that have framework-specific crashes revealed in each lineage.
The median number of crashed apks in a lineage is around 3. We
then show the results for the 3 testing strategies in Figure 4. The
dfs_greedy strategy of the tool DroidBot exposed most lineages with
at least one apk having framework-specific crashes. Among those
1160 lineages, there are 371 where successive apks passed the same
test inputs and do not crash any more. For the bfs_greedy, a similar
number of crashed lineages and fixed lineages can be observed.
However, with random tests using seed NO .12 from Monkey, we
can see that the number of lineages identified to have crashed apks
are only half the total number of that of the dfs_greedy or bfs_greedy
strategies of DroidBot. This difference in the numbers is because
DroidBot analyses the AndroidManifest.xml and other layout defini-
tion files in the apk before generating UI inputs, this gives DroidBot
higher chance of triggering code execution compared to Monkey.
Better coverage, in turn, will result in more crashes being detected.
In the meantime, we also see from Figure 4 that all 3 strategies
would detect similar portion of passed lineages out of lineages with
crashes, this indicates that CraftDroid is insensitive in the testing
tools for mining fixes from the same number of crashed lineages.

Fix Statical Identification. For the lineages selected from the pre-
vious steps, we construct a crashed-fixed app pair for each lineage.
The crashed apk is the last apk in the lineages that has crashed
during testing, the fixed apk is the first apk that has passed with
the same testing inputs. The reason for the selection is that we
consider two adjacent versions will contain the smallest set of
code changes related to the app methods that caused the crash.
We then use the static analysis tool Soot to decompile both apks

Total Installable Crashed
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Figure 4: Count of Lineages Crashes per Testing Strategy.

and compute diffs on the app methods in the stack trace. For ex-
ample, from Listing 1, the app method that will be compared is
com.whatsapp.RegisterPhone.onCreate. After static analysis finishes,
we succeeded to verify 150 fixes in total, as can be seen in Figure 4
(47 + 68 + 35 = 150). We then manually inspected these diffs, we
finally distilled 104 useful fixes. We removed other 46 fixes for
mainly two reasons, 1) The API call which throws the exception
in the crashed apk is no longer used in the new apk version, 2)
The API call appears multiple times, e.g., in a switch-case clause
and is uncertain in which call statement the exception was thrown.
Although programmatically those two kinds of code changes are
still valid in fixing crashes, we consider them not helpful for the
next phase of our approach.

4.2 Fix Buckets & Fix Templates (from Phase II)
In the second phase, as described in Figure 1 and explained in
SubSection 4.2, we group the fixes into buckets and abstract fix
templates from each bucket.

Grouping for Fix Buckets. From the previous step, we have con-
firmed 104 true fixes. We extract features to form a tuple (Exception,
Signaler,CrashLoc) from the stack trace of the log of the crashed
apk of the crashed-fixed pair. When features are the same, fixes
are grouped into the same buckets. As a result, we grouped these
fixes into 35 buckets. Due to the limited space in this paper, we are
not listing the full detail of the buckets and the features related.
We rather summarized the bucket count where same exception
classes are thrown in Figure 5. The most recurrent exception is
NullPointerException, taking 8 buckets in total, arising from passing
null parameters in API calls. The main reason for the crashes are
programs trying to call methods on null object references. The
second most common one is WindowManager$BadTokenException,
with a total of 4 buckets. This exception is thrown when the hosting
activity upon which the dialog wants to show its message has en-
tered the finishing state. RuntimeException is the super class of the
unchecked exceptions, it reflects general problem when running
the Android app. Resources$NotFoundException is thrown when the
correspondent resources, e.g., String, Figure, are not found in the
apk. IllegalArgumentException is thrown when the passed in param-
eter for the API cannot be handled by the Android system and will
be considered illegal. ActivityNotFoundException is thrown when
no activity is found to handle intents. Android uses intents to start
new activities, both inside the current app and activities in other
apps in the device. An implicit intent is used when the current app
wants to start the activity from other apps on the device that can
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Table 1: Fix Templates

