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ABSTRACT
Static analysis has been applied to dissect Android apps for
many years. The main advantage of using static analysis is
its efficiency and entire code coverage characteristics. How-
ever, the community has not yet produced complete tools
to perform in-depth static analysis, putting users at risk to
malicious apps. Because of the diverse challenges caused by
Android apps, it is hard for a single tool to efficiently ad-
dress all of them. Thus, in this work, we propose to boost
static analysis of Android apps through code instrumenta-
tion, in which the knotty code can be reduced or simpli-
fied into an equivalent but analyzable code. Consequently,
existing static analyzers, without any modification, can be
leveraged to perform extensive analysis, although originally
they cannot.

Previously, we have successfully applied instrumentation
for two challenges of static analysis of Android apps: Inter-
Component Communication (ICC) and Reflection. How-
ever, these two case studies are implemented separately and
the implementation is not reusable, letting some functional-
ity, that could be reused from one to another, be reinvented
and thus lots of resources are wasted. To this end, in this
work, we aim at providing a generic and non-invasive ap-
proach for existing static analyzers, enabling them to per-
form more broad analysis.

1. INTRODUCTION
Android devices have become pervasive in our daily life

with over 1.5 million devices activated everyday. As of July
2015, there are 1.6 million apps available for users to choose.
Those apps have infiltrated into nearly every activity of
users, including social networking, schedule planning, finan-
cial resource managing, etc. Undoubtedly, users’ quality
of life has been improved because of those apps. However,
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these phenomena, on the other hand, also threaten users’
daily life, as the quality of Android apps are uneven, e.g.,
some of them may be malware [11,13].

Static analysis has been taken as a common means to
dissect Android apps for years. Popular implementation
techniques behind static analysis include symbolic execution,
which generates possible inputs in order to reach a program
point at runtime, and taint analysis, which propagates sensi-
tive data from a program point (known as source) to another
program point (known as sink) in order to guard the data
flow.

Although static analysis techniques have been used for
decades, it still remains some challenges for specific ana-
lyzers to tackle. For example, a well-known problem for
statically analyzing Android apps is to take into account
their ICC mechanism1. Advanced static analysis approach
like FlowDroid [3], at the moment, is unable to perform
ICC analysis and consequently limits itself to only perform
intra-component analysis, missing the chance to go beyond
the border of components.

To fill this gap, recent approaches [8, 12, 19] have solved
the ICC problem for static analysis. However, none of them
are generic enough so that their solutions are difficult to
be applied to solve other challenges (e.g., reflective method
calls). Besides, existing static analyzers cannot directly ben-
efit from these solutions, which are actually became invasive.

Our goal in this work is to implement a generic and
non-invasive approach for boosting existing static analyz-
ers. In this work, “generic”means our approach can be easily
leveraged to address different challenges while“non-invasive”
means that we assist existing static analyzers without mod-
ifying them. To that end, we propose an instrumentation-
based approach, which manipulates app code through inject-
ing/deleting/updating statements, leading to a simplified
app version for analysis. More specifically, a static analy-
sis problem (e.g., for ICC mechanism) would be modeled,
through a Soot-based Instrumentation Language (SIL), as
an instrumentation problem, which further can be resolved
by a SIL solver.

2. BACKGROUND AND MOTIVATION
To ease the understanding of the challenges of static anal-

ysis of Android apps, we give more details of the concept of
Android apps in section 2.1. Then, we motivate our work
through an illustrative example in section 2.2.

1ICC stands for Inter-Component Communication, more de-
tails will be given in Section 2.1.



2.1 Android
Android apps are made up of components (the basic units).

There are four types of components, including Activity, which
represents the visible parts of an app (e.g., UI interface); Ser-
vice, which executes some (computation-intensive) tasks in
the background; Broadcast Receiver, which listens to incom-
ing events and Content Provider, which plays as a standard
means for structural data access.

These components can communicate with each other, where
the communication mechanism is known as ICC. In the pre-
vious section, we have illustrated that the ICC mechanism
makes troubles for static analysis approaches. The reason
is that some specific methods (known as ICC methods) can
perform the cross-component communication at the system
level. In other words, there is no direct code connection in
the app level, which would make static analyzers unaware
of the ICC mechanism.

