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ABSTRACT
The myriads of smart phones around the globe gave rise to
a vast proliferation of mobile applications. These applica-
tions target an increasing number of user profiles and tasks.
In this context, Android is a leading technology for their
development and on-line markets are the main means for
their distribution. In this paper we motivate, from two per-
spectives, the mining of these markets with the objective
to identify families of apps variants in the wild. The first
perspective is related to research activities where building
realistic case studies for evaluating extractive SPL adoption
techniques are needed. The second is related to a large-
scale, world-wide and time-aware study of reuse practice in
an industry which is now flourishing among all others within
the software engineering community. This study is relevant
to assess potential for SPLE practices adoption. We present
initial implementations of the mining process and we discuss
analyses of variant families.

CCS Concepts
•Software and its engineering→ Software reverse en-
gineering; Software product lines;

Keywords
Software Product Line Engineering; Reverse Engineering;
Mining Software Repositories; Android; AppVariants

1. INTRODUCTION
Software repositories contain a wealth of artefacts and in-

formation that can be mined to study development processes
and experimentally assess research approaches. In recent
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years, GitHub has offered such opportunities to the Soft-
ware Engineering research community with its millions of
projects. Unfortunately, there are a lot of perils in using
GitHub data [5]. Among these, it is noteworthy that a large
proportion of GitHub projects are toy projects, while other
repositories are frequently used for sharing code between a
limited number of people. Findings on such software data
are thus often not generalisable of software development.
Recently, on the other hand, with the wide adoption of smart
mobile devices, application (app) markets are growing with
millions of software artefacts, written by isolated developers
as well as by companies to target large user bases.

SPLE research community can leverage the content of app
markets. It is a common belief that case studies for exper-
imenting with SPL adoption approaches are needed. One
of the adoption models is the extractive approach where the
organization capitalizes on existing custom software systems
by extracting the common and varying source code into a
single production line [8]. In this direction, and in order to
cover the whole transition process, several techniques have
been proposed, such as feature identification, feature loca-
tion, mining feature constraints or extraction of reusable
assets [14]. However, SPL migration remains a challenging
endeavour at technical level and, to undermine this situa-
tion, researchers find great difficulty in obtaining software
variants which are realistic and not proprietary. ArgoUML
SPL derived variants [3] is a widely used case study, however,
more case studies are essential in order to empirically evalu-
ate the proposed techniques. While ArgoUML SPL variants
among others are created “in the lab”, we present an ex-
ploratory study to identify variant families “in the wild”. In
the past, this kind of exploration already culminated in real-
istic benchmarks (e.g. Linux kernel variants [19] or Eclipse
releases [15]).

Games, weather, social networking services (SNS), nav-
igation, music or news are among the most popular apps
categories and each app target specific user needs. In our
definition, it is not mandatory that a family belongs to the
same category. We consider a family as a set of variants from
which feature-oriented systematic reuse may be performed.
A feature is a characteristic, quality or user-visible aspect
of a software system or systems [6]. Some approaches have
been proposed to try to identify features information from
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a single product (e.g. [7]). In some SPL adoption scenarios,
it is possible that the SPL wants to be created from a single
product by separating its features. In our case we focus on
the scenario of several variants created by reusing domain
assets to fit different customer needs. Therefore, we propose
mining variants, and not single products, directly from pub-
lic Android apps markets. It is important to clarify that we
are more interested in variability in space (variants) than in
variability in time (versions). However, as we will see later,
we keep the information of the versions.

The benefits of systematic and planned reuse have already
been evidenced in“traditional”SPL domains such as embed-
ded systems1. By targeting Android applications we aim to
explore a software engineering industry where SPL practices
can carry a lot of potential. The market for Android apps
is experiencing a steady increase in demand since the mass
adoption of smart-phones2. In our opinion, this fact guar-
antees the interest in this topic in the years to come. We
consider that a large-scale, world-wide and time-aware study
of reuse practice in this domain can be leveraged to propose
automatic assessment of the potential of Android apps fam-
ilies to adopt an SPL approach.

The remainder of the paper is structured as follows: Sec-
tion 2 presents a motivating example. Section 3 summarizes
our vision and contribution. Section 4 presents our solution
for the family variants mining process. Section 5 presents
and discusses the analysis of selected families. Section 6
presents related work and Section 7 concludes this work.

2. MOTIVATING EXAMPLE
8684 is a Chinese company specialized in travel and trans-

portation apps3 which reached more than 5 million users.
The 8684 family of variants that we manually identified mo-
tivated our interest in trying to automatically identify other
families in app markets. In the 8684 portfolio we have found
several apps including CityBus, Metro, Train etc. Given the
specialized nature of this company, their apps have many as-
pects in common such as time schedule or location manage-
ment. We aim to explore the reuse that has been conducted
while implementing the different apps and check if some of
this reuse corresponds to distinguishable features. Our hy-

1http://splc.net/fame.html
2http://www.cnet.com/news/
android-shipments-exceed-1-billion-for-first-time-in-2014
3http://www.8684.cn

pothesis is that, apart from the different graphical elements,
there may be shared implementations of the business logic.