Bucket ID Acronym Description Target Exception
1 Provider Checker Check if the specified provider is enabled with location manager. IllegalStateException
2-3 Activity Resolver Resolve intent for Activity existence before starting new Activity ActivityNotFoundException
4-6 Resource ID Updater Switch resource ID with another one Resouces$NotFoundException
7-10 Lifecycle Verifier Query the state of the hosting activity upon showing dialog WindowManager$BadTokenException
11 Sleep not Wait Call sleep() instead of wait() on Thread IllegalMonitorStateException
12 Thread Finisher Switch from call of stop() to interrupt() to end thread UnsupportedOperationException
13 Redundance Trimmer Trims redundant call of prepare() on same Thread RuntimeException
14 State Checker Check check value of isAlive() on Tread before calling start() IllegalThreadStateException
15 Package Settler Set package name for intent upon biding service IllegalArgumentException
16 Permission Checker Check permission before sensitive operation SecurityException

17-19 Range Checker Check on index range before indexing (String)/(Array)IndexOutOfBoundsException
20 Emptiness Checker Check if String is Empty before parsing for int NumberFormatException
21 Path Verifier Check the file path existence for database SQLiteCantOpenDatabaseException
22 Hardware Checker Check the hosting device has specified hardware feature RuntimeException
23 Canvas Preconcator Pass preconcated $Canvas to unLockCanvasAndPost() IllegalArgumentException

24-31 Nullable Checker Check for parameters that is not nullable NullPointerException
32-35 Try-catcher Surround the statement with try-catch Exception

perform the required Action by the intent. However, there is no
guarantee that at least one activity exists on the device that per-
forms the action. Improperly handling these scenarios will cause
the ActivityNotFoundException being thrown. SecurityException is
thrown when the required permission has neither been granted to
the app at installation time nor runtime. The app WhatsApp in the
motivation example takes this category. Other exceptions, although
occurred only once, also arise from key defects in the app codes.

Total Installable Crashed
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Figure 5: Bucket Count for Exceptions.

Abstracting Fix Templates. We then manually extract templates
from buckets. Note that similar or same fix templates can be ex-
tracted for different buckets. This is especially true when the excep-
tion and the Signaler is the same. As a result, we are able to settle
down 17 fix templates, as listed in Table 1. We give an acronym
for each fix template for easier reference in the rest of the paper.
Provider is a source for providing location information, e.g., net-
work, gps e.t.c.. Provider Checker checks on the return value of
isProviderEnabled("provider") before the app executes requestLo-
cationUpdates("provider). Omitting this when the provider is not
enabled will make the system throw IllegalArgumentException. The
Android system uses Intent to start new activities, especially, im-
plicit intents to filter for activities in other apps that can fulfill
the required action. However, when no such activity exists in cur-
rent device, ActivityNotFoundException will be thrown. Activity

Resolver checks for the existence of targeting Activity before the
app tries to start one. Android apps widely use multi-threading
technique to divide light-weight UI response logic and heavy load
background logic like downloading. Novice developers will thus be
easily confused and make mistakes when handling the threads. We
also established 4 templates for fixing thread related crashes. Sleep
not Wait updates the call from wait() to sleep() on the thread when
the app requires a background thread to block other access requests
for a certain time period. Thread Finisher updates the call from stop()
to interrupt() when developer intends to put an end to the thread.
Redundance Trimmer aims to trim redundant call to prepare() on a
thread since it poses RuntimeException. State Checker aims to check
if the thread is alive before calling start() on the thread. Package
Settler aims to set package name for intent upon biding service,
failing this will make the system throw IllegalArgumentException.
Fix templates 10-15 contain a set of checkers and verifiers for file
existence, parameter, permission e.t.c. These are all easily neglected
due to uncareful coding. Canvas Preconcator aims to preconcate
the current canvas instance before calling unLockCanvasAndPost()
by calling translate() on the canvas first. The last fix template is
try-catch. We use Exception to summarize that this fix is widely
used across multiple buckets by developers. It is often used to deal
with corner cases that do not have many occurrences. Developers
tend to be lazy for these scenarios. Similar to Tan et al.[43], we
consider this template a hard fix, and will not recommend it since
it actually suppresses the root cause of the exception.