2.2 Motivating Example
We now motivate our work through a concrete example

(Listing 1), to highlight the imperativeness of addressing
challenges of static analysis of Android apps.

The snippets are made of two Android components: Main-
Activity and InFlowActivity. In MainActivity, the de-
vice id is first obtained (line 3) and then stored into an
explicit Intent (line 5) and finally sent to InFlowActivity

through ICC method startActivity(). In InFlowActivity, in
line 10, the device id is extracted from the incoming Intent.
Then, it is used as a parameter of method setImei() reflec-
tively (line 13). Later, the device id is called back through
reflective method getImei() (line 16). Finally, it is sent out-
side of the app through SMS (line 18).

In this example, there are two obstacles making static
analysis inactive. The first one is that, due to the Android
ICC, as shown in Listing 1, the two components are not
actually connected by code, meaning that basic static anal-
ysis approaches (e.g., Soot) cannot directly build an inter-
component control-flow graph (CFG) and consequently be-
come ICC unaware. The second challenge is that, due to
the reflection mechanism extended from Java, like Android
ICC, reflective calls break the CFG as well, as there are
no directly code connected between the “normal” code and
reflectively called code.

3. RESEARCH PROPOSAL

1 // class MainActivity
2 TelephonyManager telephonyManager = default;
3 String imei = telephonyManager.getDeviceId ();
4 Intent i = new Intent(this , InFlowActivity.class);
5 i.putExtra("DroidBench", imei);
6 this.startActivity(i);
7
8 //class InFlowActivity
9 Intent i = this.getIntent ();

10 String imei = i.getStringExtra("DroidBench");
11 Class c =

Class.forName("de.ecspride.ReflectiveClass");
12 Object o = c.newInstance ();
13 Method m = c.getMethod("setIme"+"i",String.class);
14 m.invoke(o, imei);
15 Method m2 = c.getMethod("getImei");
16 String s = (String) m2.invoke(o);
17 SmsManager sms = SmsManager.getDefault ();
18 sms.sendTextMessage("+352 001",null ,s,null ,null);

Listing 1: Snippets extracted from a running app, showing an
example of sensitive data leak with using ICC and Reflection
characteristics.
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Figure 1: Research Proposal Overview.

It has been demonstrated by us [12] and others [6] through
experiments that instrumentation is a good means to solve
the aforementioned challenges of static analysis. Thus, our
goal in this work is to provide a generic and non-invasive
approach to instrument Android apps and therefore to boost
existing static analyzers to perform more sound analysis.

Figure 1 illustrates an overview of our research proposal.
It works as follows:

• Static analysis problems, such as reflective call resolu-
tion, are specified using a declarative language called
JIL (Jimple-based Instrumentation Language). Jim-
ple is a 3-address intermediate representation of Soot,
which is designed to simplify Java (or Java-based apps
such as Android) bytecode for analysis and transfor-
mation [9].

• JIL specifications are then forwarded to a JIL solver,
which parses the specification and prepares an instru-
mentation skeleton along with some instrumentation
interfaces. These interfaces will be used later for com-
plementing the instrumentation process. The reason
why we provide such interfaces, is related to the diver-
sity of static analysis problems and the domain knowl-
edge which is unknown beforehand. Ideally, we would
like to offer a generic approach for instrumentation.
Nevertheless, because of the diversified requirements,
we have to compromise a trade-off, which automates
the instrumentation as much as possible and also pro-
vide a way for developers to work on the remaining
parts.

• In the last step, instrumentation interfaces are imple-
mented with some domain knowledge. As an exam-
ple, suppose we want to instrument an ICC method
startActivity(intent)2 of an app. It is hard for us to
know beforehand which component intent points to,
stopping us from automating the instrumentation pro-
cess fully. In this example, the target component of
intent is the so-called domain knowledge. To auto-
matically infer such domain knowledge is out of scope
of this work. Existing approaches (e.g., Epicc [18] and
IC3 [17] for ICC values) can be leveraged to comple-
ment our approach.

4. RESEARCH PROGRESS
Before making our approach generic, we have to inves-

tigate whether instrumentation is a reliable solution, i.e.,
whether instrumentation is able to support existing static
analyzers to perform extensive analysis? To this end, we
have introduced instrumentation to solve two challenges of

2This method switches the current UI interface to a new
one.