We analysed 6 variants with But4Reuse (Bottom-Up Tech-
nologies for Reuse) [14] which is a framework for extractive
SPL adoption. In the packages that we identified as related
to the company source code (cn.tianqu and cn.chinabus),
270 java files are shared (identical) by at least two variants,
and 470 java files in average are specific to each variant. We
ignore if the reuse was performed using copy-paste-modify or
more advanced reuse techniques were being applied. Figure
1 illustrates the blocks of java files automatically identified
among the variants in these two packages. This visualisation
is known as the pruned concept hierarchy [17]. We included,
for each Block, relevant words that appeared in the names
of the files. Block 0, at the top, is source code shared by the
6 apps except TrainTicket and consists of 10 files with 333
lines of code (LoC) related to error handling. The blocks
that appear with the name of the variants at the bottom
(e.g. Block 10 for LongWayBus) are the ones that are spe-
cific to each variant. Block 8 to 11 are 20KLoC in average
and Block 12 and 13 are 3KLoC and 5KLoC respectively.
From Block 1 to 7 the average is 1733 LoC.

From a research perspective, one objective is to apply and
validate techniques for feature identification and location
towards the extraction of an SPL that will be able to, at
least, derive the same 6 apps. Nevertheless, in this paper,
our objective is to automatically identify a large number of
other relevant families within app markets.

3. VISION
We consider that empirical analyses of reuse practices in

the domain of Android apps could be an interesting case
study for SPL research and will provide insights on how
Android app development, in its current state, can benefit
from SPLE. In other domains, approaches for a collaborative
assessment of the reuse potential has been proposed [16] and
industrial experiences has been reported [4]. The vision is to
automatize this assessment minimizing human involvement
in the domain of Android apps. The following two points
summarizes our vision regarding this initial work:

• Towards building realistic case studies for ex-
tractive SPL adoption related techniques

• Large-scale, world-wide and time-aware study
of reuse practices for automatic assessment of
extractive SPL adoption in families of apps

Figure 1: Concept lattice with the variants and blocks in the packages cn.tianqu and cn.chinabus of the 8684 family.
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We present our initial prototypes and preliminary results:

• An app families clustering method: A method to
mine datasets of apps in order to identify families of
apps.

• Preliminary analyses of selected app families:
We perform feature identification to discuss the char-
acteristics of some mined app families.

4. MINING FAMILIES OF ANDROID APPS
Thanks to manual observation, we found three essential

and simple characteristics which could be leveraged to mine
app families, including 1) the unique package name of apps,
2) the certificate signed by app developers and 3) code sim-
ilarity among apps. Figure 2 illustrates the working process
of our approach, which takes as input a set of apps (e.g.
from a market) and output the families of apps. We provide
details about these three steps.

Package-based
Categorization

Code-based
Comparison

Certificate-based
Filtration

Set of Apps

Families of 
Apps

Figure 2: Steps of our families mining approach.

Package-based Categorization. In Android, each app
is uniquely specified through a full Java-language-style pack-
age name. This package can be recognized because it is
declared in the app meta-data. As officially recommended
by Google4, to avoid conflicts with other apps, develop-
ers should use internet domain ownership as the basis for
their package names (in reverse). As an example, apps pub-
lished by Adobe should start with com.adobe. Thus, if two
apps start with a same company domain in their package
names, these two apps are more likely developed by the same
provider.

Certificate-based Filtering. Unfortunately, the pack-
age naming style is not respected in every case. Concretely,
it is a common practice for malicious apps to use the same
package names as other legitimate apps [13]. This is pos-
sible with a technique called repackaging where apps are
disassembled and assembled again. Therefore, the validity
of the package name characteristic is threatened. We com-
plement this characteristic with another one related to the
certificate of apps. In order to make an app publicly avail-
able in a market, developers have to sign their apps through
their unique certificate. Thus, if two apps are signed by a
same certificate, we have reason to believe that these two
apps are developed by the same provider.

Code-based Comparison. In the last step, we perform
pairwise comparison on apps that are located in a same fam-
ily thanks to the aforementioned two steps. Based on the
comparison results, we attempt to filter out such apps that
are not sharing code with others and consequently can be
considered as outliers. Given a threshold t, an app family
F , and an app ai ∈ F , for every aj ∈ F , where j 6= i,
the similarity distance aij < t, we consider that ai is an
outlier of family F , and thus we drop it from F in this

4http://developer.android.com/guide/topics/manifest/
manifest-element.html

step. For the source code similarity we computed it based
on the formula s = identicalMethods/totalMethods, which
has already been used in other studies [11]. Because of the
unscalable characteristic of this step, we only use it to clean
the families from potential outliers.