4.3 ReCBench for Evaluating Bug Patches
As explained in SubSection 3.3, we take from Phase I the lineages
whose testing results contain only crashed apks and propose
ReCBench, a benchmark for evaluating patches for crash-inducing
bugs. This benchmark contains 200 crashed apks, the crash message
filtered out from LogCat, and the scripts to automatically reproduce
the crashes. The script can be used to re-generate test inputs on
the patched apk and filter out log information to decide whether the
patch is valid. The dataset is accessible at https://craftdroid.github.io
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5 EVALUATION
To evaluate the proposed workflow CraftDroid and the fix tem-
plates generated, we further address 3 research questions.
• RQ1: How do the automatically explored crashes compare
with the ones reported in issue-tracking systems?
• RQ2: Are state-of-the-art benchmarks capable of evaluating
patches generated for crashed Android apps?
• RQ3: How good are our mined fix templates in patching
crashed Android apps?

5.1 Explored Crashes vs. Reported Crashes
In Phase I of CraftDroid, we adopted 3 automatic testing strate-
gies to explore inputs that would crash Android apps. However,
there is already datasets in the research community that was col-
lected by scanning the issue-tracking systems on open-source App
repositories, like the one proposed by Fan et al. [12]. This dataset
contains 194 app crashes reported by developers or general users
throughout their daily development and usage. We want to com-
pare this dataset with ours to compare the automatically explored
crashes and reported crashes in answering 1) Whether our dataset
is realistic in reflecting a portion of the crashes cared by users and
2) Whether the automatic testing tools can provide more crash
cases omitted by human beings. Please be noted that we utilize
our dataset of 104 lineages equipped with fixes, rather than all
crashes explored. Similarly, the dataset from Fan et al. also contains
crash reporting issues that are closed eventually, i.e., fixed by de-
velopers rather than open issues that are not necessarily fixed. The
purpose of putting these constraints (i.e., lineages with fixes for
CraftDroid, and closed issues for Fan et al.) is that we consider
these two sets of crashes valid in the sense that they are cared by
developers and actually fixed in the later versions and(or) com-
mits. For comparison, we also applied the feature extraction and
fix grouping method as presented in Step 4 on the dataset of Fan et
al. Recall that the study of Fan et al. collected stack traces in issue
tracking systems (although, in the absence of input information,
the associated crashes are not reproducible, unlike in CraftDroid).
As can be seen from Table 2, there are in total 9 buckets shared by
both datasets. Moreover, CraftDroid is able to spot 26 exclusive
buckets not reported by issue-tracking systems. Although there are
another 117 buckets from the issue-tracking system that we did
not cover, given the fact that the authors claimed that they have
exhaustively collected all such reported crashes from the online
repository collection F-Droid [11] for open source Android apps,
we give credit to CraftDroid of being scalable and having the po-
tential of exposing more such crashes, e.g., with other testing tools
for larger code coverage.

Table 2: Buckets Count between Fan et al. and CraftDroid

Dataset Total Bucket Exclusive Buckets Shared buckets
Fan et al. [12] 126 117 9
CraftDroid 35 26

Answer to RQ1: CraftDroid is able to explore android app
crashes that are also reported by issue-tracking systems, with

the ability to also cover more crashes that are not yet reported
by developers or users.

5.2 Benchmarks for Evaluating Patches
Several benchmarks containing Android app crashes have been
proposed recently, e.g., Fan et al [12] collected 194 closed issues.
Tan et al. also proposed Droixbench [43]. Droixbench is proposed
to evaluate the effectiveness of the automatic patch generation tool
Droix. The benchmark contains 24 reproducible app crashes. To
reproduce the UI inputs sequences, a runnable script is provided
for each crashed apk. However, we found out that Droixbench
contains only 9 framework-specific crashes, where the other 15 are
app-specific crashes. Since we focus on framework-specific crashes
and their fixes, Droixbench does not meet our need. Further, we
discover that only 3 out of 9 framework-specific crashes are fixed
by Droix, resulting in a fix rate of only 33%. This is much lower than
the fix rate of app-specific crashes, where 12 out of 15 crashes are
fixed, with the fix rate of 80%. This also supports our observation
that framework-specific crashes takes great effort to fix and should
draw more attention.