19 // class MainActivity
20 this.startActivity(i);
21 + if (Opaque.false) {
22 + InFlowActivity a = new InFlowActivity(i);
23 + a.dummyMain ();
24 + }
25
26 //class InFlowActivity
27 + Intent i = null;
28 + public InFlowActivity () {
29 + this.i = i;
30 + }
31 + public Intent getIntent () {
32 + return this.i;
33 + }
34 + public void dummyMain () {
35 + // lifecycle/callback methods
36 + }

Listing 2: Instrumentation results for Android ICC.

static analysis of Android apps: ICC and Reflection, for
which we are going to detail in section 4.1. Later, we sum-
marize the remaining work that we still need to do in sec-
tion 4.2.

4.1 Finished Work
Now, we show two successfully applied case studies (ICC

in Section 4.1.1 and Reflection in Section 4.1.2) on instru-
menting Android apps. In this work, “successfully” means
that the instrumentation we do for Android apps is indeed
able to support existing static analyzers to perform exten-
sive analysis.

4.1.1 IccTA: Android ICC
In the first case study, we intend to solve ICC challenge

for static analysis. To this end, we have implemented a tool
called IccTA (Icc Taint Analysis) to support the instrumen-
tation. The working process of IccTA is as follows: 1) IccTA
leverages Dexpler [5] to transform Android Dalvik bytecode
into Jimple, a Soot’s intermediate representation [9]. 2) Ic-
cTA extracts ICC links from analyzed Android apps, this
step is performed on top of Epicc [18], which is designed to
statically infer ICC values. 3) Based on the ICC links we
extracted before, IccTA modifies the Jimple representation
to directly connect components, enabling static analyzers to
build an inter-component control-flow graph (ICCFG) and
thereby to perform data-flow analysis across components.

Listing 2 illustrates the instrumentation results of IccTA,
on the example code shown in Listing 1. The original ICC
method call (startActivity()) is covered by a block of code
(line 21-24), in which the ICC method is imitated by directly
initializing the target component (InFlowActivity) and call-
ing its entry methods (which has been modeled inside a
dummy main method). The parameter (intent i) is also im-
itated through a new generated construct method (line 28-
30). In order to appropriately deliver intent i, method get-
Intent() is overwritten to return the Intent received through
the constructing method.

37 //class InFlowActivity
38 Object o = c.newInstance ();
39 + if (Opaque.false)
40 + o = new ReflectiveClass ();
41 m.invoke(o, imei);
42 + if (Opaque.false)
43 + o.setImei(imei);
44 String s = (String) m2.invoke(o);
45 + if (Opaque.false)
46 + s = o.getImei ();

Listing 3: Instrumentation results for Reflection.

Thanks to the instrumentation, Listing 2 no longer con-
tains ICC challenge. Consequently, existing static analyz-
ers (e.g., FlowDroid), even without being ICC-aware, are
now able to perform ICC-aware analysis. Indeed, we have
evaluate this work on 15,000 Google Play apps and 1023
MalGenome apps, from which we detect 534 ICC leaks in
108 apps from MalGenome and 2,395 ICC leaks in 337 apps
from the Google Play apps.

4.1.2 DroidRA: Reflection
In the second case study, we solve Android reflection chal-

lenge for static analyzers. Particularly, we have proposed
a tool called DroidRA [14] (anDroid Reflection Analysis),
which aims at 1) resolving reflective call targets for the pur-
pose of exposing all program behaviors; and 2) unbreaking
app control-flow in the presence of reflective calls for the
purpose of allowing static analyzers to produce extensive
results.

The second aim of DroidRA is actually instrumenting An-
droid apps to achieve its functionality. Let us take Listing 1
again as an example to show how DroidRA’s instrumenta-
tion works for solving reflective calls. Listing 3 illustrates
the instrumentation results of DroidRA for reflective calls.
For newInstance() reflective call, DroidRA explicitly news
the corresponding class (line 40). While for invoke() reflec-
tive call, DroidRA explicitly calls the real method (e.g., se-
tImei() in line 43 for invoke() at line 41). At the end, all the
reflective calls have been represented by their real method
calls, which is no longer a problem of static analysis.