As summary, we cluster apps into a same family if
they belong to the portfolio of the same app provider
(step 1 and 2) and as long as they are partially similar
in terms of source code similarity (step 3).

4.1 Implementation and Preliminary Results
We present a prototype tool called AppVariants, which is

dedicated to validate the pertinence of the aforementioned
three characteristics.

Prototype Implementation. AppVariants adopts a
tree model to store the meta information of mined apps.
Figure 3 shows an illustrative example for com.baidu.* apps
on how their meta-data are stored. Each non-leaf node of
the tree is represented by a package segment (e.g., baidu)
while leaf node is represented through the remaining pack-
age segments (e.g., BaiduMap). Furthermore, each leaf node
has affiliated a ranked list of meta-data of apps, including
their certificates and assemble times. As shown in Figure 3,
the time line of the vertical axis shows that the affiliated
list is ranked through times and the apps it contains are
actually different versions of the app indicated by the leaf
node. Given a time point, the tree model also gives a way
to identify family variants. For example, as shown in the
dashed rectangle, we are able to collect a set of variants for
com.baidu, given the latest time point.

time
line

family 
variants

com

baidu

BaiduMap input browserhd.inter browser.appsbrowser.inter

v_16

... ...

v_01

v_03

v_02

v_01

v_07

... ...

v_01

v_03

v_02

v_01

v_02

v_01

variants

versions

Figure 3: A simplified example showing how meta-data
of app variants of Baidu are stored.

Experimental Setup. For the purpose of providing real
family variants for SPL analysis, we need to apply our ap-
proach on a market scale. Thus, for this mining process, we
use the AndroZoo [2] dataset to select around 1.5 million
Google Play apps. This data set has already been used in
other analyses [9, 10].

2 3 4 5 6 7 8 9

#. of variants per family

Figure 4: Boxplot on the number of variants per each
family.
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Preliminary Mining Results. Among the 1.5 million
Android apps, based on package-based categorization and
certificate-based filtration (steps 1 and 2), we are able to
collect 75,963 families of apps. The number of variants in
each family varies from 2 to 12,702 apps. Figure 4 plots the
distribution of the number of variants in our collected fami-
lies before the third step using a boxplot. The median num-
ber of variants is three, meaning that half of the collected
families have at least three variants. Actually, the boxplot
only shows 88% families of our mined dataset, because we
have disabled outliers in order to better present the results.
The remaining 12% families have over 10 variants in each.
Furthermore, 760 families in our mined dataset (i.e., 1%)
have over 100 variants. Table 1 shows the top 10 families
regarding the number of apps in the app provider portfo-
lio. As an example, com.andromo, the top ranked package
prefix, has 12,702 variants.

Table 1: Top 10 families in number of variants

Package Prefix Variants Package Prefix Variants
com.andromo 12,702 com.jb 2,203
com.conduit 11,766 com.appsbar 2,143
sk.jfox 9,055 com.skyd 1,922
com.reverbnation 3,932 com.appmakr 1,787
air.com 2,732 com.gau 1,764

Thanks to our manual observation, we have found that,
based only on the first two steps of our approach, we are al-
ready able to collect a big data set of families. However,
some families that we collect do not share any common
source code from one another. The family com.ethereal

contains four variants, where the similarity of all of them
are less than 5%. To this end, we leverage the code-based
comparison (step 3) in order to mitigate those potential false
positives. As our pairwise code comparison is not scalable
to families with high number of variants, in this work, we
randomly select 100 families of no more than 9 variants to
evaluate the soundness of the code-based comparison step.
Figure 5 illustrates the distribution of similarities between
pairs of variants. The median value is around 77%, show-
ing that variants of most families are actually sharing a lot
of common code. This fact make them good samples for
exploring and assessing SPL adoption.

0.0 0.2 0.4 0.6 0.8 1.0

The similarity of each pair of variants

Figure 5: Distribution of the similarity of the variant
pairs.

5. ANALYSIS OF SELECTED FAMILIES
In order to perform more in-depth analyses, we analysed

the app families at different levels: files, source code and
meta-data (e.g. user permissions defined in the Android
manifest file) using Bottom-Up Technologies for Reuse [14].
In this Section we have categorized different cases that we
have found from which we present a representative example.