As mentioned in RQ1, Fan et al. [12] also propose a collection
of closed issues for framework-specific Android app crashes. We
found 3 obstacles in using this dataset. 1) There is no guarantee of
apk or version number associated with the issue, people who study
this dataset often need to take into consideration the opening time
of the issue track, and deduce the version by her/himself. 2) The
testing environment, i.e., the specific phone model, the phone states
when the crash happens are not easy to re-establish. 3) Most impor-
tantly, there are often no clear reproducing steps attached to help
reproduce the crash. In most cases, only natural language descrip-
tions are provided. Such shortcomings make it almost impossible
to evaluate the patches for the same test inputs.

We thus propose ReCBench, a benchmark containing 200 repro-
ducible framework-specific crashes and the scripts to reproduce
them. As can be seen in Table 3, ReCBench contains the higher num-
ber of framework-specific crashes among the three benchmarks.
Moreover, the total number of app is also 200, which means that
it provides higher diversity in terms of the categories of apps. In
comparison, the dataset of Fan et al. only contains 44 apps. All the
200 crashes in ReCBench are framework-specific. Most importantly,
ReCBench provides scripts to automatically reproduce the UI inputs
that triggered the crashes. Finally, ReCBench is largely extensible: in
this study, time constraints for ensuring, via extensive experiments,
that crashes are reproducible limited the dataset to 200 samples.
Our crash exploration phase yielded thousands of crashes which
could be later validated and included in ReCBench.

Table 3: Comparison among benchmarks

Benchmark App# Size Framework Reproducible
Droixbench 15 24 No Yes
Fan et al. 44 194 Yes No
ReCBench 200 200 Yes Yes
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Answer to RQ2: ReCBench contains 200 framework-specific
crashes, and stands out in automatic reproducibility, diversity
in app categories and the total size of crash collection.

5.3 Evaluating Fix Templates on ReCBench
The objective of RQ3 is to assess the quality of the 17 fix templates
yielded by CraftDroid. To that end, we first consider crash samples
from ReCBench that are selected based on the below criteria:
(1) We focus on crash samples that are relevant to the universe of

crashes for which the fix templates were inferred. Concretely,
we sample crashes from the 35 buckets yielded in Phase I.

(2) Diversity over quantity. We select crashes to consider as many
buckets as possible.

(3) After a sample of each represented bucket is selected, we con-
sider more samples corresponding to most represented buckets
(in this case, ActivityNotFoundException-related crashes).

(4) To avoid bias, we ensure that we consider crashes for which no
fix was ever found after crash exploration.
Due to time and repair execution constraints, we eventually se-

lected 20 crashed apks as shown in Table 4. For the 20 crashed apks,
17 were fixed, meaning that the patched apk does not crash in same
testing inputs. However, there are still 3 apks that did not pass the
test. The original version ofWordPress crashed because it attempted
to get index on a substring that does not show in the target string.
Although we managed to do a range check and prevented this in-
appropriate call, succeeding call to the same API again crashed the
app. This indicates that the developers tend to make the same mis-
takes on the same API usage. The patched SetCPU fails because we
are trying to check whether the string is empty by calling isEmpty()
on the string before it is used to parse for int. However, the fix tem-
plate did not anticipate that the string itself is never instantiated,
so the NPE(NullPointerException) was thrown and still crashes the
app. FingerWQ was not even successfully patched because Soot
was not able to create the Jimple file of the targeted app code from
the apk, so the patching process was not carried. Overall, the 20
crashed apks were intended to be patched thanks to 9 out of our 17
fix templates.

In Listing 3, we list 4 patches successfully generated and eval-
uated to be effective. Since we are using Soot to patch apks, the
patches are in fact in Jimple code. However, for readability purpose,
we illustrate in an equivalent java format.