We have evaluated DroidRA on 500 real-world apps, for
which DroidRA improves by 3.8% and 0.6% the number of
edges in the call-graph constructed with Spark [10] and CHA
algorithm respectively. We have also sent our instrumented
version of apps on both benchmark apps and in-the-wild
apps to IccTA. IccTA successfully reports all the leaks on
the four DroidBench apps, while originally IccTA cannot
report any of such. IccTA is also able to impact 16% of
in-the-wild apps by yielding more results.

Thanks to DroidRA, IccTA actually is also able to report a
privacy leak for Listing 1. The instrumentation has enabled
IccTA to become reflection-aware while enabled FlowDroid
to become ICC-aware. Consequently, Instrumentation en-
ables FlowDroid, which is ICC-unaware and reflection-unaware,
to be able to yield ICC-aware and reflection-aware results.
This example indeed shows that instrumentation is reliable
to be leveraged to solve tough static analysis challenges, and
consequently support existing static analyzers without any
modification to perform extensive analysis.

4.2 Remaining Work
So far, we have finished the aforementioned two case stud-

ies, which have shown that instrumentation is a good ap-
proach for providing non-invasive supporting for existing
static analyzers. Furthermore, we have implemented a generic
framework called Apkpler [15], which integrates a plugin
system to reduce the analysis complexity of Android apps.
With the help of Apkpler, FlowDroid can actually bene-
fit from IccTA’s output to detect ICC-aware sensitive data
leaks.

However, the instrumentation part of IccTA (for Android
ICC) and DroidRA (for reflection) are not generic, which are
designed and implemented separately. We have summed up
some common parts that are used in both approaches. For



example, both approaches need to define a set of instrumen-
tation points beforehand and then localize them in the code
before instrumentation. Besides, both approaches have to
resolve/create local variables so as to satisfy the instrumen-
tation. We believe that the common parts of instrumenta-
tion such as the aforementioned processes can be presented
and solved in a generic way. Thus, in future work, we will
thoroughly summarize the common parts between our two
previous case studies and then implement the JIL solver to
ease the reuse of other instrumentation tasks.

5. RELATED WORK
Instrumenting Android apps can be used not only for se-

curity purposes, but also for code analysis and optimiza-
tion in general, such as time-bomb elimination. In addition
to manual instrumentation, the most well-known tool that
supports automatic instrumentation is Soot. For example,
AppSealer [20] instruments vulnerability-specific patches for
keeping Android components from hijacking attacks. Other
tools like abc (the AspectBench Compiler [2]), WALA [1]
can also be used to instrument Android apps.

Our previous work called IccTA, as introduced before,
leverages FlowDroid and Epicc to perform inter-component
static taint analysis. Other tools like DidFail [8] and Aman-
Droid [19] are also proposed to support ICC-aware analy-
sis. Neither DidFail nor AmanDroid uses instrumentation to
solve the ICC problem, leading to non-reusable approaches.
Interestingly, DidFail also leverages instrumentation tech-
nique in its implementation, which inserts a unique ID into
Intents, so as to appropriately match Intents with Intent
Filters afterwords.

Reflection, by itself, has been studied by several works for
Java apps. For example, Livshits et al. [16] leverage points-
to analysis to approximate the targets of reflection calls.
Braux et al. [7] optimize reflective calls to increase time per-
formance. Most notably, Bodden et al. [6] have presented
TamiFlex for boosting static analysis in the presence of re-
flections. This work, along with our previous work named
DroidRA, are actually inspired by TamiFlex.

Most recently, Barros et al. [4] propose to tackle Android
ICC and reflection challenges at the same time within their
Checker framework. They use annotations on top of source
code to help developers checking information flows in their
own apps. Unlike our approach, which, thanks to instru-
mentation, can directly benefit other approaches, their ap-
proach cannot be easily reused and thus presents an invasive
approach (i.e., the beneficiaries have to be modified).

6. CONCLUSION
In this paper, we have demonstrated that code instrumen-

tation is a good means to boost static analysis of Android
apps. More specifically, we have shown two successful case
studies that resolve ICC and reflection challenges respec-
tively through instrumentation. We have also shown that
there is a need to provide a generic approach to automate
instrumentation and thus to implement a non-invasive ap-
proach for existing static analyzers, enabling them to per-
form extensive analysis.
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[10] Ondřej Lhoták and Laurie Hendren. Scaling java points-to
analysis using spark. In CC, 2003.

[11] Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel,
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