Libraries Reuse. The third step (source code similarity)
of the mining approach, presented in Section 4, does not re-

strict the similarity analysis to the main package of the apps,
but to the whole source code which includes the libraries.
In general, around 41% of an app source code is related to
libraries [11]. As an example, we analysed a mined fam-
ily with 4 apps: MyShopping, BattleSpace, StrongBox and
FrancsEuros. The reuse only concerns the code of the used
library fr.pcsoft. And very slight reuse between the apps
in the provider package which a manual examination showed
that it belongs to technicalities of the used development en-
vironment (i.e. WinDev) but not to actual relevant code. In
apps clone detection it is a known limitation distinguishing
actual source code from libraries and it is also a limitation
of our approach. The main technique to avoid these false
positives is to ignore common libraries during the similarity
calculation step through whitelists with known and frequent
libraries [11].

App Generators and Distributors. In Table 1 we
presented app provider portfolios with elevated number of
apps. We analysed variants from the com.andromo family
to investigate the reason behind this fact. They all share
a common block which is mainly related to screen layout
management and many other blocks are shared between
some of the variants. By looking at their website, An-
dromo is a company that offers a framework that aims to
hide technical details of apps development and they provide
services for easing apps distribution. That is the reason
why they all have the certificate from com.andromo even
if actually they are different developers from their commu-
nity. Concretely, the main package of an app looks like this
com.andromo.dev282094.app267841 where dev is the id of
the user and app is the id of this app. Preliminary analy-
sis of the variants confirmed that the Andromo framework
is feature-oriented providing initial components (e.g. photo
gallery or radio) for user customization. Despite that the
user customizations difficult the traditional automatic anal-
ysis of the variants’ source code, more in-depth analyses of
frameworks like this one, could aim to reverse engineer their
variability and architecture. Given that the business value
of these frameworks is their architecture, protection from
extractive approaches like ours, which has been coined as
variability-aware security [1], is an important research di-
rection that can highly benefit from this work.

Content-driven Variability. We analysed the 6 mined
variants from tudou. Tudou is a famous Chinese on-line
video services company that broadcast users content and tv
series. One outlier consisted in one heavily obfuscated app
that had shared libraries with the others. We also found
three that were very similar, almost complete app clones.
A manual examination showed that they reused the same
source code to distribute apps targeting different tv series.
In these cases we have variability at the level of the app
displayed content but the app architecture remains the same.

Device-driven Variability. We analysed the 6 mined
variants from baidu, a famous Chinese web services provider.
Baidu also provides an app software development kit which
they extensively use in these 6 variants. In two apps, Baidu
Maps and input, they share the voice recognition feature. In
another two variants, browser.inter and browserhd.inter,
we found that many code has been reused. They are both
internet browser apps where one is specialized for mobile
phones and the other for tablets. Therefore the variability
exists because of the targeted device.

We cannot generalize the findings of these examples and



we do not intend this categorization to be exhaustive. An
automatic approach needs to be put in place to explore the
mined apps family variants to determine the semantic and
syntactic cohesion of the family members. The conclusion
of such automatic analysis can spot interesting families.

6. RELATED WORK
As discussed in the introduction, Github is trending in the

mining software repositories community. However, its ex-
pansion as public repository has degraded or complicated its
practical exploitation in research [5], mainly because the re-
sults may not be generalizable to software engineering prac-
tices in industry. Without detracting from the validity of
research using Github, we consider that Android apps at
the app markets have more guarantees of being non merely
personal projects.

The Diversify project has conducted several large-scale
studies regarding software libraries usages in different con-
texts such as JavaScript websites, WordPress or Maven5.
Their objective is to analyse the diversity as an enabler to
adapt a software product during its evolution. In our work,
library usage is also important but it is more important the
actual code of the app. In previous work we analysed the us-
age of Android libraries [11] and others have analysed reuse
in Android markets [18]. Our visions aims to bring the An-
droid research community to topics specific to SPLE. The
research field on malware detection is creating advanced and
scalable methods for mining app markets [12]. Their ob-
jective is to heuristically define if a legitimate app has a
malware counterpart signed with another certificate. Clone
detection techniques and the analysis of other app charac-
teristics, such as user permissions, are the basis for their
analysis. Our objective is to find variants from the same
provider to analyse its commonality and variability. How-
ever, we can see some synergies between the techniques used
in extractive SPL adoption and the malware detection tech-
niques.

7. CONCLUSIONS
Apps development is a flourishing industry which prod-

ucts are publicly available in apps market places. We pro-
posed to use these apps datasets to identify apps families
with two visions 1) provide realistic case studies for SPLE
research in extractive SPL adoption and 2) study reuse prac-
tices and assess if app families are suitable for SPL adoption.
We presented our prototype implementation of the mining
process and the analysis of selected families.

As further work, we plan to improve the mining process
and conduct more in-depth analysis to approach to these
visions. Regarding the automatic mining algorithm, we aim
to improve the source code similarity comparison with ap-
proaches that could escape cases of obfuscation, and also
include semantic analysis of app descriptions and user com-
ments in the market website. In relation to the analysis of
families, we aim to report end to end extractive SPL adop-
tion of selected mined families.
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