The first app is AutoHome, it is a forum app for discussion and
information sharing for car fans. On showing the dialog alert-
ing no network connection is present, it encountersWindowMan-
ager$BadTokenException, it indicates that the activity where the
dialog wants to show above has been destroyed. The correct way is
to check the activity’s lifecycle before calling the show() method, it
is therefore fixed by our Lifecycle Verifier template. This exception
exists in 4 buckets we collected in Section 4. The bug reasons as
well as the correspondent fix template are also same for the buck-
ets. The second app is a train tracking app which require location
update information. However, since network is turned off for the
emulators, requesting location updates from network will make the
IllegalArgumentException being thrown. The correct way is to check
the provider before requesting. This app is fixed by our Provider

Table 4: Patch Evaluation on RecBench

App Name Bucket Applied Template Fix Remark
AutoHome 8 LifeCycle Verifier yes

PI 8 LifeCycle Verifier yes
JadwalKA 12 Thread Finisher yes

Fruit Mahjong 12 Thread Finisher yes
Flashlight 1 Provider Checker yes
areain! 1 Provider Checker yes

WordPress 18 Range Checker no crash with succeeding API
Android Optimizer 18 Range Checker yes

Mine_mine 20 Emptiness Checker yes
SetCPU 20 Emptiness Checker no String null throw NPE

FingerWQ 23 Canvas Preconcator no app method non existing
BTCfx 15 Package Settler yes

MapCam 15 Package Settler yes
Baby Piano 2 Activity Resolver yes

GK in Gujarati 2 Activity Resolver yes
Reflection 2 Activity Resolver yes
UK Lotto 2 Activity Resolver yes

Agile Buddy 2 Activity Resolver yes
HiYou Park 33 Try-catcher yes
Sohu Weibo 33 Try-catcher yes

Listing 3: Fix Examples for Crashed Apps.
//App: AutoHome (forum app for car fans)

//Exception: WindowManager$BadTokenException

//Applied template: Lifecycle Verifier

+ if (!activity.isFinishing){

alertDialogBuilder.show();

+ }

//App: areain! (train tracking app)

//Exception: IllegalArgumentException

//Applied template: Provider Checker

+ if(locationManager.isProviderEnabled("network")){

locationManager.requestLocationUpdates("network"

,5000L,100.0F,this);

+ }

//App: MapCam (photography app)

//Exception: IllegalArgumentException

//Applied template: Package Settler

Intent intent = new Intent("com.android.vending

.billing.InAppBillingService.BIND");

+ intent.setPackage("com.android.vending");

this.bindService(intent, serviceConnection,1);

//App: Fruit Mahjong (gaming app)

//Exception: IllegalArgumentException

//Applied template: Thread Finisher

- thread.stop();

+ thread.interrupt();

Checker template. The third app is a photography app that has over
100k installs from Google Play. We found that it crashes when it
tries to bind to the app billing service. The root cause is that it did
not set package name of the binder class for the intent instance. It
is therefore fixed with correctly setting the package name, with our
Package Settler. The fourth app is Fruit Mahjong, a gaming app. It
was fixed by replacing from call of stop() to call of interrupt() to
thread to prevent UnsupportedOperationException being thrown.

Answer to RQ3: Our mined fix templates are in general effi-
cient in patching crash-inducing bugs caused by wrong usage
of framework APIs, although in minor cases they might cause
regression.
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6 THREATS TO VALIDITY
External validity. Our findings may be biased due to the app
dataset (of free apps) that we used for mining as well as the testing
tools that were leveraged in CraftDroid. Nevertheless, we tried
to mitigate these threats by considering the largest repository of
Android apps available to researchers. We also tried three different
test strategies to improve coverage.

Internal validity. Our method of localizing crash-inducing bugs
includes some threats to validity. We utilize stack trace for fault
localization, and assume that the crash-inducing bug arises in one
of the app methods in the stack trace. However, it is possible that
such bug can also reside in app methods that do not show in the
stack trace. For example, the NullPointerException can be thrown
because a field variable is not initialized during the instantiation of
the type. In this case, the bug location is different from the crash
location. However, we consider our work still valid since it has
been reported by this empirical study [46] that 59% to 67% crash-
inducing bugs actually reside in stack traces. Although it indicates
that we might miss fixes during the mining process, it does not
affect the validity of CraftDroid.

7 RELATEDWORK
Android app analysis has been a hot topic for many years. Different
approaches, including both static analysis and dynamic analysis,
have been proposed to tackle various issues in the mobile realm
such as privacy leaks detection [4, 21], repackaged apps identifi-
cation [27], etc. Our approach, targeting the runtime crashes of
Android apps and their potential fixes, has adopted both static and
dynamic analysis techniques.

Android Crash Analysis. The most closely related works to
ours are by Tan et al. [43] and Fan et al. [12]. Tan et al. [43] present
a benchmark of Android app crashes and their potential fixes to
the community for exploring automated crash fixes. Their bench-
mark, namely DroixBench, which is built by mining open-source
projects, contains only 24 samples, which are unfortunately not
representative to real-world app crashes and fixes since over half
of the thrown exceptions are NullPointerException. Similarly, Fan et
al. [12] have also mined open-source project tracking systems for
identifying reported crashes and associated fixes. Both of these two
approaches leverage open-source projects to identify crash fixes.
Our work, however, is different given that we attempt to identify
crash fixes from closed-source apps. We thus complement the state-
of-the-art with more dataset of crash fixes and further provide new
means to harvest crash fixes in closed-source settings. The fact
that a large majority of Android mobile apps are closed-source [1]
suggests that CraftDroid has a high potential for researchers to
mine ever more crash fixes than with the previous approaches.

State-of-the-art works are also interested in reproducing runtime
crashes [7, 42, 47]. For example, Xuan et al. [47] leverage mutation
testing to reproduce crashes while Soltani et al. [42] leveraging
genetic algorithms on the inputs to reproduce crashes. Recently,
Moran et al. [39] proposed CRASHSCOPE, a testing tool for auto-
matically discovering crashes, saving log related information, and
generating useful reports. Along with the tool, the authors released
only 8 crashes from 20 Android apps together with reproducing

scripts and detailed reports. Such a tool could, however, be inte-
grated into CraftDroid to further enhance the crash exploration.
Note that, in our work, we use the same test inputs to feed different
lineage app versions in order to locate potential crash fixes.

Works that tackle the compatibility of Android apps [25, 26, 45]
are also relevant to our study. Indeed, there are many reasons
that may cause Android apps to be incompatible to some devices.
However, the resulting consequence of incompatibilities is often
the same: runtime crashes.

Android App Testing and Analysis. Several automated app
testing approaches have been proposed to dynamically analyze
Android apps [2, 3, 5, 8, 10, 16, 36, 37, 48]. For example, Mao et
al. [37] have introduced an approach that combines random fuzzing,
systematic and search-based exploration, exploiting seeding and
multi-level instrumentation techniques to perform multi-objective
automated testing for Android apps. Among the top 1,000 Google
Play apps, Sapienz is able to find 558 unique, previously unknown
crashes. As summarized by Kong et al. [17] in their recent systematic
literature review, there are more than 100 works proposed by the
community to tackle the problem of automated app testing. Our
approach is orthogonal to these approaches, where we can leverage
more automated testing approaches to further pinpoint runtime
crashes of Android apps.

Static analysis has been also a popular technique to dissect An-
droid apps [23, 24, 38, 41]. For example, researchers have used static
taint analysis to discovery privacy leaks in Android apps [4] and
leveraged model checking techniques to verify Android apps in
terms of their security properties [6]. In this work, we leverage ba-
sic static analysis techniques to identify crash fixes in Android apps.
We believe that more advanced static analysis techniques could be
leveraged to improve the accuracy of our crash fix identification
approach.

8 CONCLUSIONS AND FUTUREWORK
In this work, we target a new research direction attempting to mine
Android crash fixes from Android market apps, which usually do
not have an open change-tracking or issue-tracking system. We
successfully generatred 17 fine-grained fix templates, which were
evaluated to be effective in patching 17 out of 20 real-world crashed
apps. CraftDroid can benefit the automatic program repair (APR)
community [18, 20, 29–35] in establishing a new means to augment
datasets. CraftDroid can also benefit the developer community in
recommending effective patches to fix their crashed apps.

As future work, we plan to integrate more automated testing
tools so as to enrich our set of fix templates. We also plan to imple-
ment analyzers to 1) scan user reviews to retrieve a more accurate
set of apps to be tested for runtime crashes and 2) study the GUI
changes to filter out false negatives. Finally, beyond the current
manual abstraction methods, we aim to apply state-of-the-art auto-
matic fix mining approaches to make our approach fully automatic.
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